Recent Developments in Metal-Based Drugs and Chelating Agents for Neurodegenerative Diseases Treatments
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
31013856
PubMed Central
PMC6514778
DOI
10.3390/ijms20081829
PII: ijms20081829
Knihovny.cz E-zdroje
- Klíčová slova
- chelating agents, drug development, metallodrugs,
- MeSH
- amyloid chemie metabolismus MeSH
- amyloidní beta-protein chemie metabolismus MeSH
- chelátory chemie farmakologie terapeutické užití MeSH
- kovy chemie metabolismus MeSH
- lidé MeSH
- neurodegenerativní nemoci farmakoterapie etiologie metabolismus patologie MeSH
- přehodnocení terapeutických indikací léčivého přípravku MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- vyvíjení léků * MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- amyloid MeSH
- amyloidní beta-protein MeSH
- chelátory MeSH
- kovy MeSH
The brain has a unique biological complexity and is responsible for important functions in the human body, such as the command of cognitive and motor functions. Disruptive disorders that affect this organ, e.g. neurodegenerative diseases (NDDs), can lead to permanent damage, impairing the patients' quality of life and even causing death. In spite of their clinical diversity, these NDDs share common characteristics, such as the accumulation of specific proteins in the cells, the compromise of the metal ion homeostasis in the brain, among others. Despite considerable advances in understanding the mechanisms of these diseases and advances in the development of treatments, these disorders remain uncured. Considering the diversity of mechanisms that act in NDDs, a wide range of compounds have been developed to act by different means. Thus, promising compounds with contrasting properties, such as chelating agents and metal-based drugs have been proposed to act on different molecular targets as well as to contribute to the same goal, which is the treatment of NDDs. This review seeks to discuss the different roles and recent developments of metal-based drugs, such as metal complexes and metal chelating agents as a proposal for the treatment of NDDs.
Biomedical Research Center University Hospital Hradec Kralove Hradec Kralove 500 03 Czech Republic
Department of Health Sciences Federal University of Espírito Santo São Mateus ES 29932 540 Brazil
Zobrazit více v PubMed
Kovacs G.G. Handbook of Clinical Neurology. Elsevier; Amsterdam, The Netherlands: 2018. Concepts and classification of neurodegenerative diseases; pp. 301–307. PubMed
Gabor G. Kovacs current concepts of neurodegenerative diseases. Eur. Med. J. Neurol. 2014;1:78–86.
Kovacs G.G. Molecular Pathological Classification of Neurodegenerative Diseases: Turning towards Precision Medicine. Int. J. Mol. Sci. 2016;17:189. doi: 10.3390/ijms17020189. PubMed DOI PMC
Ferri C.P., Prince M., Brayne C., Brodaty H., Fratiglioni L., Ganguli M., Hall K., Hasegawa K., Hendrie H., Huang Y., et al. Global prevalence of dementia: A Delphi consensus study. Lancet. 2005;366:2112–2117. doi: 10.1016/S0140-6736(05)67889-0. PubMed DOI PMC
Modi G., Pillay V., Choonara Y.E. Advances in the treatment of neurodegenerative disorders employing nanotechnology. Ann. N. Y. Acad. Sci. 2010;1184:154–172. doi: 10.1111/j.1749-6632.2009.05108.x. PubMed DOI
Subramaniam N.S., Bawden C.S., Waldvogel H., Faull R.M.L., Howarth G.S., Snell R.G. Emergence of breath testing as a new non-invasive diagnostic modality for neurodegenerative diseases. Brain Res. 2018;1691:75–86. doi: 10.1016/j.brainres.2018.04.017. PubMed DOI
Bertram L., Tanzi R.E. The genetic epidemiology of neurodegenerative disease. J. Clin. Investig. 2005;115:1449–1457. doi: 10.1172/JCI24761. PubMed DOI PMC
Ward K.R., Yealy D.M. End-tidal carbon dioxide monitoring in emergency medicine, Part 2: Clinical applications. Acad. Emerg. Med. 1998;5:637–646. doi: 10.1111/j.1553-2712.1998.tb02474.x. PubMed DOI
Rotermund C., Machetanz G., Fitzgerald J.C. The Therapeutic Potential of Metformin in Neurodegenerative Diseases. Front. Endocrinol. 2018;9:400. doi: 10.3389/fendo.2018.00400. PubMed DOI PMC
Brookmeyer R., Johnson E., Ziegler-Graham K., Arrighi H.M. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 2007;3:186–191. doi: 10.1016/j.jalz.2007.04.381. PubMed DOI
Helder D.I., Kaptein A.A., Van Kempen G.M.J., Weinman J., Van Houwelingen J.C., Roos R.A.C. Living with Huntington’s disease: illness perceptions, coping mechanisms, and spouses’ quality of life. Int. J. Behav. Med. 2002;9:37–52. doi: 10.1207/S15327558IJBM0901_03. PubMed DOI
Savelieff M.G., Nam G., Kang J., Lee H.J., Lee M., Lim M.H. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem. Rev. 2019;119:1221–1322. doi: 10.1021/acs.chemrev.8b00138. PubMed DOI
Chung C.G., Lee H., Lee S.B. Mechanisms of protein toxicity in neurodegenerative diseases. Cell. Mol. Life Sci. 2018;75:3159–3180. doi: 10.1007/s00018-018-2854-4. PubMed DOI PMC
Jiang Z., You Q., Zhang X. Medicinal chemistry of metal chelating fragments in metalloenzyme active sites: A perspective. Eur. J. Med. Chem. 2019;165:172–197. doi: 10.1016/j.ejmech.2019.01.018. PubMed DOI
Savelieff M.G., Lee S., Liu Y., Lim M.H. Untangling Amyloid-β, Tau, and Metals in Alzheimer’s Disease. ACS Chem. Biol. 2013;8:856–865. doi: 10.1021/cb400080f. PubMed DOI
Barnham K.J., Bush A.I. Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem. Soc. Rev. 2014;43:6727–6749. doi: 10.1039/C4CS00138A. PubMed DOI
Sampson E.L., Jenagaratnam L., McShane R. Metal protein attenuating compounds for the treatment of Alzheimer’s dementia. Cochrane Database Syst. Rev. 2012;16:CD005380. Erratum in 2014, 21, CD005380. PubMed
Hiremathad A., Keri R.S., Esteves A.R., Cardoso S.M., Chaves S., Santos M.A. Novel Tacrine-Hydroxyphenylbenzimidazole hybrids as potential multitarget drug candidates for Alzheimer’s disease. Eur. J. Med. Chem. 2018;148:255–267. doi: 10.1016/j.ejmech.2018.02.023. PubMed DOI
Sharma A.K., Pavlova S.T., Kim J., Finkelstein D., Hawco N.J., Rath N.P., Kim J., Mirica L.M. Bifunctional Compounds for Controlling Metal-Mediated Aggregation of the Aβ42 Peptide. J. Am. Chem. Soc. 2012;134:6625–6636. doi: 10.1021/ja210588m. PubMed DOI PMC
Martorell M., Forman K., Castro N., Capó X., Tejada S., Sureda A. Potential Therapeutic Effects of Oleuropein Aglycone in Alzheimer’s Disease. Curr. Pharm. Biotechnol. 2016;17:994–1001. doi: 10.2174/1389201017666160725120656. PubMed DOI
Nardi M., Bonacci S., De Luca G., Maiuolo J., Oliverio M., Sindona G., Procopio A. Biomimetic synthesis and antioxidant evaluation of 3,4-DHPEA-EDA [2-(3,4-hydroxyphenyl) ethyl (3S,4E)-4-formyl-3-(2-oxoethyl)hex-4-enoate] Food Chem. 2014;162:89–93. doi: 10.1016/j.foodchem.2014.04.015. PubMed DOI
Sarbishegi M. Antioxidant Effects of Olive Leaf Extract in Prevention of Alzheimer’s Disease and Parkinson’s Disease. Gene Cell Tissue. 2018;5:e79847. doi: 10.5812/gct.79847. DOI
Sindona G., Caruso A., Cozza A., Fiorentini S., Lorusso B., Marini E., Nardi M., Procopio A., Zicari S. Anti-Inflammatory Effect of 3,4-DHPEA-EDA [2-(3,4 -Hydroxyphenyl) ethyl (3S, 4E)- 4-Formyl-3-(2-Oxoethyl)Hex-4-Enoate] on Primary Human Vascular Endothelial Cells. Curr. Med. Chem. 2012;19:4006–4013. doi: 10.2174/092986712802002536. PubMed DOI
Nardi M., Bonacci S., Cariati L., Costanzo P., Oliverio M., Sindona G., Procopio A. Synthesis and antioxidant evaluation of lipophilic oleuropein aglycone derivatives. Food Funct. 2017;8:4684–4692. doi: 10.1039/C7FO01105A. PubMed DOI
Paonessa R., NArdi M., Di gioia M.L., Olivito F., Oliverio M., Procopio A. Eco-friendly synthesis of lipophilic EGCG derivatives and antitumor and antioxidant evaluation. Nat. Prod. Comun. 2018;13:1097–1234. doi: 10.1177/1934578X1801300905. DOI
Chen K., Cui M. Recent progress in the development of metal complexes as β-amyloid imaging probes in the brain. Medchemcomm. 2017;8:1393–1407. doi: 10.1039/C7MD00064B. PubMed DOI PMC
Fukai T., Ushio-Fukai M. Superoxide Dismutases: Role in Redox Signaling, Vascular Function, and Diseases. Antioxid. Redox Signal. 2011;15:1583–1606. doi: 10.1089/ars.2011.3999. PubMed DOI PMC
Anand R., Gill K.D., Mahdi A.A. Therapeutics of Alzheimer’s disease: Past, present and future. Pt ANeuropharmacology. 2014;76:27–50. doi: 10.1016/j.neuropharm.2013.07.004. PubMed DOI
de Castro A.A., da Cunha E.F.F., Pereira A.F., Soares F.V, Leal D.H.S., Kuca K., Ramalho T.C. Insights into the Drug Repositioning Applied to the Alzheimer’s Disease Treatment and Future Perspectives. Curr. Alzheimer Res. 2018;15:1161–1178. doi: 10.2174/1567205015666180813150703. PubMed DOI
Di Stefano A., Iannitelli A., Laserra S., Sozio P. Drug delivery strategies for Alzheimer’s disease treatment. Expert Opin. Drug Deliv. 2011;8:581–603. doi: 10.1517/17425247.2011.561311. PubMed DOI
Querfurth H.W., LaFerla F.M. Alzheimer’s disease. N. Engl. J. Med. 2010;362:329–344. doi: 10.1056/NEJMra0909142. PubMed DOI
Kivipelto M., Helkala E.L., Laakso M.P., Hanninen T., Hallikainen M., Alhainen K., Soininen H., Tuomilehto J., Nissinen A. Midlife vascular risk factors and Alzheimer’s disease in later life: Longitudinal, population based study. BMJ. 2001;322:1447–1451. doi: 10.1136/bmj.322.7300.1447. PubMed DOI PMC
Kukharsky M.S., Ovchinnikov R.K., Bachurin S.O. [Molecular aspects of the pathogenesis and current approaches to pharmacological correction of Alzheimer’s disease] Zhurnal Nevrol. i psikhiatrii Im. S.S. Korsakova. 2015;115:103–114. doi: 10.17116/jnevro20151156103-114. PubMed DOI
Nussbaum J.M., Seward M.E., Bloom G.S. Alzheimer disease: a tale of two prions. Prion. 2013;7:14–19. doi: 10.4161/pri.22118. PubMed DOI PMC
Carreiras M.C., Mendes E., Perry M.J., Francisco A.P., Marco-Contelles J. The multifactorial nature of Alzheimer’s disease for developing potential therapeutics. Curr. Top. Med. Chem. 2013;13:1745–1770. doi: 10.2174/15680266113139990135. PubMed DOI
De-Paula V.J., Radanovic M., Diniz B.S., Forlenza O. V Alzheimer’s disease. Subcell. Biochem. 2012;65:329–352. PubMed
Bachurin S.O., Bovina E.V, Ustyugov A.A. Drugs in Clinical Trials for Alzheimer’s Disease: The Major Trends. Med. Res. Rev. 2017;37:1186–1225. doi: 10.1002/med.21434. PubMed DOI
Ittner L.M., Ke Y.D., Delerue F., Bi M., Gladbach A., van Eersel J., Wolfing H., Chieng B.C., Christie M.J., Napier I.A., et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell. 2010;142:387–397. doi: 10.1016/j.cell.2010.06.036. PubMed DOI
Ballard C., Corbett A., Sharp S. Aligning the evidence with practice: NICE guidelines for drug treatment of Alzheimer’s disease. Expert Rev. Neurother. 2011;11:327–329. doi: 10.1586/ern.11.13. PubMed DOI
Corbett A., Pickett J., Burns A., Corcoran J., Dunnett S.B., Edison P., Hagan J.J., Holmes C., Jones E., Katona C., et al. Drug repositioning for Alzheimer’s disease. Nat. Rev. Drug Discov. 2012;11:833–846. doi: 10.1038/nrd3869. PubMed DOI
Heneka M.T., Carson M.J., El Khoury J., Landreth G.E., Brosseron F., Feinstein D.L., Jacobs A.H., Wyss-Coray T., Vitorica J., Ransohoff R.M., et al. Neuroinflammation in Alzheimer’s disease. Lancet. Neurol. 2015;14:388–405. doi: 10.1016/S1474-4422(15)70016-5. PubMed DOI PMC
Zhang B., Gaiteri C., Bodea L.-G., Wang Z., McElwee J., Podtelezhnikov A.A., Zhang C., Xie T., Tran L., Dobrin R., et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell. 2013;153:707–720. doi: 10.1016/j.cell.2013.03.030. PubMed DOI PMC
Karran E., Mercken M., De Strooper B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 2011;10:698–712. doi: 10.1038/nrd3505. PubMed DOI
Jones E.L., Hanney M., Francis P.T., Ballard C.G. Amyloid beta concentrations in older people with Down syndrome and dementia. Neurosci. Lett. 2009;451:162–164. doi: 10.1016/j.neulet.2008.12.030. PubMed DOI
Broadstock M., Ballard C., Corbett A. Latest treatment options for Alzheimer’s disease, Parkinson’s disease dementia and dementia with Lewy bodies. Expert Opin. Pharmacother. 2014;15:1797–1810. doi: 10.1517/14656566.2014.936848. PubMed DOI
Saez-Orellana F., Godoy P.A., Bastidas C.Y., Silva-Grecchi T., Guzman L., Aguayo L.G., Fuentealba J. ATP leakage induces P2XR activation and contributes to acute synaptic excitotoxicity induced by soluble oligomers of beta-amyloid peptide in hippocampal neurons. Neuropharmacology. 2016;100:116–123. doi: 10.1016/j.neuropharm.2015.04.005. PubMed DOI
Godyn J., Jonczyk J., Panek D., Malawska B. Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol. Rep. 2016;68:127–138. doi: 10.1016/j.pharep.2015.07.006. PubMed DOI
Serrano-Pozo A., Frosch M.P., Masliah E., Hyman B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2011;1:a006189. doi: 10.1101/cshperspect.a006189. PubMed DOI PMC
Golde T.E. The pathogenesis of Alzheimer’s disease and the role of Abeta42. CNS Spectr. 2007;12:4–6. doi: 10.1017/S1092852900025876. PubMed DOI
Schenk D., Basi G.S., Pangalos M.N. Treatment strategies targeting amyloid beta-protein. Cold Spring Harb. Perspect. Med. 2012;2:a006387. doi: 10.1101/cshperspect.a006387. PubMed DOI PMC
Xiao Y., Ma B., McElheny D., Parthasarathy S., Long F., Hoshi M., Nussinov R., Ishii Y. Abeta(1-42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat. Struct. Mol. Biol. 2015;22:499–505. doi: 10.1038/nsmb.2991. PubMed DOI PMC
Whitmer R.A., Gustafson D.R., Barrett-Connor E., Haan M.N., Gunderson E.P., Yaffe K. Central obesity and increased risk of dementia more than three decades later. Neurology. 2008;71:1057–1064. doi: 10.1212/01.wnl.0000306313.89165.ef. PubMed DOI
Yan R., Vassar R. Targeting the beta secretase BACE1 for Alzheimer’s disease therapy. Lancet. Neurol. 2014;13:319–329. doi: 10.1016/S1474-4422(13)70276-X. PubMed DOI PMC
Kuhn P.-H., Koroniak K., Hogl S., Colombo A., Zeitschel U., Willem M., Volbracht C., Schepers U., Imhof A., Hoffmeister A., et al. Secretome protein enrichment identifies physiological BACE1 protease substrates in neurons. EMBO J. 2012;31:3157–3168. doi: 10.1038/emboj.2012.173. PubMed DOI PMC
Holtzman D.M., Morris J.C., Goate A.M. Alzheimer’s disease: The challenge of the second century. Sci. Transl. Med. 2011;3:77sr1. doi: 10.1126/scitranslmed.3002369. PubMed DOI PMC
Nisbet R.M., Polanco J.-C., Ittner L.M., Gotz J. Tau aggregation and its interplay with amyloid-beta. Acta Neuropathol. 2015;129:207–220. doi: 10.1007/s00401-014-1371-2. PubMed DOI PMC
Tomita T. Secretase inhibitors and modulators for Alzheimer’s disease treatment. Expert Rev. Neurother. 2009;9:661–679. doi: 10.1586/ern.09.24. PubMed DOI
Selkoe D.J. Resolving controversies on the path to Alzheimer’s therapeutics. Nat. Med. 2011;17:1060–1065. doi: 10.1038/nm.2460. PubMed DOI
Khan A., Corbett A., Ballard C. Emerging treatments for Alzheimer’s disease for non-amyloid and non-tau targets. Expert Rev. Neurother. 2017;17:683–695. doi: 10.1080/14737175.2017.1326818. PubMed DOI
Corbett A., Ballard C. Is a potential Alzheimer’s therapy already in use for other conditions? Can medications for hypertension, diabetes and acne help with the symptoms? Expert Opin. Investig. Drugs. 2013;22:941–943. doi: 10.1517/13543784.2013.815723. PubMed DOI
Hardy J., Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol. Sci. 1991;12:383–388. doi: 10.1016/0165-6147(91)90609-V. PubMed DOI
Garcia M.L., Cleveland D.W. Going new places using an old MAP: tau, microtubules and human neurodegenerative disease. Curr. Opin. Cell Biol. 2001;13:41–48. doi: 10.1016/S0955-0674(00)00172-1. PubMed DOI
Wischik C.M., Harrington C.R., Storey J.M.D. Tau-aggregation inhibitor therapy for Alzheimer’s disease. Biochem. Pharmacol. 2014;88:529–539. doi: 10.1016/j.bcp.2013.12.008. PubMed DOI
Kadavath H., Jaremko M., Jaremko L., Biernat J., Mandelkow E., Zweckstetter M. Folding of the Tau Protein on Microtubules. Angew. Chem. Int. Ed. Engl. 2015;54:10347–10351. doi: 10.1002/anie.201501714. PubMed DOI
Lee V.M.-Y., Trojanowski J.Q. The disordered neuronal cytoskeleton in Alzheimer’s disease. Curr. Opin. Neurobiol. 1992;2:653–656. doi: 10.1016/0959-4388(92)90034-I. PubMed DOI
Clark C.M., Xie S., Chittams J., Ewbank D., Peskind E., Galasko D., Morris J.C., McKeel D.W.J., Farlow M., Weitlauf S.L., et al. Cerebrospinal fluid tau and beta-amyloid: How well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch. Neurol. 2003;60:1696–1702. doi: 10.1001/archneur.60.12.1696. PubMed DOI
Arriagada P.V, Growdon J.H., Hedley-Whyte E.T., Hyman B.T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology. 1992;42:631–639. doi: 10.1212/WNL.42.3.631. PubMed DOI
de Lau L.M.L., Breteler M.M.B. Epidemiology of Parkinson’s disease. Lancet. Neurol. 2006;5:525–535. doi: 10.1016/S1474-4422(06)70471-9. PubMed DOI
Svenningsson P., Westman E., Ballard C., Aarsland D. Cognitive impairment in patients with Parkinson’s disease: Diagnosis, biomarkers, and treatment. Lancet. Neurol. 2012;11:697–707. doi: 10.1016/S1474-4422(12)70152-7. PubMed DOI
Jankovic J. Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry. 2008;79:368–376. doi: 10.1136/jnnp.2007.131045. PubMed DOI
Parkinson J. An Essay on the Shaking Palsy. J. Neuropsychiatry Clin. Neurosci. 2002;14:223–236. doi: 10.1176/jnp.14.2.223. PubMed DOI
Damier P., Hirsch E.C., Agid Y., Graybiel A.M. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Pt 8Brain. 1999;122:1437–1448. doi: 10.1093/brain/122.8.1437. PubMed DOI
Schneider S.A., Obeso J.A. Clinical and pathological features of Parkinson’s disease. Curr. Top. Behav. Neurosci. 2015;22:205–220. PubMed
Spillantini M.G., Schmidt M.L., Lee V.M., Trojanowski J.Q., Jakes R., Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388:839–840. doi: 10.1038/42166. PubMed DOI
Braak H., Del Tredici K., Bratzke H., Hamm-Clement J., Sandmann-Keil D., Rub U. Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages) J. Neurol. 2002;249(Suppl. III):1–5. doi: 10.1007/s00415-002-1301-4. PubMed DOI
Beach T.G., Adler C.H., Lue L., Sue L.I., Bachalakuri J., Henry-Watson J., Sasse J., Boyer S., Shirohi S., Brooks R., et al. Unified staging system for Lewy body disorders: Correlation with nigrostriatal degeneration, cognitive impairment and motor dysfunction. Acta Neuropathol. 2009;117:613–634. doi: 10.1007/s00401-009-0538-8. PubMed DOI PMC
Hsu W.-Y., Lane H.-Y., Lin C.-H. Medications Used for Cognitive Enhancement in Patients With Schizophrenia, Bipolar Disorder, Alzheimer’s Disease, and Parkinson’s Disease. Front. Psychiatry. 2018;9:91. doi: 10.3389/fpsyt.2018.00091. PubMed DOI PMC
Lazzara C.A., Kim Y.-H. Potential application of lithium in Parkinson’s and other neurodegenerative diseases. Front. Neurosci. 2015;9:403. doi: 10.3389/fnins.2015.00403. PubMed DOI PMC
Stelmashook E.V, Isaev N.K., Genrikhs E.E., Amelkina G.A., Khaspekov L.G., Skrebitsky V.G., Illarioshkin S.N. Role of zinc and copper ions in the pathogenetic mechanisms of Alzheimer’s and Parkinson’s diseases. Biochemistry. 2014;79:391–396. doi: 10.1134/S0006297914050022. PubMed DOI
Zarei S., Carr K., Reiley L., Diaz K., Guerra O., Altamirano P., Pagani W., Lodin D., Orozco G., Chinea A. A comprehensive review of amyotrophic lateral sclerosis. Surg. Neurol. Int. 2015;6:171. doi: 10.4103/2152-7806.169561. PubMed DOI PMC
Pringsheim T., Wiltshire K., Day L., Dykeman J., Steeves T., Jette N. The incidence and prevalence of Huntington’s disease: A systematic review and meta-analysis. Mov. Disord. 2012;27:1083–1091. doi: 10.1002/mds.25075. PubMed DOI
Grossman M. Frontotemporal dementia: A review. J. Int. Neuropsychol. Soc. 2002;8:566–583. doi: 10.1017/S1355617702814357. PubMed DOI
Seelaar H., Rohrer J.D., Pijnenburg Y.A.L., Fox N.C., van Swieten J.C. Clinical, genetic and pathological heterogeneity of frontotemporal dementia: A review. J. Neurol. Neurosurg. Psychiatry. 2011;82:476–486. doi: 10.1136/jnnp.2010.212225. PubMed DOI
Metzler-Baddeley C. A review of cognitive impairments in dementia with Lewy bodies relative to Alzheimer’s disease and Parkinson’s disease with dementia. Cortex. 2007;43:583–600. doi: 10.1016/S0010-9452(08)70489-1. PubMed DOI
Rolinski M., Fox C., Maidment I., McShane R. Cholinesterase inhibitors for dementia with Lewy bodies, Parkinson’s disease dementia and cognitive impairment in Parkinson’s disease. Cochrane Database Syst. Rev. 2012:CD006504. doi: 10.1002/14651858.CD006504.pub2. PubMed DOI PMC
Aranca T.V, Jones T.M., Shaw J.D., Staffetti J.S., Ashizawa T., Kuo S.-H., Fogel B.L., Wilmot G.R., Perlman S.L., Onyike C.U., et al. Emerging therapies in Friedreich’s ataxia. Neurodegener. Dis. Manag. 2016;6:49–65. doi: 10.2217/nmt.15.73. PubMed DOI PMC
Bürk K. Friedreich Ataxia: current status and future prospects. Cerebellum Ataxias. 2017;4:4. PubMed PMC
Appleby B.S., Connor A., Wang H. Therapeutic strategies for prion disease: A practical perspective. Curr. Opin. Pharmacol. 2019;44:15–19. doi: 10.1016/j.coph.2018.11.006. PubMed DOI
Prusiner S.B. Novel proteinaceous infectious particles cause scrapie. Science. 1982;216:136–144. doi: 10.1126/science.6801762. PubMed DOI
Prusiner S.B. Molecular biology of prion diseases. Science. 1991;252:1515–1522. doi: 10.1126/science.1675487. PubMed DOI
Verma A. Prions, prion-like prionoids, and neurodegenerative disorders. Ann. Indian Acad. Neurol. 2016;19:169–174. doi: 10.4103/0972-2327.179979. PubMed DOI PMC
Alison A. The Red-Hot Debate About Transmissible Alzheimer’s. Nature. 2016;531:294–297. doi: 10.1038/531294a. PubMed DOI
Gaeta A., Hider R.C. The crucial role of metal ions in neurodegeneration: The basis for a promising therapeutic strategy. Br. J. Pharmacol. 2005;146:1041–1059. doi: 10.1038/sj.bjp.0706416. PubMed DOI PMC
Crichton R.R., Dexter D.T., Ward R.J. Metal based neurodegenerative diseases—From molecular mechanisms to therapeutic strategies. Coord. Chem. Rev. 2008;252:1189–1199. doi: 10.1016/j.ccr.2007.10.019. DOI
Zhu Z.-F., Wang Q.-G., Han B.-J., William C.P. Neuroprotective effect and cognitive outcome of chronic lithium on traumatic brain injury in mice. Brain Res. Bull. 2010;83:272–277. doi: 10.1016/j.brainresbull.2010.07.008. PubMed DOI
Basselin M., Chang L., Bell J.M., Rapoport S.I. Chronic lithium chloride administration attenuates brain NMDA receptor-initiated signaling via arachidonic acid in unanesthetized rats. Neuropsychopharmacology. 2006;31:1659–1674. doi: 10.1038/sj.npp.1300920. PubMed DOI
Donaldson I.M., Cuningham J. Persisting neurologic sequelae of lithium carbonate therapy. Arch. Neurol. 1983;40:747–751. doi: 10.1001/archneur.1983.04050110065011. PubMed DOI
Hampel H., Ewers M., Burger K., Annas P., Mortberg A., Bogstedt A., Frolich L., Schroder J., Schonknecht P., Riepe M.W., et al. Lithium trial in Alzheimer’s disease: A randomized, single-blind, placebo-controlled, multicenter 10-week study. J. Clin. Psychiatry. 2009;70:922–931. doi: 10.4088/JCP.08m04606. PubMed DOI
Stambolic V., Ruel L., Woodgett J.R. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr. Biol. 1996;6:1664–1668. doi: 10.1016/S0960-9822(02)70790-2. PubMed DOI
Gotz J., Nitsch R.M. Compartmentalized tau hyperphosphorylation and increased levels of kinases in transgenic mice. Neuroreport. 2001;12:2007–2016. PubMed
Phiel C.J., Wilson C.A., Lee V.M.-Y., Klein P.S. GSK-3alpha regulates production of Alzheimer’s disease amyloid-beta peptides. Nature. 2003;423:435–439. doi: 10.1038/nature01640. PubMed DOI
Liu S.J., Zhang A.H., Li H.L., Wang Q., Deng H.M., Netzer W.J., Xu H., Wang J.Z. Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory. J. Neurochem. 2003;87:1333–1344. doi: 10.1046/j.1471-4159.2003.02070.x. PubMed DOI
Klein P.S., Melton D.A. A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. USA. 1996;93:8455–8459. doi: 10.1073/pnas.93.16.8455. PubMed DOI PMC
Lovestone S., Davis D.R., Webster M.T., Kaech S., Brion J.P., Matus A., Anderton B.H. Lithium reduces tau phosphorylation: effects in living cells and in neurons at therapeutic concentrations. Biol. Psychiatry. 1999;45:995–1003. doi: 10.1016/S0006-3223(98)00183-8. PubMed DOI
Engel T., Goni-Oliver P., Gomez de Barreda E., Lucas J.J., Hernandez F., Avila J. Lithium, a potential protective drug in Alzheimer’s disease. Neurodegener. Dis. 2008;5:247–249. doi: 10.1159/000113715. PubMed DOI
Cade J.F. Lithium salts in the treatment of psychotic excitement. 1949. Bull. World Health Organ. 2000;78:518–520. PubMed PMC
Sarkar S., Floto R.A., Berger Z., Imarisio S., Cordenier A., Pasco M., Cook L.J., Rubinsztein D.C. Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell Biol. 2005;170:1101–1111. doi: 10.1083/jcb.200504035. PubMed DOI PMC
Sarkar S., Rubinsztein D.C. Inositol and IP3 levels regulate autophagy: Biology and therapeutic speculations. Autophagy. 2006;2:132–134. doi: 10.4161/auto.2387. PubMed DOI
Forlenza O.V., de Paula V.J., Machado-Vieira R., Diniz B.S., Gattaz W.F. Does lithium prevent Alzheimer’s disease? Drugs Aging. 2012;29:335–342. doi: 10.2165/11599180-000000000-00000. PubMed DOI
Garcia-Arencibia M., Hochfeld W.E., Toh P.P.C., Rubinsztein D.C. Autophagy, a guardian against neurodegeneration. Semin. Cell Dev. Biol. 2010;21:691–698. doi: 10.1016/j.semcdb.2010.02.008. PubMed DOI PMC
Pasquali L., Busceti C.L., Fulceri F., Paparelli A., Fornai F. Intracellular pathways underlying the effects of lithium. Behav. Pharmacol. 2010;21:473–492. doi: 10.1097/FBP.0b013e32833da5da. PubMed DOI
Forlenza O.V, De-Paula V.J.R., Diniz B.S.O. Neuroprotective effects of lithium: Implications for the treatment of Alzheimer’s disease and related neurodegenerative disorders. ACS Chem. Neurosci. 2014;5:443–450. doi: 10.1021/cn5000309. PubMed DOI PMC
Birch N.J. Letter: Lithium and magnesium-dependent enzymes. Lancet. 1974;2:965–966. doi: 10.1016/S0140-6736(74)91187-8. PubMed DOI
Amari L., Layden B., Rong Q., Geraldes C.F.G.C., Mota de Freitas D. Comparison of Fluorescence, 31P NMR, and 7Li NMR Spectroscopic Methods for Investigating Li+/Mg2+ Competition for Biomolecules. Anal. Biochem. 1999;272:1–7. doi: 10.1006/abio.1999.4169. PubMed DOI
Grimes C.A., Jope R.S. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog. Neurobiol. 2001;65:391–426. doi: 10.1016/S0301-0082(01)00011-9. PubMed DOI
Lee F.H.F., Kaidanovich-Beilin O., Roder J.C., Woodgett J.R., Wong A.H.C. Genetic inactivation of GSK3alpha rescues spine deficits in Disc1-L100P mutant mice. Schizophr. Res. 2011;129:74–79. doi: 10.1016/j.schres.2011.03.032. PubMed DOI
Forlenza O.V, Diniz B.S., Radanovic M., Santos F.S., Talib L.L., Gattaz W.F. Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: Randomised controlled trial. Br. J. Psychiatry. 2011;198:351–356. doi: 10.1192/bjp.bp.110.080044. PubMed DOI
Shalbuyeva N., Brustovetsky T., Brustovetsky N. Lithium desensitizes brain mitochondria to calcium, antagonizes permeability transition, and diminishes cytochrome C release. J. Biol. Chem. 2007;282:18057–18068. doi: 10.1074/jbc.M702134200. PubMed DOI
Bachmann R.F., Wang Y., Yuan P., Zhou R., Li X., Alesci S., Du J., Manji H.K. Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage. Int. J. Neuropsychopharmacol. 2009;12:805–822. doi: 10.1017/S1461145708009802. PubMed DOI PMC
Quiroz J.A., Machado-Vieira R., Zarate C.A.J., Manji H.K. Novel insights into lithium’s mechanism of action: neurotrophic and neuroprotective effects. Neuropsychobiology. 2010;62:50–60. doi: 10.1159/000314310. PubMed DOI PMC
Ngok-Ngam P., Watcharasit P., Thiantanawat A., Satayavivad J. Pharmacological inhibition of GSK3 attenuates DNA damage-induced apoptosis via reduction of p53 mitochondrial translocation and Bax oligomerization in neuroblastoma SH-SY5Y cells. Cell. Mol. Biol. Lett. 2013;18:58–74. doi: 10.2478/s11658-012-0039-y. PubMed DOI PMC
Feier G., Valvassori S.S., Varela R.B., Resende W.R., Bavaresco D.V, Morais M.O., Scaini G., Andersen M.L., Streck E.L., Quevedo J. Lithium and valproate modulate energy metabolism in an animal model of mania induced by methamphetamine. Pharmacol. Biochem. Behav. 2013;103:589–596. doi: 10.1016/j.pbb.2012.09.010. PubMed DOI
Engel T., Goni-Oliver P., Lucas J.J., Avila J., Hernandez F. Chronic lithium administration to FTDP-17 tau and GSK-3beta overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J. Neurochem. 2006;99:1445–1455. doi: 10.1111/j.1471-4159.2006.04139.x. PubMed DOI
Leroy K., Ando K., Heraud C., Yilmaz Z., Authelet M., Boeynaems J.-M., Buee L., De Decker R., Brion J.-P. Lithium treatment arrests the development of neurofibrillary tangles in mutant tau transgenic mice with advanced neurofibrillary pathology. J. Alzheimers Dis. 2010;19:705–719. doi: 10.3233/JAD-2010-1276. PubMed DOI
Noble W., Planel E., Zehr C., Olm V., Meyerson J., Suleman F., Gaynor K., Wang L., LaFrancois J., Feinstein B., et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc. Natl. Acad. Sci. USA. 2005;102:6990–6995. doi: 10.1073/pnas.0500466102. PubMed DOI PMC
Rockenstein E., Torrance M., Adame A., Mante M., Bar-on P., Rose J.B., Crews L., Masliah E. Neuroprotective effects of regulators of the glycogen synthase kinase-3beta signaling pathway in a transgenic model of Alzheimer’s disease are associated with reduced amyloid precursor protein phosphorylation. J. Neurosci. 2007;27:1981–1991. doi: 10.1523/JNEUROSCI.4321-06.2007. PubMed DOI PMC
Su Y., Ryder J., Li B., Wu X., Fox N., Solenberg P., Brune K., Paul S., Zhou Y., Liu F., et al. Lithium, a common drug for bipolar disorder treatment, regulates amyloid-beta precursor protein processing. Biochemistry. 2004;43:6899–6908. doi: 10.1021/bi035627j. PubMed DOI
Yu F., Zhang Y., Chuang D.-M. Lithium reduces BACE1 overexpression, beta amyloid accumulation, and spatial learning deficits in mice with traumatic brain injury. J. Neurotrauma. 2012;29:2342–2351. doi: 10.1089/neu.2012.2449. PubMed DOI PMC
Zhang X., Heng X., Li T., Li L., Yang D., Zhang X., Du Y., Doody R.S., Le W. Long-term treatment with lithium alleviates memory deficits and reduces amyloid-beta production in an aged Alzheimer’s disease transgenic mouse model. J. Alzheimers Dis. 2011;24:739–749. doi: 10.3233/JAD-2011-101875. PubMed DOI
Fiorentini A., Rosi M.C., Grossi C., Luccarini I., Casamenti F. Lithium Improves Hippocampal Neurogenesis, Neuropathology and Cognitive Functions in APP Mutant Mice. PLoS ONE. 2010;5:e14382. doi: 10.1371/journal.pone.0014382. PubMed DOI PMC
Alvarez G., Munoz-Montano J.R., Satrustegui J., Avila J., Bogonez E., Diaz-Nido J. Regulation of tau phosphorylation and protection against beta-amyloid-induced neurodegeneration by lithium. Possible implications for Alzheimer’s disease. Bipolar Disord. 2002;4:153–165. doi: 10.1034/j.1399-5618.2002.01150.x. PubMed DOI
Chen R.W., Chuang D.M. Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity. J. Biol. Chem. 1999;274:6039–6042. doi: 10.1074/jbc.274.10.6039. PubMed DOI
Chen G., Zeng W.Z., Yuan P.X., Huang L.D., Jiang Y.M., Zhao Z.H., Manji H.K. The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J. Neurochem. 1999;72:879–882. doi: 10.1046/j.1471-4159.1999.720879.x. PubMed DOI
Macdonald A., Briggs K., Poppe M., Higgins A., Velayudhan L., Lovestone S. A feasibility and tolerability study of lithium in Alzheimer’s disease. Int. J. Geriatr. Psychiatry. 2008;23:704–711. doi: 10.1002/gps.1964. PubMed DOI
Kim G.H., Kim J.E., Rhie S.J., Yoon S. The Role of Oxidative Stress in Neurodegenerative Diseases. Exp. Neurobiol. 2015;24:325–340. doi: 10.5607/en.2015.24.4.325. PubMed DOI PMC
Salvemini D., Riley D.P., Cuzzocrea S. Sod mimetics are coming of age. Nat. Rev. Drug Discov. 2002;1:367. doi: 10.1038/nrd796. PubMed DOI
Strange R.W., Antonyuk S.V, Hough M.A., Doucette P.A., Valentine J.S., Hasnain S.S. Variable Metallation of Human Superoxide Dismutase: Atomic Resolution Crystal Structures of Cu–Zn, Zn–Zn and As-isolated Wild-type Enzymes. J. Mol. Biol. 2006;356:1152–1162. doi: 10.1016/j.jmb.2005.11.081. PubMed DOI
Wanninger S., Lorenz V., Subhan A., Edelmann F.T. Metal complexes of curcumin – synthetic strategies, structures and medicinal applications. Chem. Soc. Rev. 2015;44:4986–5002. doi: 10.1039/C5CS00088B. PubMed DOI
Sumanont Y., Murakami Y., Tohda M., Vajragupta O., Matsumoto K., Watanabe H. Evaluation of the Nitric Oxide Radical Scavenging Activity of Manganese Complexes of Curcumin and Its Derivative. Biol. Pharm. Bull. 2004;27:170–173. doi: 10.1248/bpb.27.170. PubMed DOI
Vajragupta O., Boonchoong P., Watanabe H., Tohda M., Kummasud N., Sumanont Y. Manganese complexes of curcumin and its derivatives: Evaluation for the radical scavenging ability and neuroprotective activity. Free Radic. Biol. Med. 2003;35:1632–1644. doi: 10.1016/j.freeradbiomed.2003.09.011. PubMed DOI
Sumanont Y., Murakami Y., Tohda M., Vajragupta O., Watanabe H., Matsumoto K. Effects of Manganese Complexes of Curcumin and Diacetylcurcumin on Kainic Acid-Induced Neurotoxic Responses in the Rat Hippocampus. Biol. Pharm. Bull. 2007;30:1732–1739. doi: 10.1248/bpb.30.1732. PubMed DOI
Belda R., Blasco S., Verdejo B., Jiménez H.R., Doménech-Carbó A., Soriano C., Latorre J., Terencio C., García-España E. Homo- and heterobinuclear Cu2+ and Zn2+ complexes of abiotic cyclic hexaazapyridinocyclophanes as SOD mimics. Dalt. Trans. 2013;42:11194–11204. doi: 10.1039/c3dt51012c. PubMed DOI
Wang X., Zhang B., Zhao C., Wang Y., He L., Cui M., Zhu X., Du W. Inhibition of human prion neuropeptide PrP106-126 aggregation by hexacoordinated ruthenium complexes. J. Inorg. Biochem. 2013;128:1–10. doi: 10.1016/j.jinorgbio.2013.07.009. PubMed DOI
Zahn R., Liu A., Lührs T., Riek R., von Schroetter C., López García F., Billeter M., Calzolai L., Wider G., Wüthrich K. NMR solution structure of the human prion protein. Proc. Natl. Acad. Sci. USA. 2000;97:145–150. doi: 10.1073/pnas.97.1.145. PubMed DOI PMC
Messori L., Camarri M., Ferraro T., Gabbiani C., Franceschini D. Promising in Vitro anti-Alzheimer Properties for a Ruthenium(III) Complex. ACS Med. Chem. Lett. 2013;4:329–332. doi: 10.1021/ml3003567. PubMed DOI PMC
Moss D.E., Perez R.G., Kobayashi H. Cholinesterase Inhibitor Therapy in Alzheimer’s: The limits and tolerability of Irreversible CNS-selective Acetylcholinesterase Inhibition in Primates. J. Alzheimers Dis. 2017;55:1285–1294. doi: 10.3233/JAD-160733. PubMed DOI PMC
Vyas N.A., Bhat S.S., Kumbhar A.S., Sonawane U.B., Jani V., Joshi R.R., Ramteke S.N., Kulkarni P.P., Joshi B. Ruthenium(II) polypyridyl complex as inhibitor of acetylcholinesterase and Aβ aggregation. Eur. J. Med. Chem. 2014;75:375–381. doi: 10.1016/j.ejmech.2014.01.052. PubMed DOI
Lu L., Zhong H.-J., Wang M., Ho S.-L., Li H.-W., Leung C.-H., Ma D.-L. Inhibition of Beta-Amyloid Fibrillation by Luminescent Iridium(III) Complex Probes. Sci. Rep. 2015;5:14619. doi: 10.1038/srep14619. PubMed DOI PMC
Barnham K.J., Kenche V.B., Ciccotosto G.D., Smith D.P., Tew D.J., Liu X., Perez K., Cranston G.A., Johanssen T.J., Volitakis I., et al. Platinum-based inhibitors of amyloid-β as therapeutic agents for Alzheimer’s disease. Proc. Natl. Acad. Sci. USA. 2008;105:6813–6818. doi: 10.1073/pnas.0800712105. PubMed DOI PMC
Kenche V.B., Hung L.W., Perez K., Volitakes I., Ciccotosto G., Kwok J., Critch N., Sherratt N., Cortes M., Lal V., et al. Development of a Platinum Complex as an anti-Amyloid Agent for the Therapy of Alzheimer’s Disease. Angew. Chem. Int. Ed. 2013;52:3374–3378. doi: 10.1002/anie.201209885. PubMed DOI
Franz K.J. Application of inorganic chemistry for non-cancer therapeutics. Dalt. Trans. 2012;41:6333–6334. doi: 10.1039/c2dt90061k. PubMed DOI
Streltsov V.A., Chandana Epa V., James S.A., Churches Q.I., Caine J.M., Kenche V.B., Barnham K.J. Structural insights into the interaction of platinum-based inhibitors with the Alzheimer’s disease amyloid-β peptide. Chem. Commun. 2013;49:11364–11366. doi: 10.1039/c3cc47326k. PubMed DOI
Avan A., Postma T.J., Ceresa C., Avan A., Cavaletti G., Giovannetti E., Peters G.J. Platinum-Induced Neurotoxicity and Preventive Strategies: Past, Present, and Future. Oncologist. 2015;20:411–432. doi: 10.1634/theoncologist.2014-0044. PubMed DOI PMC
Li M., Howson S.E., Dong K., Gao N., Ren J., Scott P., Qu X. Chiral metallohelical complexes enantioselectively target amyloid β for Treating Alzheimer’s disease. J. Am. Chem. Soc. 2014;136:11655–11663. doi: 10.1021/ja502789e. PubMed DOI
Chen W., Ouyang J., Yi X., Xu Y., Niu C., Zhang W., Wang L., Sheng J., Deng L., Liu Y.-N., et al. Black Phosphorus Nanosheets as a Neuroprotective Nanomedicine for Neurodegenerative Disorder Therapy. Adv. Mater. 2018;30:1703458. doi: 10.1002/adma.201703458. PubMed DOI
Mir J M. Alzheimer’s Disease & Treatment. MedDocs Publishers LLC; Reno, NV, USA: 2017. Design of Metal Complexes as Anti-AD Agents; p. 7.
Jalili-Baleh L., Nadri H., Forootanfar H., Samzadeh-Kermani A., Küçükkılınç T.T., Ayazgok B., Rahimifard M., Baeeri M., Doostmohammadi M., Firoozpour L., et al. Novel 3-phenylcoumarin–lipoic acid conjugates as multi-functional agents for potential treatment of Alzheimer’s disease. Bioorg. Chem. 2018;79:223–234. doi: 10.1016/j.bioorg.2018.04.030. PubMed DOI
Uversky V.N., Li J., Fink A.L. Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J. Biol. Chem. 2001;276:44284–44296. doi: 10.1074/jbc.M105343200. PubMed DOI
Xu Y., Wang H., Li X., Dong S., Liu W., Gong Q., Wang T., Tang Y., Zhu J., Li J., et al. Discovery of novel propargylamine-modified 4-aminoalkyl imidazole substituted pyrimidinylthiourea derivatives as multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2018;143:33–47. doi: 10.1016/j.ejmech.2017.08.025. PubMed DOI
Grasso G., Santoro A.M., Lanza V., Sbardella D., Tundo G.R., Ciaccio C., Marini S., Coletta M., Milardi D. The double faced role of copper in Aβ homeostasis: A survey on the interrelationship between metal dyshomeostasis, UPS functioning and autophagy in neurodegeneration. Coord. Chem. Rev. 2017;347:1–22. doi: 10.1016/j.ccr.2017.06.004. DOI
Rana M., Cho H.-J., Roy T.K., Mirica L.M., Sharma A.K. Azo-dyes based small bifunctional molecules for metal chelation and controlling amyloid formation. Inorganica Chim. Acta. 2018;471:419–429. doi: 10.1016/j.ica.2017.11.029. PubMed DOI PMC
Wang X.-Q., Zhao C.-P., Zhong L.-C., Zhu D.-L., Mai D.-H., Liang M.-G., He M.-H. Preparation of 4-Flexible Amino-2-Arylethenyl-Quinoline Derivatives as Multi-target Agents for the Treatment of Alzheimer’s Disease. Molecules. 2018;23:3100. doi: 10.3390/molecules23123100. PubMed DOI PMC
Prachayasittikul V., Prachayasittikul V., Prachayasittikul S., Ruchirawat S. 8-Hydroxyquinolines: A review of their metal chelating properties and medicinal applications. Drug Des. Devel. Ther. 2013;7:1157. doi: 10.2147/DDDT.S49763. PubMed DOI PMC
Ono M., Watanabe H., Watanabe R., Haratake M., Nakayama M., Saji H. Diphenylpropynone derivatives as probes for imaging β-amyloid plaques in Alzheimer’s brains. Bioorg. Med. Chem. Lett. 2011;21:117–120. doi: 10.1016/j.bmcl.2010.11.058. PubMed DOI
Jones M.R., Mathieu E., Dyrager C., Faissner S., Vaillancourt Z., Korshavn K.J., Lim M.H., Ramamoorthy A., Wee Yong V., Tsutsui S., et al. Multi-target-directed phenol–triazole ligands as therapeutic agents for Alzheimer’s disease. Chem. Sci. 2017;8:5636–5643. doi: 10.1039/C7SC01269A. PubMed DOI PMC
Zhang C., Gomes L.M.F., Zhang T., Storr T. A small bifunctional chelator that modulates Aβ42 aggregation. Can. J. Chem. 2018;96:78–82. doi: 10.1139/cjc-2017-0623. DOI
Liu Y., Kochi A., Pithadia A.S., Lee S., Nam Y., Beck M.W., He X., Lee D., Lim M.H. Tuning Reactivity of Diphenylpropynone Derivatives with Metal-Associated Amyloid-β Species via Structural Modifications. Inorg. Chem. 2013;52:8121–8130. doi: 10.1021/ic400851w. PubMed DOI
Cao Z., Yang J., Xu R., Song Q., Zhang X., Liu H., Qiang X., Li Y., Tan Z., Deng Y. Design, synthesis and evaluation of 4′-OH-flurbiprofen-chalcone hybrids as potential multifunctional agents for Alzheimer’s disease treatment. Bioorg. Med. Chem. 2018;26:1102–1115. doi: 10.1016/j.bmc.2018.01.030. PubMed DOI
Fosso M.Y., LeVine H., 3rd, Green K.D., Tsodikov O.V., Garneau-Tsodikova S. Effects of structural modifications on the metal binding, anti-amyloid activity, and cholinesterase inhibitory activity of chalcones. Org. Biomol. Chem. 2015;13:9418–9426. doi: 10.1039/C5OB01478F. PubMed DOI
Schugar H., Green D.E., Bowen M.L., Scott L.E., Storr T., Böhmerle K., Thomas F., Allen D.D., Lockman P.R., Merkel M., et al. Combating Alzheimer’s Disease With Multifunctional Molecules Designed for Metal Passivation. Angew. Chem. Int. Ed. 2007;46:1716–1718. doi: 10.1002/anie.200603866. PubMed DOI
Telpoukhovskaia M.A., Cawthray J.F., Rodríguez-Rodríguez C., Scott L.E., Page B.D.G., Patrick B.O., Orvig C. 3-Hydroxy-4-pyridinone derivatives designed for fluorescence studies to determine interaction with amyloid protein as well as cell permeability. Bioorg. Med. Chem. Lett. 2015;25:3654–3657. doi: 10.1016/j.bmcl.2015.06.059. PubMed DOI
Telpoukhovskaia M.A., Rodríguez-Rodríguez C., Cawthray J.F., Scott L.E., Page B.D.G., Alí-Torres J., Sodupe M., Bailey G.A., Patrick B.O., Orvig C. 3-Hydroxy-4-pyridinone derivatives as metal ion and amyloid binding agents. Metallomics. 2014;6:249–262. doi: 10.1039/C3MT00135K. PubMed DOI
Green D.E., Bowen M.L., Scott L.E., Storr T., Merkel M., Böhmerle K., Thompson K.H., Patrick B.O., Schugar H.J., Orvig C. In vitro studies of 3-hydroxy-4-pyridinones and their glycosylated derivatives as potential agents for Alzheimer’s disease. Dalt. Trans. 2010;39:1604–1615. doi: 10.1039/B918439B. PubMed DOI
Yang X., Cai P., Liu Q., Wu J., Yin Y., Wang X., Kong L. Novel 8-hydroxyquinoline derivatives targeting β -amyloid aggregation, metal chelation and oxidative stress against Alzheimer’s disease. Bioorg. Med. Chem. 2018;26:3191–3201. doi: 10.1016/j.bmc.2018.04.043. PubMed DOI
Gomes L.M.F., Vieira R.P., Jones M.R., Wang M.C.P., Dyrager C., Souza-Fagundes E.M., Da Silva J.G., Storr T., Beraldo H. 8-Hydroxyquinoline Schiff-base compounds as antioxidants and modulators of copper-mediated Aβ peptide aggregation. J. Inorg. Biochem. 2014;139:106–116. doi: 10.1016/j.jinorgbio.2014.04.011. PubMed DOI
Wang Z., Hu J., Yang X., Feng X., Li X., Huang L., Chan A.S.C. Design, Synthesis, and Evaluation of Orally Bioavailable Quinoline–Indole Derivatives as Innovative Multitarget-Directed Ligands: Promotion of Cell Proliferation in the Adult Murine Hippocampus for the Treatment of Alzheimer’s Disease. J. Med. Chem. 2018;61:1871–1894. doi: 10.1021/acs.jmedchem.7b01417. PubMed DOI
Zheng H., Youdim M.B.H., Fridkin M. Site-Activated Multifunctional Chelator with Acetylcholinesterase and Neuroprotective−Neurorestorative Moieties for Alzheimer’s Therapy. J. Med. Chem. 2009;52:4095–4098. doi: 10.1021/jm900504c. PubMed DOI
Oliveri V., Grasso G.I., Bellia F., Attanasio F., Viale M., Vecchio G. Soluble Sugar-Based Quinoline Derivatives as New Antioxidant Modulators of Metal-Induced Amyloid Aggregation. Inorg. Chem. 2015;54:2591–2602. doi: 10.1021/ic502713f. PubMed DOI
Yang Y., Chen T., Zhu S., Gu X., Jia X., Lu Y., Zhu L. Two macrocyclic polyamines as modulators of metal-mediated Aβ40 aggregation. Integr. Biol. 2015;7:655–662. doi: 10.1039/C5IB00064E. PubMed DOI
Lanza V., D’Agata R., Iacono G., Bellia F., Spoto G., Vecchio G. Cyclam glycoconjugates as lectin ligands and protective agents of metal-induced amyloid aggregation. J. Inorg. Biochem. 2015;153:377–382. doi: 10.1016/j.jinorgbio.2015.06.016. PubMed DOI
Lincoln K.M., Gonzalez P., Richardson T.E., Julovich D.A., Saunders R., Simpkins J.W., Green K.N. A potent antioxidant small molecule aimed at targeting metal-based oxidative stress in neurodegenerative disorders. Chem. Commun. 2013;49:2712. doi: 10.1039/c2cc36808k. PubMed DOI PMC
Lincoln K.M., Richardson T.E., Rutter L., Gonzalez P., Simpkins J.W., Green K.N. An N-Heterocyclic Amine Chelate Capable of Antioxidant Capacity and Amyloid Disaggregation. ACS Chem. Neurosci. 2012;3:919–927. doi: 10.1021/cn300060v. PubMed DOI PMC
Gonzalez P., da Costa V.C.P., Hyde K., Wu Q., Annunziata O., Rizo J., Akkaraju G., Green K.N. Bimodal-hybrid heterocyclic amine targeting oxidative pathways and copper mis-regulation in Alzheimer’s disease. Metallomics. 2014;6:2072–2082. doi: 10.1039/C4MT00161C. PubMed DOI PMC
Jones M.R., Mu C., Wang M.C.P., Webb M.I., Walsby C.J., Storr T. Modulation of the Aβ peptide aggregation pathway by KP1019 limits Aβ-associated neurotoxicity. Metallomics. 2015;7:129–135. doi: 10.1039/C4MT00252K. PubMed DOI
Zhang Y., Chen L.-Y., Yin W.-X., Yin J., Zhang S.-B., Liu C.-L. The chelation targeting metal–Aβ40 aggregates may lead to formation of Aβ40 oligomers. Dalt. Trans. 2011;40:4830. doi: 10.1039/c1dt00020a. PubMed DOI
Rodríguez-Rodríguez C., Telpoukhovskaia M.A., Alí-Torres J., Rodríguez-Santiago L., Manso Y., Bailey G.A., Hidalgo J., Sodupe M., Orvig C. Thioflavin-based molecular probes for application in Alzheimer’s disease: from in silico to in vitro models. Metallomics. 2015;7:83–92. doi: 10.1039/C4MT00167B. PubMed DOI
Rodríguez-Rodríguez C., SáNchez De Groot N., Rimola A., Álvarez-Larena Á., Lloveras V., Vidal-Gancedo J., Ventura S., Vendrell J., Sodupe M., GonzáLez-Duarte P. Design, Selection, and Characterization of Thioflavin-Based Intercalation Compounds with Metal Chelating Properties for Application in Alzheimer’s Disease. J. Am. Chem. Soc. 2009;131:1436–1451. PubMed
Hindo S.S., Mancino A.M., Braymer J.J., Liu Y., Vivekanandan S., Ramamoorthy A., Lim M.H. Small Molecule Modulators of Copper-Induced Aβ Aggregation. J. Am. Chem. Soc. 2009;131:16663–16665. doi: 10.1021/ja907045h. PubMed DOI PMC
Viveiros R., Karim K., Piletsky S.A., Heggie W., Casimiro T. Development of a molecularly imprinted polymer for a pharmaceutical impurity in supercritical CO2: Rational design using computational approach. J. Clean. Prod. 2017;168:1025–1031. doi: 10.1016/j.jclepro.2017.09.026. DOI
Braymer J.J., Choi J.-S., DeToma A.S., Wang C., Nam K., Kampf J.W., Ramamoorthy A., Lim M.H. Development of Bifunctional Stilbene Derivatives for Targeting and Modulating Metal-Amyloid-β Species. Inorg. Chem. 2011;50:10724–10734. doi: 10.1021/ic2012205. PubMed DOI PMC
Geldenhuys W.J., Ko K.S., Stinnett H., Van der Schyf C.J., Lim M.H. Identification of multifunctional small molecule-based reversible monoamine oxidase inhibitors. Medchemcomm. 2011;2:1099. doi: 10.1039/c1md00176k. DOI
Choi J.-S., Braymer J.J., Nanga R.P.R., Ramamoorthy A., Lim M.H. Design of small molecules that target metal-A{beta} species and regulate metal-induced A{beta} aggregation and neurotoxicity. Proc. Natl. Acad. Sci. USA. 2010;107:21990–21995. doi: 10.1073/pnas.1006091107. PubMed DOI PMC
Beck M.W., Derrick J.S., Kerr R.A., Oh S.B., Cho W.J., Lee S.J.C., Ji Y., Han J., Tehrani Z.A., Suh N., et al. Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer’s disease. Nat. Commun. 2016;7:13115. doi: 10.1038/ncomms13115. PubMed DOI PMC
Jiang N., Wang X.-B., Li Z.-R., Li S.-Y., Xie S.-S., Huang M., Kong L.-Y. Design of a structural framework with potential use to develop balanced multifunctional agents against Alzheimer’s disease. RSC Adv. 2015;5:14242–14255. doi: 10.1039/C4RA10692J. DOI
Lee S., Zheng X., Krishnamoorthy J., Savelieff M.G., Park H.M., Brender J.R., Kim J.H., Derrick J.S., Kochi A., Lee H.J., et al. Rational Design of a Structural Framework with Potential Use to Develop Chemical Reagents That Target and Modulate Multiple Facets of Alzheimer’s Disease. J. Am. Chem. Soc. 2014;136:299–310. doi: 10.1021/ja409801p. PubMed DOI PMC
Savelieff M.G., Liu Y., Senthamarai R.R.P., Korshavn K.J., Lee H.J., Ramamoorthy A., Lim M.H. A small molecule that displays marked reactivity toward copper- versus zinc-amyloid-β implicated in Alzheimer’s disease. Chem. Commun. 2014;50:5301–5303. doi: 10.1039/C3CC48473D. PubMed DOI PMC
Xu P., Zhang M., Sheng R., Ma Y. Synthesis and biological evaluation of deferiprone-resveratrol hybrids as antioxidants, Aβ 1–42 aggregation inhibitors and metal-chelating agents for Alzheimer’s disease. Eur. J. Med. Chem. 2017;127:174–186. doi: 10.1016/j.ejmech.2016.12.045. PubMed DOI
Li S.-Y., Wang X.-B., Kong L.-Y. Design, synthesis and biological evaluation of imine resveratrol derivatives as multi-targeted agents against Alzheimer’s disease. Eur. J. Med. Chem. 2014;71:36–45. doi: 10.1016/j.ejmech.2013.10.068. PubMed DOI
DeToma A.S., Krishnamoorthy J., Nam Y., Lee H.J., Brender J.R., Kochi A., Lee D., Onnis V., Congiu C., Manfredini S., et al. Interaction and reactivity of synthetic aminoisoflavones with metal-free and metal-associated amyloid-β. Chem. Sci. 2014;5:4851–4862. doi: 10.1039/C4SC01531B. PubMed DOI PMC
He X., Park H.M., Hyung S.-J., DeToma A.S., Kim C., Ruotolo B.T., Lim M.H. Exploring the reactivity of flavonoid compounds with metal-associated amyloid-β species. Dalt. Trans. 2012;41:6558. doi: 10.1039/c2dt12207c. PubMed DOI PMC
Zheng H., Youdim M.B.H., Fridkin M. Selective Acetylcholinesterase Inhibitor Activated by Acetylcholinesterase Releases an Active Chelator with Neurorescuing and Anti-Amyloid Activities. ACS Chem. Neurosci. 2010;1:737–746. doi: 10.1021/cn100069c. PubMed DOI PMC
Wang Z.-M., Cai P., Liu Q.-H., Xu D.-Q., Yang X.-L., Wu J.-J., Kong L.-Y., Wang X.-B. Rational modification of donepezil as multifunctional acetylcholinesterase inhibitors for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2016;123:282–297. doi: 10.1016/j.ejmech.2016.07.052. PubMed DOI
Li F., Wang Z.-M., Wu J.-J., Wang J., Xie S.-S., Lan J.-S., Xu W., Kong L.-Y., Wang X.-B. Synthesis and pharmacological evaluation of donepezil-based agents as new cholinesterase/monoamine oxidase inhibitors for the potential application against Alzheimer’s disease. J. Enzyme Inhib. Med. Chem. 2016;31:41–53. doi: 10.1080/14756366.2016.1201814. PubMed DOI
Wu M.-Y., Esteban G., Brogi S., Shionoya M., Wang L., Campiani G., Unzeta M., Inokuchi T., Butini S., Marco-Contelles J. Donepezil-like multifunctional agents: Design, synthesis, molecular modeling and biological evaluation. Eur. J. Med. Chem. 2016;121:864–879. doi: 10.1016/j.ejmech.2015.10.001. PubMed DOI
Wang L., Esteban G., Ojima M., Bautista-Aguilera O.M., Inokuchi T., Moraleda I., Iriepa I., Samadi A., Youdim M.B.H., Romero A., et al. Donepezil + propargylamine + 8-hydroxyquinoline hybrids as new multifunctional metal-chelators, ChE and MAO inhibitors for the potential treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2014;80:543–561. doi: 10.1016/j.ejmech.2014.04.078. PubMed DOI
Bolognesi M.L., Cavalli A., Valgimigli L., Bartolini M., Rosini M., Andrisano V., Recanatini M., Melchiorre C. Multi-Target-Directed Drug Design Strategy: From a Dual Binding Site Acetylcholinesterase Inhibitor to a Trifunctional Compound against Alzheimer’s Disease. J. Med. Chem. 2007;50:6446–6449. doi: 10.1021/jm701225u. PubMed DOI
Hui A., Chen Y., Zhu S., Gan C., Pan J., Zhou A. Design and synthesis of tacrine-phenothiazine hybrids as multitarget drugs for Alzheimer’s disease. Med. Chem. Res. 2014;23:3546–3557. doi: 10.1007/s00044-014-0931-2. DOI
Nepovimova E., Uliassi E., Korabecny J., Peña-Altamira L.E., Samez S., Pesaresi A., Garcia G.E., Bartolini M., Andrisano V., Bergamini C., et al. Multitarget Drug Design Strategy: Quinone–Tacrine Hybrids Designed To Block Amyloid-β Aggregation and To Exert Anticholinesterase and Antioxidant Effects. J. Med. Chem. 2014;57:8576–8589. doi: 10.1021/jm5010804. PubMed DOI
Fang L., Kraus B., Lehmann J., Heilmann J., Zhang Y., Decker M. Design and synthesis of tacrine–ferulic acid hybrids as multi-potent anti-Alzheimer drug candidates. Bioorg. Med. Chem. Lett. 2008;18:2905–2909. doi: 10.1016/j.bmcl.2008.03.073. PubMed DOI
Benchekroun M., Romero A., Egea J., León R., Michalska P., Buendía I., Jimeno M.L., Jun D., Janockova J., Sepsova V., et al. The Antioxidant Additive Approach for Alzheimer’s Disease Therapy: New Ferulic (Lipoic) Acid Plus Melatonin Modified Tacrines as Cholinesterases Inhibitors, Direct Antioxidants, and Nuclear Factor (Erythroid-Derived 2)-Like 2 Activators. J. Med. Chem. 2016;59:9967–9973. doi: 10.1021/acs.jmedchem.6b01178. PubMed DOI
Benchekroun M., Bartolini M., Egea J., Romero A., Soriano E., Pudlo M., Luzet V., Andrisano V., Jimeno M.-L., López M.G., et al. Novel Tacrine-Grafted Ugi Adducts as Multipotent Anti-Alzheimer Drugs: A Synthetic Renewal in Tacrine-Ferulic Acid Hybrids. ChemMedChem. 2015;10:523–539. doi: 10.1002/cmdc.201402409. PubMed DOI
Fernández-Bachiller M.I., Pérez C., González-Muñoz G.C., Conde S., López M.G., Villarroya M., García A.G., Rodríguez-Franco M.I. Novel Tacrine−8-Hydroxyquinoline Hybrids as Multifunctional Agents for the Treatment of Alzheimer’s Disease, with Neuroprotective, Cholinergic, Antioxidant, and Copper-Complexing Properties. J. Med. Chem. 2010;53:4927–4937. doi: 10.1021/jm100329q. PubMed DOI
Hepnarova V., Korabecny J., Matouskova L., Jost P., Muckova L., Hrabinova M., Vykoukalova N., Kerhartova M., Kucera T., Dolezal R., et al. The concept of hybrid molecules of tacrine and benzyl quinolone carboxylic acid (BQCA) as multifunctional agents for Alzheimer’s disease. Eur. J. Med. Chem. 2018;150:292–306. doi: 10.1016/j.ejmech.2018.02.083. PubMed DOI
Antequera D., Bolos M., Spuch C., Pascual C., Ferrer I., Fernandez-Bachiller M.I., Rodríguez-Franco M.I., Carro E. Effects of a tacrine-8-hydroxyquinoline hybrid (IQM-622) on Aβ accumulation and cell death: Involvement in hippocampal neuronal loss in Alzheimer’s disease. Neurobiol. Dis. 2012;46:682–691. doi: 10.1016/j.nbd.2012.03.009. PubMed DOI
Skibiński R., Czarnecka K., Girek M., Bilichowski I., Chufarova N., Mikiciuk-Olasik E., Szymański P. Novel tetrahydroacridine derivatives with iodobenzoic acid moiety as multifunctional acetylcholinesterase inhibitors. Chem. Biol. Drug Des. 2018;91:505–518. doi: 10.1111/cbdd.13111. PubMed DOI
Mao F., Huang L., Luo Z., Liu A., Lu C., Xie Z., Li X. O-Hydroxyl- or o-amino benzylamine-tacrine hybrids: Multifunctional biometals chelators, antioxidants, and inhibitors of cholinesterase activity and amyloid-β aggregation. Bioorg. Med. Chem. 2012;20:5884–5892. doi: 10.1016/j.bmc.2012.07.045. PubMed DOI
Dgachi Y., Sokolov O., Luzet V., Godyń J., Panek D., Bonet A., Martin H., Iriepa I., Moraleda I., García-Iriepa C., et al. Tetrahydropyranodiquinolin-8-amines as new, non hepatotoxic, antioxidant, and acetylcholinesterase inhibitors for Alzheimer’s disease therapy. Eur. J. Med. Chem. 2017;126:576–589. doi: 10.1016/j.ejmech.2016.11.050. PubMed DOI
Li S.-Y., Wang X.-B., Xie S.-S., Jiang N., Wang K.D.G., Yao H.-Q., Sun H.-B., Kong L.-Y. Multifunctional tacrine–flavonoid hybrids with cholinergic, β-amyloid-reducing, and metal chelating properties for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2013;69:632–646. doi: 10.1016/j.ejmech.2013.09.024. PubMed DOI
Sun Q., Peng D.-Y., Yang S.-G., Zhu X.-L., Yang W.-C., Yang G.-F. Syntheses of coumarin–tacrine hybrids as dual-site acetylcholinesterase inhibitors and their activity against butylcholinesterase, Aβ aggregation, and β-secretase. Bioorg. Med. Chem. 2014;22:4784–4791. doi: 10.1016/j.bmc.2014.06.057. PubMed DOI
Zhang Q., Jin B., Shi Z., Wang X., Lei S., Tang X., Liang H., Liu Q., Gong M., Peng R. New tris(dopamine) derivative as an iron chelator. Synthesis, solution thermodynamic stability, and antioxidant research. J. Inorg. Biochem. 2017;171:29–36. doi: 10.1016/j.jinorgbio.2017.03.003. PubMed DOI
Rajasekhar K., Madhu C., Govindaraju T. Natural Tripeptide-Based Inhibitor of Multifaceted Amyloid β Toxicity. ACS Chem. Neurosci. 2016;7:1300–1310. doi: 10.1021/acschemneuro.6b00175. PubMed DOI
Trapaidze A., Hureau C., Bal W., Winterhalter M., Faller P. Thermodynamic study of Cu2+ binding to the DAHK and GHK peptides by isothermal titration calorimetry (ITC) with the weaker competitor glycine. JBIC J. Biol. Inorg. Chem. 2012;17:37–47. doi: 10.1007/s00775-011-0824-5. PubMed DOI
Márquez M., Blancas-Mejía L.M., Campos A., Rojas L., Castañeda-Hernández G., Quintanar L. A bifunctional non-natural tetrapeptide modulates amyloid-beta peptide aggregation in the presence of Cu(ii) Metallomics. 2014;6:2189–2192. doi: 10.1039/C4MT00257A. PubMed DOI
McCabe J.W., Vangala R., Angel L.A. Binding Selectivity of Methanobactin from Methylosinus trichosporium OB3b for Copper(I), Silver(I), Zinc(II), Nickel(II), Cobalt(II), Manganese(II), Lead(II), and Iron(II) J. Am. Soc. Mass Spectrom. 2017;28:2588–2601. doi: 10.1007/s13361-017-1778-9. PubMed DOI
Iraji A., Firuzi O., Khoshneviszadeh M., Tavakkoli M., Mahdavi M., Nadri H., Edraki N., Miri R. Multifunctional iminochromene-2H-carboxamide derivatives containing different aminomethylene triazole with BACE1 inhibitory, neuroprotective and metal chelating properties targeting Alzheimer’s disease. Eur. J. Med. Chem. 2017;141:690–702. doi: 10.1016/j.ejmech.2017.09.057. PubMed DOI
De Simone A., Bartolini M., Baschieri A., Apperley K.Y.P., Chen H.H., Guardigni M., Montanari S., Kobrlova T., Soukup O., Valgimigli L., et al. Hydroxy-substituted trans-cinnamoyl derivatives as multifunctional tools in the context of Alzheimer’s disease. Eur. J. Med. Chem. 2017;139:378–389. doi: 10.1016/j.ejmech.2017.07.058. PubMed DOI
Hayne D.J., Lim S., Donnelly P.S. Metal complexes designed to bind to amyloid-β for the diagnosis and treatment of Alzheimer’s disease. Chem. Soc. Rev. 2014;43:6701–6715. doi: 10.1039/C4CS00026A. PubMed DOI
Kim I., Kim C.H., Kim J.H., Lee J., Choi J.J., Chen Z.A., Lee M.G., Chung K.C., Hsu C.Y., Ahn Y.S. Pyrrolidine dithiocarbamate and zinc inhibit proteasome-dependent proteolysis. Exp. Cell Res. 2004;298:229–238. doi: 10.1016/j.yexcr.2004.04.017. PubMed DOI
Thom V.J., Hosken G.D., Hancock R. Anomalous Metal Ion Size Selectivity of Tetraaza Macrocycles. Inorg. Chem. 1985;24:33783381.
Sharma A., Pachauri V., Flora S.J.S. Advances in Multi-Functional Ligands and the Need for Metal-Related Pharmacology for the Management of Alzheimer Disease. Front. Pharmacol. 2018;9:1247. doi: 10.3389/fphar.2018.01247. PubMed DOI PMC
Lanza V., Milardi D., Di Natale G., Pappalardo G. Repurposing of Copper(II)-chelating Drugs for the Treatment of Neurodegenerative Diseases. Curr. Med. Chem. 2018;25:525–539. doi: 10.2174/0929867324666170518094404. PubMed DOI
Kim T.-W. Drug Repositioning Approaches for the Discovery of New Therapeutics for Alzheimer’s Disease. Neurotherapeutics. 2015;12:132–142. doi: 10.1007/s13311-014-0325-7. PubMed DOI PMC
Durães F., Pinto M., Sousa E., Durães F., Pinto M., Sousa E. Old Drugs as New Treatments for Neurodegenerative Diseases. Pharmaceuticals. 2018;11:44. doi: 10.3390/ph11020044. PubMed DOI PMC
Mucke H.A. The case of galantamine: repurposing and late blooming of a cholinergic drug. Futur. Sci. OA. 2015;1:FSO73. doi: 10.4155/fso.15.73. PubMed DOI PMC
Hayes C.D., Dey D., Palavicini J.P., Wang H., Patkar K.A., Minond D., Nefzi A., Lakshmana M.K. Striking reduction of amyloid plaque burden in an Alzheimer’s mouse model after chronic administration of carmustine. BMC Med. 2013;11:81. doi: 10.1186/1741-7015-11-81. PubMed DOI PMC
Fukasawa H., Nakagomi M., Yamagata N., Katsuki H., Kawahara K., Kitaoka K., Miki T., Shudo K. Tamibarotene: A Candidate Retinoid Drug for Alzheimer’s Disease. Biol. Pharm. Bull. 2012;35:1206–1212. doi: 10.1248/bpb.b12-00314. PubMed DOI
Netzer W.J., Dou F., Cai D., Veach D., Jean S., Li Y., Bornmann W.G., Clarkson B., Xu H., Greengard P. Gleevec inhibits beta-amyloid production but not Notch cleavage. Proc. Natl. Acad. Sci. USA. 2003;100:12444–12449. doi: 10.1073/pnas.1534745100. PubMed DOI PMC
Tousi B. The emerging role of bexarotene in the treatment of Alzheimer’s disease: current evidence. Neuropsychiatr. Dis. Treat. 2015;11:311. PubMed PMC
Brunden K.R., Yao Y., Potuzak J.S., Ferrer N.I., Ballatore C., James M.J., Hogan A.-M.L., Trojanowski J.Q., Smith A.B., Lee V.M.-Y. The characterization of microtubule-stabilizing drugs as possible therapeutic agents for Alzheimer’s disease and related tauopathies. Pharmacol. Res. 2011;63:341–351. doi: 10.1016/j.phrs.2010.12.002. PubMed DOI PMC
Ryu J.K., McLarnon J.G. Thalidomide inhibition of perturbed vasculature and glial-derived tumor necrosis factor-α in an animal model of inflamed Alzheimer’s disease brain. Neurobiol. Dis. 2008;29:254–266. doi: 10.1016/j.nbd.2007.08.019. PubMed DOI
Diomede L., Cassata G., Fiordaliso F., Salio M., Ami D., Natalello A., Doglia S.M., De Luigi A., Salmona M. Tetracycline and its analogues protect Caenorhabditis elegans from β amyloid-induced toxicity by targeting oligomers. Neurobiol. Dis. 2010;40:424–431. doi: 10.1016/j.nbd.2010.07.002. PubMed DOI
Dexter D.T., Statton S.A., Whitmore C., Freinbichler W., Weinberger P., Tipton K.F., Della Corte L., Ward R.J., Crichton R.R. Clinically available iron chelators induce neuroprotection in the 6-OHDA model of Parkinson’s disease after peripheral administration. J. Neural Transm. 2011;118:223–231. doi: 10.1007/s00702-010-0531-3. PubMed DOI
Molina-Holgado F., Gaeta A., Francis P.T., Williams R.J., Hider R.C. Neuroprotective actions of deferiprone in cultured cortical neurones and SHSY-5Y cells. J. Neurochem. 2008;105:2466–2476. doi: 10.1111/j.1471-4159.2008.05332.x. PubMed DOI
Abbruzzese G., Cossu G., Balocco M., Marchese R., Murgia D., Melis M., Galanello R., Barella S., Matta G., Ruffinengo U., et al. A pilot trial of deferiprone for neurodegeneration with brain iron accumulation. Haematologica. 2011;96:1708–1711. doi: 10.3324/haematol.2011.043018. PubMed DOI PMC
Fredenburg A.M., Sethi R.K., Allen D.D., Yokel R.A. The pharmacokinetics and blood-brain barrier permeation of the chelators 1,2 dimethly-, 1,2 diethyl-, and 1-[ethan-1’ol]-2-methyl-3-hydroxypyridin-4-one in the rat. Toxicology. 1996;108:191–199. doi: 10.1016/0300-483X(95)03301-U. PubMed DOI
Athauda D., Foltynie T. Drug Repurposing in Parkinson’s Disease. CNS Drugs. 2018;32:747–761. doi: 10.1007/s40263-018-0548-y. PubMed DOI
Sohn Y.-S., Mitterstiller A.-M., Breuer W., Weiss G., Cabantchik Z.I. Rescuing iron-overloaded macrophages by conservative relocation of the accumulated metal. Br. J. Pharmacol. 2011;164:406–418. doi: 10.1111/j.1476-5381.2010.01120.x. PubMed DOI PMC
Li S.-J., Qin W.-X., Peng D.-J., Yuan Z.-X., He S.-N., Luo Y.-N., Aschner M., Jiang Y.-M., Liang D.-Y., Xie B.-Y., et al. Sodium P -aminosalicylic acid inhibits sub-chronic manganese-induced neuroinflammation in rats by modulating MAPK and COX-2. Neurotoxicology. 2018;64:219–229. doi: 10.1016/j.neuro.2017.06.012. PubMed DOI
Noetzli M., Eap C.B. Pharmacodynamic, Pharmacokinetic and Pharmacogenetic Aspects of Drugs Used in the Treatment of Alzheimer’s Disease. Clin. Pharmacokinet. 2013;52:225–241. doi: 10.1007/s40262-013-0038-9. PubMed DOI
Noetzli M., Guidi M., Ebbing K., Eyer S., Zumbach S., Giannakopoulos P., von Gunten A., Csajka C., Eap C.B. Relationship of CYP2D6, CYP3A, POR, and ABCB1 Genotypes With Galantamine Plasma Concentrations. Ther. Drug Monit. 2013;35:270–275. doi: 10.1097/FTD.0b013e318282ff02. PubMed DOI
Chianella C., Gragnaniello D., Maisano Delser P., Visentini M.F., Sette E., Tola M.R., Barbujani G., Fuselli S. BCHE and CYP2D6 genetic variation in Alzheimer’s disease patients treated with cholinesterase inhibitors. Eur. J. Clin. Pharmacol. 2011;67:1147–1157. doi: 10.1007/s00228-011-1064-x. PubMed DOI
Pilotto A., Franceschi M., D’Onofrio G., Bizzarro A., Mangialasche F., Cascavilla L., Paris F., Matera M.G., Pilotto A., Daniele A., et al. Effect of a CYP2D6 polymorphism on the efficacy of donepezil in patients with Alzheimer disease. Neurology. 2009;73:761–767. doi: 10.1212/WNL.0b013e3181b6bbe3. PubMed DOI PMC
Varsaldi F., Miglio G., Scordo M.G., Dahl M.-L., Villa L.M., Biolcati A., Lombardi G. Impact of the CYP2D6 polymorphism on steady-state plasma concentrations and clinical outcome of donepezil in Alzheimer’s disease patients. Eur. J. Clin. Pharmacol. 2006;62:721–726. doi: 10.1007/s00228-006-0168-1. PubMed DOI
Seripa D., Bizzarro A., Pilotto A., DʼOnofrio G., Vecchione G., Gallo A.P., Cascavilla L., Paris F., Grandone E., Mecocci P., et al. Role of cytochrome P4502D6 functional polymorphisms in the efficacy of donepezil in patients with Alzheimerʼs disease. Pharmacogenet. Genom. 2010;21:1. doi: 10.1097/FPC.0b013e32833f984c. PubMed DOI
Makhtar S.M., Husin A., Baba A.A., Ankathil R. Genetic variations in influx transporter gene SLC22A1 are associated with clinical responses to imatinib mesylate among Malaysian chronic myeloid leukaemia patients. J. Genet. 2018;97:835–842. doi: 10.1007/s12041-018-0978-9. PubMed DOI
Ben Hassine I., Gharbi H., Soltani I., Ben Hadj Othman H., Farrah A., Amouri H., Teber M., Ghedira H., Ben Youssef Y., Safra I., et al. Molecular study of ABCB1 gene and its correlation with imatinib response in chronic myeloid leukemia. Cancer Chemother. Pharmacol. 2017;80:829–839. doi: 10.1007/s00280-017-3424-4. PubMed DOI
Andriguetti N.B., Raymundo S., Antunes M.V., Perassolo M.S., Verza S.G., Suyenaga E.S., Linden R. Pharmacogenetic and Pharmacokinetic Dose Individualization of the Taxane Chemotherapeutic Drugs Paclitaxel and Docetaxel. Curr. Med. Chem. 2017;24 doi: 10.2174/0929867324666170623093445. PubMed DOI
Kroetz D.L., Pauli-Magnus C., Hodges L.M., Huang C.C., Kawamoto M., Johns S.J., Stryke D., Ferrin T.E., DeYoung J., Taylor T., et al. Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene. Pharmacogenetics. 2003;13:481–494. doi: 10.1097/00008571-200308000-00006. PubMed DOI
Dadheech S., Rao A.V., Shaheen U., Hussien M.D., Jain S., Jyothy A., Munshi A. Three most common nonsynonymous UGT1A6*2 polymorphisms (Thr181Ala, Arg184Serand Ser7Ala) and therapeutic response to deferiprone in β-thalassemia major patients. Gene. 2013;531:301–305. doi: 10.1016/j.gene.2013.08.078. PubMed DOI
Ritchie C.W., Bush A.I., Masters C.L. Metal-protein attenuating compounds and Alzheimer’s disease. Expert Opin. Investig. Drugs. 2004;13:1585–1592. doi: 10.1517/13543784.13.12.1585. PubMed DOI
Barnham K.J., Masters C.L., Bush A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 2004;3:205–214. doi: 10.1038/nrd1330. PubMed DOI
Matlack K.E.S., Tardiff D.F., Narayan P., Hamamichi S., Caldwell K.A., Caldwell G.A., Lindquist S. Clioquinol promotes the degradation of metal-dependent amyloid- (A) oligomers to restore endocytosis and ameliorate A toxicity. Proc. Natl. Acad. Sci. USA. 2014;111:4013–4018. doi: 10.1073/pnas.1402228111. PubMed DOI PMC
Richards D.A. Prophylactic value of clioquinol against travellers’ diarrhoea. Lancet. 1971;1:44–45. PubMed
Cherny R.A., Atwood C.S., Xilinas M.E., Gray D.N., Jones W.D., McLean C.A., Barnham K.J., Volitakis I., Fraser F.W., Kim Y., et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron. 2001;30:665–676. doi: 10.1016/S0896-6273(01)00317-8. PubMed DOI
Zatta P., Drago D., Bolognin S., Sensi S.L. Alzheimer’s disease, metal ions and metal homeostatic therapy. Trends Pharmacol. Sci. 2009;30:346–355. doi: 10.1016/j.tips.2009.05.002. PubMed DOI
Rodríguez-Rodríguez C., Telpoukhovskaia M., Orvig C. The art of building multifunctional metal-binding agents from basic molecular scaffolds for the potential application in neurodegenerative diseases. Coord. Chem. Rev. 2012;256:2308–2332.
Ritchie C.W., Bush A.I., Mackinnon A., Macfarlane S., Mastwyk M., MacGregor L., Kiers L., Cherny R., Li Q.-X., Tammer A., et al. Metal-Protein Attenuation With Iodochlorhydroxyquin (Clioquinol) Targeting Aβ Amyloid Deposition and Toxicity in Alzheimer Disease. Arch. Neurol. 2003;60:1685. doi: 10.1001/archneur.60.12.1685. PubMed DOI
Adlard P.A., Cherny R.A., Finkelstein D.I., Gautier E., Robb E., Cortes M., Volitakis I., Liu X., Smith J.P., Perez K., et al. Rapid Restoration of Cognition in Alzheimer’s Transgenic Mice with 8-Hydroxy Quinoline Analogs Is Associated with Decreased Interstitial Aβ. Neuron. 2008;59:43–55. doi: 10.1016/j.neuron.2008.06.018. PubMed DOI
Zhang Y.-H., Raymick J., Sarkar S., Lahiri D.K., Ray B., Holtzman D., Dumas M., Schmued L.C. Efficacy and toxicity of clioquinol treatment and A-beta42 inoculation in the APP/PSI mouse model of Alzheimer’s disease. Curr. Alzheimer Res. 2013;10:494–506. doi: 10.2174/1567205011310050005. PubMed DOI
Faux N.G., Ritchie C.W., Gunn A., Rembach A., Tsatsanis A., Bedo J., Harrison J., Lannfelt L., Blennow K., Zetterberg H., et al. PBT2 Rapidly Improves Cognition in Alzheimer’s Disease: Additional Phase II Analyses. J. Alzheimer’s Dis. 2010;20:509–516. doi: 10.3233/JAD-2010-1390. PubMed DOI
Lannfelt L., Blennow K., Zetterberg H., Batsman S., Ames D., Harrison J., Masters C.L., Targum S., Bush A.I., Murdoch R., et al. Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 2008;7:779–786. PubMed
Cukierman D.S., Pinheiro A.B., Castiñeiras-Filho S.L.P., da Silva A.S.P., Miotto M.C., De Falco A., de P Ribeiro T., Maisonette S., da Cunha A.L.M.C., Hauser-Davis R.A., et al. A moderate metal-binding hydrazone meets the criteria for a bioinorganic approach towards Parkinson’s disease: Therapeutic potential, blood-brain barrier crossing evaluation and preliminary toxicological studies. J. Inorg. Biochem. 2017;170:160–168. PubMed
Hauser-Davis R.A., de Freitas L.V., Cukierman D.S., Cruz W.S., Miotto M.C., Landeira-Fernandez J., Valiente-Gabioud A.A., Fernández C.O., Rey N.A. Disruption of zinc and copper interactions with Aβ(1–40) by a non-toxic, isoniazid-derived, hydrazone: A novel biometal homeostasis restoring agent in Alzheimer’s disease therapy? Metallomics. 2015;7:743–747. doi: 10.1039/C5MT00003C. PubMed DOI
Cukierman D.S., Accardo E., Gomes R.G., De Falco A., Miotto M.C., Freitas M.C.R., Lanznaster M., Fernández C.O., Rey N.A. Aroylhydrazones constitute a promising class of ‘metal-protein attenuating compounds’ for the treatment of Alzheimer’s disease: A proof-of-concept based on the study of the interactions between zinc(II) and pyridine-2-carboxaldehyde isonicotinoyl hydrazone. JBIC J. Biol. Inorg. Chem. 2018;23:1227–1241. doi: 10.1007/s00775-018-1606-0. PubMed DOI
Ji H.-F., Zhang H.-Y. A new strategy to combat Alzheimer’s disease. Combining radical-scavenging potential with metal-protein-attenuating ability in one molecule. Bioorg. Med. Chem. Lett. 2005;15:21–24. doi: 10.1016/j.bmcl.2004.10.047. PubMed DOI
Kuca K., Soukup O., Maresova P., Korabecny J., Nepovimova E., Klimova B., Honegr J., Ramalho T.C., França T.C.C. Current Approaches Against Alzheimer’s Disease in Clinical Trials. J. Braz. Chem. Soc. 2016;27:641–649. doi: 10.5935/0103-5053.20160048. DOI
Gonçalves A.S., França T.C.C., Caetano M.S., Ramalho T.C. Reactivation steps by 2-PAM of tabun-inhibited human acetylcholinesterase: Reducing the computational cost in hybrid QM/MM methods. J. Biom. Struct. Dyn. 2014;32:301–307. PubMed