Recent Developments in Metal-Based Drugs and Chelating Agents for Neurodegenerative Diseases Treatments

. 2019 Apr 12 ; 20 (8) : . [epub] 20190412

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31013856

The brain has a unique biological complexity and is responsible for important functions in the human body, such as the command of cognitive and motor functions. Disruptive disorders that affect this organ, e.g. neurodegenerative diseases (NDDs), can lead to permanent damage, impairing the patients' quality of life and even causing death. In spite of their clinical diversity, these NDDs share common characteristics, such as the accumulation of specific proteins in the cells, the compromise of the metal ion homeostasis in the brain, among others. Despite considerable advances in understanding the mechanisms of these diseases and advances in the development of treatments, these disorders remain uncured. Considering the diversity of mechanisms that act in NDDs, a wide range of compounds have been developed to act by different means. Thus, promising compounds with contrasting properties, such as chelating agents and metal-based drugs have been proposed to act on different molecular targets as well as to contribute to the same goal, which is the treatment of NDDs. This review seeks to discuss the different roles and recent developments of metal-based drugs, such as metal complexes and metal chelating agents as a proposal for the treatment of NDDs.

Zobrazit více v PubMed

Kovacs G.G. Handbook of Clinical Neurology. Elsevier; Amsterdam, The Netherlands: 2018. Concepts and classification of neurodegenerative diseases; pp. 301–307. PubMed

Gabor G. Kovacs current concepts of neurodegenerative diseases. Eur. Med. J. Neurol. 2014;1:78–86.

Kovacs G.G. Molecular Pathological Classification of Neurodegenerative Diseases: Turning towards Precision Medicine. Int. J. Mol. Sci. 2016;17:189. doi: 10.3390/ijms17020189. PubMed DOI PMC

Ferri C.P., Prince M., Brayne C., Brodaty H., Fratiglioni L., Ganguli M., Hall K., Hasegawa K., Hendrie H., Huang Y., et al. Global prevalence of dementia: A Delphi consensus study. Lancet. 2005;366:2112–2117. doi: 10.1016/S0140-6736(05)67889-0. PubMed DOI PMC

Modi G., Pillay V., Choonara Y.E. Advances in the treatment of neurodegenerative disorders employing nanotechnology. Ann. N. Y. Acad. Sci. 2010;1184:154–172. doi: 10.1111/j.1749-6632.2009.05108.x. PubMed DOI

Subramaniam N.S., Bawden C.S., Waldvogel H., Faull R.M.L., Howarth G.S., Snell R.G. Emergence of breath testing as a new non-invasive diagnostic modality for neurodegenerative diseases. Brain Res. 2018;1691:75–86. doi: 10.1016/j.brainres.2018.04.017. PubMed DOI

Bertram L., Tanzi R.E. The genetic epidemiology of neurodegenerative disease. J. Clin. Investig. 2005;115:1449–1457. doi: 10.1172/JCI24761. PubMed DOI PMC

Ward K.R., Yealy D.M. End-tidal carbon dioxide monitoring in emergency medicine, Part 2: Clinical applications. Acad. Emerg. Med. 1998;5:637–646. doi: 10.1111/j.1553-2712.1998.tb02474.x. PubMed DOI

Rotermund C., Machetanz G., Fitzgerald J.C. The Therapeutic Potential of Metformin in Neurodegenerative Diseases. Front. Endocrinol. 2018;9:400. doi: 10.3389/fendo.2018.00400. PubMed DOI PMC

Brookmeyer R., Johnson E., Ziegler-Graham K., Arrighi H.M. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 2007;3:186–191. doi: 10.1016/j.jalz.2007.04.381. PubMed DOI

Helder D.I., Kaptein A.A., Van Kempen G.M.J., Weinman J., Van Houwelingen J.C., Roos R.A.C. Living with Huntington’s disease: illness perceptions, coping mechanisms, and spouses’ quality of life. Int. J. Behav. Med. 2002;9:37–52. doi: 10.1207/S15327558IJBM0901_03. PubMed DOI

Savelieff M.G., Nam G., Kang J., Lee H.J., Lee M., Lim M.H. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem. Rev. 2019;119:1221–1322. doi: 10.1021/acs.chemrev.8b00138. PubMed DOI

Chung C.G., Lee H., Lee S.B. Mechanisms of protein toxicity in neurodegenerative diseases. Cell. Mol. Life Sci. 2018;75:3159–3180. doi: 10.1007/s00018-018-2854-4. PubMed DOI PMC

Jiang Z., You Q., Zhang X. Medicinal chemistry of metal chelating fragments in metalloenzyme active sites: A perspective. Eur. J. Med. Chem. 2019;165:172–197. doi: 10.1016/j.ejmech.2019.01.018. PubMed DOI

Savelieff M.G., Lee S., Liu Y., Lim M.H. Untangling Amyloid-β, Tau, and Metals in Alzheimer’s Disease. ACS Chem. Biol. 2013;8:856–865. doi: 10.1021/cb400080f. PubMed DOI

Barnham K.J., Bush A.I. Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem. Soc. Rev. 2014;43:6727–6749. doi: 10.1039/C4CS00138A. PubMed DOI

Sampson E.L., Jenagaratnam L., McShane R. Metal protein attenuating compounds for the treatment of Alzheimer’s dementia. Cochrane Database Syst. Rev. 2012;16:CD005380. Erratum in 2014, 21, CD005380. PubMed

Hiremathad A., Keri R.S., Esteves A.R., Cardoso S.M., Chaves S., Santos M.A. Novel Tacrine-Hydroxyphenylbenzimidazole hybrids as potential multitarget drug candidates for Alzheimer’s disease. Eur. J. Med. Chem. 2018;148:255–267. doi: 10.1016/j.ejmech.2018.02.023. PubMed DOI

Sharma A.K., Pavlova S.T., Kim J., Finkelstein D., Hawco N.J., Rath N.P., Kim J., Mirica L.M. Bifunctional Compounds for Controlling Metal-Mediated Aggregation of the Aβ42 Peptide. J. Am. Chem. Soc. 2012;134:6625–6636. doi: 10.1021/ja210588m. PubMed DOI PMC

Martorell M., Forman K., Castro N., Capó X., Tejada S., Sureda A. Potential Therapeutic Effects of Oleuropein Aglycone in Alzheimer’s Disease. Curr. Pharm. Biotechnol. 2016;17:994–1001. doi: 10.2174/1389201017666160725120656. PubMed DOI

Nardi M., Bonacci S., De Luca G., Maiuolo J., Oliverio M., Sindona G., Procopio A. Biomimetic synthesis and antioxidant evaluation of 3,4-DHPEA-EDA [2-(3,4-hydroxyphenyl) ethyl (3S,4E)-4-formyl-3-(2-oxoethyl)hex-4-enoate] Food Chem. 2014;162:89–93. doi: 10.1016/j.foodchem.2014.04.015. PubMed DOI

Sarbishegi M. Antioxidant Effects of Olive Leaf Extract in Prevention of Alzheimer’s Disease and Parkinson’s Disease. Gene Cell Tissue. 2018;5:e79847. doi: 10.5812/gct.79847. DOI

Sindona G., Caruso A., Cozza A., Fiorentini S., Lorusso B., Marini E., Nardi M., Procopio A., Zicari S. Anti-Inflammatory Effect of 3,4-DHPEA-EDA [2-(3,4 -Hydroxyphenyl) ethyl (3S, 4E)- 4-Formyl-3-(2-Oxoethyl)Hex-4-Enoate] on Primary Human Vascular Endothelial Cells. Curr. Med. Chem. 2012;19:4006–4013. doi: 10.2174/092986712802002536. PubMed DOI

Nardi M., Bonacci S., Cariati L., Costanzo P., Oliverio M., Sindona G., Procopio A. Synthesis and antioxidant evaluation of lipophilic oleuropein aglycone derivatives. Food Funct. 2017;8:4684–4692. doi: 10.1039/C7FO01105A. PubMed DOI

Paonessa R., NArdi M., Di gioia M.L., Olivito F., Oliverio M., Procopio A. Eco-friendly synthesis of lipophilic EGCG derivatives and antitumor and antioxidant evaluation. Nat. Prod. Comun. 2018;13:1097–1234. doi: 10.1177/1934578X1801300905. DOI

Chen K., Cui M. Recent progress in the development of metal complexes as β-amyloid imaging probes in the brain. Medchemcomm. 2017;8:1393–1407. doi: 10.1039/C7MD00064B. PubMed DOI PMC

Fukai T., Ushio-Fukai M. Superoxide Dismutases: Role in Redox Signaling, Vascular Function, and Diseases. Antioxid. Redox Signal. 2011;15:1583–1606. doi: 10.1089/ars.2011.3999. PubMed DOI PMC

Anand R., Gill K.D., Mahdi A.A. Therapeutics of Alzheimer’s disease: Past, present and future. Pt ANeuropharmacology. 2014;76:27–50. doi: 10.1016/j.neuropharm.2013.07.004. PubMed DOI

de Castro A.A., da Cunha E.F.F., Pereira A.F., Soares F.V, Leal D.H.S., Kuca K., Ramalho T.C. Insights into the Drug Repositioning Applied to the Alzheimer’s Disease Treatment and Future Perspectives. Curr. Alzheimer Res. 2018;15:1161–1178. doi: 10.2174/1567205015666180813150703. PubMed DOI

Di Stefano A., Iannitelli A., Laserra S., Sozio P. Drug delivery strategies for Alzheimer’s disease treatment. Expert Opin. Drug Deliv. 2011;8:581–603. doi: 10.1517/17425247.2011.561311. PubMed DOI

Querfurth H.W., LaFerla F.M. Alzheimer’s disease. N. Engl. J. Med. 2010;362:329–344. doi: 10.1056/NEJMra0909142. PubMed DOI

Kivipelto M., Helkala E.L., Laakso M.P., Hanninen T., Hallikainen M., Alhainen K., Soininen H., Tuomilehto J., Nissinen A. Midlife vascular risk factors and Alzheimer’s disease in later life: Longitudinal, population based study. BMJ. 2001;322:1447–1451. doi: 10.1136/bmj.322.7300.1447. PubMed DOI PMC

Kukharsky M.S., Ovchinnikov R.K., Bachurin S.O. [Molecular aspects of the pathogenesis and current approaches to pharmacological correction of Alzheimer’s disease] Zhurnal Nevrol. i psikhiatrii Im. S.S. Korsakova. 2015;115:103–114. doi: 10.17116/jnevro20151156103-114. PubMed DOI

Nussbaum J.M., Seward M.E., Bloom G.S. Alzheimer disease: a tale of two prions. Prion. 2013;7:14–19. doi: 10.4161/pri.22118. PubMed DOI PMC

Carreiras M.C., Mendes E., Perry M.J., Francisco A.P., Marco-Contelles J. The multifactorial nature of Alzheimer’s disease for developing potential therapeutics. Curr. Top. Med. Chem. 2013;13:1745–1770. doi: 10.2174/15680266113139990135. PubMed DOI

De-Paula V.J., Radanovic M., Diniz B.S., Forlenza O. V Alzheimer’s disease. Subcell. Biochem. 2012;65:329–352. PubMed

Bachurin S.O., Bovina E.V, Ustyugov A.A. Drugs in Clinical Trials for Alzheimer’s Disease: The Major Trends. Med. Res. Rev. 2017;37:1186–1225. doi: 10.1002/med.21434. PubMed DOI

Ittner L.M., Ke Y.D., Delerue F., Bi M., Gladbach A., van Eersel J., Wolfing H., Chieng B.C., Christie M.J., Napier I.A., et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell. 2010;142:387–397. doi: 10.1016/j.cell.2010.06.036. PubMed DOI

Ballard C., Corbett A., Sharp S. Aligning the evidence with practice: NICE guidelines for drug treatment of Alzheimer’s disease. Expert Rev. Neurother. 2011;11:327–329. doi: 10.1586/ern.11.13. PubMed DOI

Corbett A., Pickett J., Burns A., Corcoran J., Dunnett S.B., Edison P., Hagan J.J., Holmes C., Jones E., Katona C., et al. Drug repositioning for Alzheimer’s disease. Nat. Rev. Drug Discov. 2012;11:833–846. doi: 10.1038/nrd3869. PubMed DOI

Heneka M.T., Carson M.J., El Khoury J., Landreth G.E., Brosseron F., Feinstein D.L., Jacobs A.H., Wyss-Coray T., Vitorica J., Ransohoff R.M., et al. Neuroinflammation in Alzheimer’s disease. Lancet. Neurol. 2015;14:388–405. doi: 10.1016/S1474-4422(15)70016-5. PubMed DOI PMC

Zhang B., Gaiteri C., Bodea L.-G., Wang Z., McElwee J., Podtelezhnikov A.A., Zhang C., Xie T., Tran L., Dobrin R., et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell. 2013;153:707–720. doi: 10.1016/j.cell.2013.03.030. PubMed DOI PMC

Karran E., Mercken M., De Strooper B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 2011;10:698–712. doi: 10.1038/nrd3505. PubMed DOI

Jones E.L., Hanney M., Francis P.T., Ballard C.G. Amyloid beta concentrations in older people with Down syndrome and dementia. Neurosci. Lett. 2009;451:162–164. doi: 10.1016/j.neulet.2008.12.030. PubMed DOI

Broadstock M., Ballard C., Corbett A. Latest treatment options for Alzheimer’s disease, Parkinson’s disease dementia and dementia with Lewy bodies. Expert Opin. Pharmacother. 2014;15:1797–1810. doi: 10.1517/14656566.2014.936848. PubMed DOI

Saez-Orellana F., Godoy P.A., Bastidas C.Y., Silva-Grecchi T., Guzman L., Aguayo L.G., Fuentealba J. ATP leakage induces P2XR activation and contributes to acute synaptic excitotoxicity induced by soluble oligomers of beta-amyloid peptide in hippocampal neurons. Neuropharmacology. 2016;100:116–123. doi: 10.1016/j.neuropharm.2015.04.005. PubMed DOI

Godyn J., Jonczyk J., Panek D., Malawska B. Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol. Rep. 2016;68:127–138. doi: 10.1016/j.pharep.2015.07.006. PubMed DOI

Serrano-Pozo A., Frosch M.P., Masliah E., Hyman B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2011;1:a006189. doi: 10.1101/cshperspect.a006189. PubMed DOI PMC

Golde T.E. The pathogenesis of Alzheimer’s disease and the role of Abeta42. CNS Spectr. 2007;12:4–6. doi: 10.1017/S1092852900025876. PubMed DOI

Schenk D., Basi G.S., Pangalos M.N. Treatment strategies targeting amyloid beta-protein. Cold Spring Harb. Perspect. Med. 2012;2:a006387. doi: 10.1101/cshperspect.a006387. PubMed DOI PMC

Xiao Y., Ma B., McElheny D., Parthasarathy S., Long F., Hoshi M., Nussinov R., Ishii Y. Abeta(1-42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat. Struct. Mol. Biol. 2015;22:499–505. doi: 10.1038/nsmb.2991. PubMed DOI PMC

Whitmer R.A., Gustafson D.R., Barrett-Connor E., Haan M.N., Gunderson E.P., Yaffe K. Central obesity and increased risk of dementia more than three decades later. Neurology. 2008;71:1057–1064. doi: 10.1212/01.wnl.0000306313.89165.ef. PubMed DOI

Yan R., Vassar R. Targeting the beta secretase BACE1 for Alzheimer’s disease therapy. Lancet. Neurol. 2014;13:319–329. doi: 10.1016/S1474-4422(13)70276-X. PubMed DOI PMC

Kuhn P.-H., Koroniak K., Hogl S., Colombo A., Zeitschel U., Willem M., Volbracht C., Schepers U., Imhof A., Hoffmeister A., et al. Secretome protein enrichment identifies physiological BACE1 protease substrates in neurons. EMBO J. 2012;31:3157–3168. doi: 10.1038/emboj.2012.173. PubMed DOI PMC

Holtzman D.M., Morris J.C., Goate A.M. Alzheimer’s disease: The challenge of the second century. Sci. Transl. Med. 2011;3:77sr1. doi: 10.1126/scitranslmed.3002369. PubMed DOI PMC

Nisbet R.M., Polanco J.-C., Ittner L.M., Gotz J. Tau aggregation and its interplay with amyloid-beta. Acta Neuropathol. 2015;129:207–220. doi: 10.1007/s00401-014-1371-2. PubMed DOI PMC

Tomita T. Secretase inhibitors and modulators for Alzheimer’s disease treatment. Expert Rev. Neurother. 2009;9:661–679. doi: 10.1586/ern.09.24. PubMed DOI

Selkoe D.J. Resolving controversies on the path to Alzheimer’s therapeutics. Nat. Med. 2011;17:1060–1065. doi: 10.1038/nm.2460. PubMed DOI

Khan A., Corbett A., Ballard C. Emerging treatments for Alzheimer’s disease for non-amyloid and non-tau targets. Expert Rev. Neurother. 2017;17:683–695. doi: 10.1080/14737175.2017.1326818. PubMed DOI

Corbett A., Ballard C. Is a potential Alzheimer’s therapy already in use for other conditions? Can medications for hypertension, diabetes and acne help with the symptoms? Expert Opin. Investig. Drugs. 2013;22:941–943. doi: 10.1517/13543784.2013.815723. PubMed DOI

Hardy J., Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol. Sci. 1991;12:383–388. doi: 10.1016/0165-6147(91)90609-V. PubMed DOI

Garcia M.L., Cleveland D.W. Going new places using an old MAP: tau, microtubules and human neurodegenerative disease. Curr. Opin. Cell Biol. 2001;13:41–48. doi: 10.1016/S0955-0674(00)00172-1. PubMed DOI

Wischik C.M., Harrington C.R., Storey J.M.D. Tau-aggregation inhibitor therapy for Alzheimer’s disease. Biochem. Pharmacol. 2014;88:529–539. doi: 10.1016/j.bcp.2013.12.008. PubMed DOI

Kadavath H., Jaremko M., Jaremko L., Biernat J., Mandelkow E., Zweckstetter M. Folding of the Tau Protein on Microtubules. Angew. Chem. Int. Ed. Engl. 2015;54:10347–10351. doi: 10.1002/anie.201501714. PubMed DOI

Lee V.M.-Y., Trojanowski J.Q. The disordered neuronal cytoskeleton in Alzheimer’s disease. Curr. Opin. Neurobiol. 1992;2:653–656. doi: 10.1016/0959-4388(92)90034-I. PubMed DOI

Clark C.M., Xie S., Chittams J., Ewbank D., Peskind E., Galasko D., Morris J.C., McKeel D.W.J., Farlow M., Weitlauf S.L., et al. Cerebrospinal fluid tau and beta-amyloid: How well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch. Neurol. 2003;60:1696–1702. doi: 10.1001/archneur.60.12.1696. PubMed DOI

Arriagada P.V, Growdon J.H., Hedley-Whyte E.T., Hyman B.T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology. 1992;42:631–639. doi: 10.1212/WNL.42.3.631. PubMed DOI

de Lau L.M.L., Breteler M.M.B. Epidemiology of Parkinson’s disease. Lancet. Neurol. 2006;5:525–535. doi: 10.1016/S1474-4422(06)70471-9. PubMed DOI

Svenningsson P., Westman E., Ballard C., Aarsland D. Cognitive impairment in patients with Parkinson’s disease: Diagnosis, biomarkers, and treatment. Lancet. Neurol. 2012;11:697–707. doi: 10.1016/S1474-4422(12)70152-7. PubMed DOI

Jankovic J. Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry. 2008;79:368–376. doi: 10.1136/jnnp.2007.131045. PubMed DOI

Parkinson J. An Essay on the Shaking Palsy. J. Neuropsychiatry Clin. Neurosci. 2002;14:223–236. doi: 10.1176/jnp.14.2.223. PubMed DOI

Damier P., Hirsch E.C., Agid Y., Graybiel A.M. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Pt 8Brain. 1999;122:1437–1448. doi: 10.1093/brain/122.8.1437. PubMed DOI

Schneider S.A., Obeso J.A. Clinical and pathological features of Parkinson’s disease. Curr. Top. Behav. Neurosci. 2015;22:205–220. PubMed

Spillantini M.G., Schmidt M.L., Lee V.M., Trojanowski J.Q., Jakes R., Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388:839–840. doi: 10.1038/42166. PubMed DOI

Braak H., Del Tredici K., Bratzke H., Hamm-Clement J., Sandmann-Keil D., Rub U. Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages) J. Neurol. 2002;249(Suppl. III):1–5. doi: 10.1007/s00415-002-1301-4. PubMed DOI

Beach T.G., Adler C.H., Lue L., Sue L.I., Bachalakuri J., Henry-Watson J., Sasse J., Boyer S., Shirohi S., Brooks R., et al. Unified staging system for Lewy body disorders: Correlation with nigrostriatal degeneration, cognitive impairment and motor dysfunction. Acta Neuropathol. 2009;117:613–634. doi: 10.1007/s00401-009-0538-8. PubMed DOI PMC

Hsu W.-Y., Lane H.-Y., Lin C.-H. Medications Used for Cognitive Enhancement in Patients With Schizophrenia, Bipolar Disorder, Alzheimer’s Disease, and Parkinson’s Disease. Front. Psychiatry. 2018;9:91. doi: 10.3389/fpsyt.2018.00091. PubMed DOI PMC

Lazzara C.A., Kim Y.-H. Potential application of lithium in Parkinson’s and other neurodegenerative diseases. Front. Neurosci. 2015;9:403. doi: 10.3389/fnins.2015.00403. PubMed DOI PMC

Stelmashook E.V, Isaev N.K., Genrikhs E.E., Amelkina G.A., Khaspekov L.G., Skrebitsky V.G., Illarioshkin S.N. Role of zinc and copper ions in the pathogenetic mechanisms of Alzheimer’s and Parkinson’s diseases. Biochemistry. 2014;79:391–396. doi: 10.1134/S0006297914050022. PubMed DOI

Zarei S., Carr K., Reiley L., Diaz K., Guerra O., Altamirano P., Pagani W., Lodin D., Orozco G., Chinea A. A comprehensive review of amyotrophic lateral sclerosis. Surg. Neurol. Int. 2015;6:171. doi: 10.4103/2152-7806.169561. PubMed DOI PMC

Pringsheim T., Wiltshire K., Day L., Dykeman J., Steeves T., Jette N. The incidence and prevalence of Huntington’s disease: A systematic review and meta-analysis. Mov. Disord. 2012;27:1083–1091. doi: 10.1002/mds.25075. PubMed DOI

Grossman M. Frontotemporal dementia: A review. J. Int. Neuropsychol. Soc. 2002;8:566–583. doi: 10.1017/S1355617702814357. PubMed DOI

Seelaar H., Rohrer J.D., Pijnenburg Y.A.L., Fox N.C., van Swieten J.C. Clinical, genetic and pathological heterogeneity of frontotemporal dementia: A review. J. Neurol. Neurosurg. Psychiatry. 2011;82:476–486. doi: 10.1136/jnnp.2010.212225. PubMed DOI

Metzler-Baddeley C. A review of cognitive impairments in dementia with Lewy bodies relative to Alzheimer’s disease and Parkinson’s disease with dementia. Cortex. 2007;43:583–600. doi: 10.1016/S0010-9452(08)70489-1. PubMed DOI

Rolinski M., Fox C., Maidment I., McShane R. Cholinesterase inhibitors for dementia with Lewy bodies, Parkinson’s disease dementia and cognitive impairment in Parkinson’s disease. Cochrane Database Syst. Rev. 2012:CD006504. doi: 10.1002/14651858.CD006504.pub2. PubMed DOI PMC

Aranca T.V, Jones T.M., Shaw J.D., Staffetti J.S., Ashizawa T., Kuo S.-H., Fogel B.L., Wilmot G.R., Perlman S.L., Onyike C.U., et al. Emerging therapies in Friedreich’s ataxia. Neurodegener. Dis. Manag. 2016;6:49–65. doi: 10.2217/nmt.15.73. PubMed DOI PMC

Bürk K. Friedreich Ataxia: current status and future prospects. Cerebellum Ataxias. 2017;4:4. PubMed PMC

Appleby B.S., Connor A., Wang H. Therapeutic strategies for prion disease: A practical perspective. Curr. Opin. Pharmacol. 2019;44:15–19. doi: 10.1016/j.coph.2018.11.006. PubMed DOI

Prusiner S.B. Novel proteinaceous infectious particles cause scrapie. Science. 1982;216:136–144. doi: 10.1126/science.6801762. PubMed DOI

Prusiner S.B. Molecular biology of prion diseases. Science. 1991;252:1515–1522. doi: 10.1126/science.1675487. PubMed DOI

Verma A. Prions, prion-like prionoids, and neurodegenerative disorders. Ann. Indian Acad. Neurol. 2016;19:169–174. doi: 10.4103/0972-2327.179979. PubMed DOI PMC

Alison A. The Red-Hot Debate About Transmissible Alzheimer’s. Nature. 2016;531:294–297. doi: 10.1038/531294a. PubMed DOI

Gaeta A., Hider R.C. The crucial role of metal ions in neurodegeneration: The basis for a promising therapeutic strategy. Br. J. Pharmacol. 2005;146:1041–1059. doi: 10.1038/sj.bjp.0706416. PubMed DOI PMC

Crichton R.R., Dexter D.T., Ward R.J. Metal based neurodegenerative diseases—From molecular mechanisms to therapeutic strategies. Coord. Chem. Rev. 2008;252:1189–1199. doi: 10.1016/j.ccr.2007.10.019. DOI

Zhu Z.-F., Wang Q.-G., Han B.-J., William C.P. Neuroprotective effect and cognitive outcome of chronic lithium on traumatic brain injury in mice. Brain Res. Bull. 2010;83:272–277. doi: 10.1016/j.brainresbull.2010.07.008. PubMed DOI

Basselin M., Chang L., Bell J.M., Rapoport S.I. Chronic lithium chloride administration attenuates brain NMDA receptor-initiated signaling via arachidonic acid in unanesthetized rats. Neuropsychopharmacology. 2006;31:1659–1674. doi: 10.1038/sj.npp.1300920. PubMed DOI

Donaldson I.M., Cuningham J. Persisting neurologic sequelae of lithium carbonate therapy. Arch. Neurol. 1983;40:747–751. doi: 10.1001/archneur.1983.04050110065011. PubMed DOI

Hampel H., Ewers M., Burger K., Annas P., Mortberg A., Bogstedt A., Frolich L., Schroder J., Schonknecht P., Riepe M.W., et al. Lithium trial in Alzheimer’s disease: A randomized, single-blind, placebo-controlled, multicenter 10-week study. J. Clin. Psychiatry. 2009;70:922–931. doi: 10.4088/JCP.08m04606. PubMed DOI

Stambolic V., Ruel L., Woodgett J.R. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr. Biol. 1996;6:1664–1668. doi: 10.1016/S0960-9822(02)70790-2. PubMed DOI

Gotz J., Nitsch R.M. Compartmentalized tau hyperphosphorylation and increased levels of kinases in transgenic mice. Neuroreport. 2001;12:2007–2016. PubMed

Phiel C.J., Wilson C.A., Lee V.M.-Y., Klein P.S. GSK-3alpha regulates production of Alzheimer’s disease amyloid-beta peptides. Nature. 2003;423:435–439. doi: 10.1038/nature01640. PubMed DOI

Liu S.J., Zhang A.H., Li H.L., Wang Q., Deng H.M., Netzer W.J., Xu H., Wang J.Z. Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory. J. Neurochem. 2003;87:1333–1344. doi: 10.1046/j.1471-4159.2003.02070.x. PubMed DOI

Klein P.S., Melton D.A. A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. USA. 1996;93:8455–8459. doi: 10.1073/pnas.93.16.8455. PubMed DOI PMC

Lovestone S., Davis D.R., Webster M.T., Kaech S., Brion J.P., Matus A., Anderton B.H. Lithium reduces tau phosphorylation: effects in living cells and in neurons at therapeutic concentrations. Biol. Psychiatry. 1999;45:995–1003. doi: 10.1016/S0006-3223(98)00183-8. PubMed DOI

Engel T., Goni-Oliver P., Gomez de Barreda E., Lucas J.J., Hernandez F., Avila J. Lithium, a potential protective drug in Alzheimer’s disease. Neurodegener. Dis. 2008;5:247–249. doi: 10.1159/000113715. PubMed DOI

Cade J.F. Lithium salts in the treatment of psychotic excitement. 1949. Bull. World Health Organ. 2000;78:518–520. PubMed PMC

Sarkar S., Floto R.A., Berger Z., Imarisio S., Cordenier A., Pasco M., Cook L.J., Rubinsztein D.C. Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell Biol. 2005;170:1101–1111. doi: 10.1083/jcb.200504035. PubMed DOI PMC

Sarkar S., Rubinsztein D.C. Inositol and IP3 levels regulate autophagy: Biology and therapeutic speculations. Autophagy. 2006;2:132–134. doi: 10.4161/auto.2387. PubMed DOI

Forlenza O.V., de Paula V.J., Machado-Vieira R., Diniz B.S., Gattaz W.F. Does lithium prevent Alzheimer’s disease? Drugs Aging. 2012;29:335–342. doi: 10.2165/11599180-000000000-00000. PubMed DOI

Garcia-Arencibia M., Hochfeld W.E., Toh P.P.C., Rubinsztein D.C. Autophagy, a guardian against neurodegeneration. Semin. Cell Dev. Biol. 2010;21:691–698. doi: 10.1016/j.semcdb.2010.02.008. PubMed DOI PMC

Pasquali L., Busceti C.L., Fulceri F., Paparelli A., Fornai F. Intracellular pathways underlying the effects of lithium. Behav. Pharmacol. 2010;21:473–492. doi: 10.1097/FBP.0b013e32833da5da. PubMed DOI

Forlenza O.V, De-Paula V.J.R., Diniz B.S.O. Neuroprotective effects of lithium: Implications for the treatment of Alzheimer’s disease and related neurodegenerative disorders. ACS Chem. Neurosci. 2014;5:443–450. doi: 10.1021/cn5000309. PubMed DOI PMC

Birch N.J. Letter: Lithium and magnesium-dependent enzymes. Lancet. 1974;2:965–966. doi: 10.1016/S0140-6736(74)91187-8. PubMed DOI

Amari L., Layden B., Rong Q., Geraldes C.F.G.C., Mota de Freitas D. Comparison of Fluorescence, 31P NMR, and 7Li NMR Spectroscopic Methods for Investigating Li+/Mg2+ Competition for Biomolecules. Anal. Biochem. 1999;272:1–7. doi: 10.1006/abio.1999.4169. PubMed DOI

Grimes C.A., Jope R.S. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog. Neurobiol. 2001;65:391–426. doi: 10.1016/S0301-0082(01)00011-9. PubMed DOI

Lee F.H.F., Kaidanovich-Beilin O., Roder J.C., Woodgett J.R., Wong A.H.C. Genetic inactivation of GSK3alpha rescues spine deficits in Disc1-L100P mutant mice. Schizophr. Res. 2011;129:74–79. doi: 10.1016/j.schres.2011.03.032. PubMed DOI

Forlenza O.V, Diniz B.S., Radanovic M., Santos F.S., Talib L.L., Gattaz W.F. Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: Randomised controlled trial. Br. J. Psychiatry. 2011;198:351–356. doi: 10.1192/bjp.bp.110.080044. PubMed DOI

Shalbuyeva N., Brustovetsky T., Brustovetsky N. Lithium desensitizes brain mitochondria to calcium, antagonizes permeability transition, and diminishes cytochrome C release. J. Biol. Chem. 2007;282:18057–18068. doi: 10.1074/jbc.M702134200. PubMed DOI

Bachmann R.F., Wang Y., Yuan P., Zhou R., Li X., Alesci S., Du J., Manji H.K. Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage. Int. J. Neuropsychopharmacol. 2009;12:805–822. doi: 10.1017/S1461145708009802. PubMed DOI PMC

Quiroz J.A., Machado-Vieira R., Zarate C.A.J., Manji H.K. Novel insights into lithium’s mechanism of action: neurotrophic and neuroprotective effects. Neuropsychobiology. 2010;62:50–60. doi: 10.1159/000314310. PubMed DOI PMC

Ngok-Ngam P., Watcharasit P., Thiantanawat A., Satayavivad J. Pharmacological inhibition of GSK3 attenuates DNA damage-induced apoptosis via reduction of p53 mitochondrial translocation and Bax oligomerization in neuroblastoma SH-SY5Y cells. Cell. Mol. Biol. Lett. 2013;18:58–74. doi: 10.2478/s11658-012-0039-y. PubMed DOI PMC

Feier G., Valvassori S.S., Varela R.B., Resende W.R., Bavaresco D.V, Morais M.O., Scaini G., Andersen M.L., Streck E.L., Quevedo J. Lithium and valproate modulate energy metabolism in an animal model of mania induced by methamphetamine. Pharmacol. Biochem. Behav. 2013;103:589–596. doi: 10.1016/j.pbb.2012.09.010. PubMed DOI

Engel T., Goni-Oliver P., Lucas J.J., Avila J., Hernandez F. Chronic lithium administration to FTDP-17 tau and GSK-3beta overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J. Neurochem. 2006;99:1445–1455. doi: 10.1111/j.1471-4159.2006.04139.x. PubMed DOI

Leroy K., Ando K., Heraud C., Yilmaz Z., Authelet M., Boeynaems J.-M., Buee L., De Decker R., Brion J.-P. Lithium treatment arrests the development of neurofibrillary tangles in mutant tau transgenic mice with advanced neurofibrillary pathology. J. Alzheimers Dis. 2010;19:705–719. doi: 10.3233/JAD-2010-1276. PubMed DOI

Noble W., Planel E., Zehr C., Olm V., Meyerson J., Suleman F., Gaynor K., Wang L., LaFrancois J., Feinstein B., et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc. Natl. Acad. Sci. USA. 2005;102:6990–6995. doi: 10.1073/pnas.0500466102. PubMed DOI PMC

Rockenstein E., Torrance M., Adame A., Mante M., Bar-on P., Rose J.B., Crews L., Masliah E. Neuroprotective effects of regulators of the glycogen synthase kinase-3beta signaling pathway in a transgenic model of Alzheimer’s disease are associated with reduced amyloid precursor protein phosphorylation. J. Neurosci. 2007;27:1981–1991. doi: 10.1523/JNEUROSCI.4321-06.2007. PubMed DOI PMC

Su Y., Ryder J., Li B., Wu X., Fox N., Solenberg P., Brune K., Paul S., Zhou Y., Liu F., et al. Lithium, a common drug for bipolar disorder treatment, regulates amyloid-beta precursor protein processing. Biochemistry. 2004;43:6899–6908. doi: 10.1021/bi035627j. PubMed DOI

Yu F., Zhang Y., Chuang D.-M. Lithium reduces BACE1 overexpression, beta amyloid accumulation, and spatial learning deficits in mice with traumatic brain injury. J. Neurotrauma. 2012;29:2342–2351. doi: 10.1089/neu.2012.2449. PubMed DOI PMC

Zhang X., Heng X., Li T., Li L., Yang D., Zhang X., Du Y., Doody R.S., Le W. Long-term treatment with lithium alleviates memory deficits and reduces amyloid-beta production in an aged Alzheimer’s disease transgenic mouse model. J. Alzheimers Dis. 2011;24:739–749. doi: 10.3233/JAD-2011-101875. PubMed DOI

Fiorentini A., Rosi M.C., Grossi C., Luccarini I., Casamenti F. Lithium Improves Hippocampal Neurogenesis, Neuropathology and Cognitive Functions in APP Mutant Mice. PLoS ONE. 2010;5:e14382. doi: 10.1371/journal.pone.0014382. PubMed DOI PMC

Alvarez G., Munoz-Montano J.R., Satrustegui J., Avila J., Bogonez E., Diaz-Nido J. Regulation of tau phosphorylation and protection against beta-amyloid-induced neurodegeneration by lithium. Possible implications for Alzheimer’s disease. Bipolar Disord. 2002;4:153–165. doi: 10.1034/j.1399-5618.2002.01150.x. PubMed DOI

Chen R.W., Chuang D.M. Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity. J. Biol. Chem. 1999;274:6039–6042. doi: 10.1074/jbc.274.10.6039. PubMed DOI

Chen G., Zeng W.Z., Yuan P.X., Huang L.D., Jiang Y.M., Zhao Z.H., Manji H.K. The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J. Neurochem. 1999;72:879–882. doi: 10.1046/j.1471-4159.1999.720879.x. PubMed DOI

Macdonald A., Briggs K., Poppe M., Higgins A., Velayudhan L., Lovestone S. A feasibility and tolerability study of lithium in Alzheimer’s disease. Int. J. Geriatr. Psychiatry. 2008;23:704–711. doi: 10.1002/gps.1964. PubMed DOI

Kim G.H., Kim J.E., Rhie S.J., Yoon S. The Role of Oxidative Stress in Neurodegenerative Diseases. Exp. Neurobiol. 2015;24:325–340. doi: 10.5607/en.2015.24.4.325. PubMed DOI PMC

Salvemini D., Riley D.P., Cuzzocrea S. Sod mimetics are coming of age. Nat. Rev. Drug Discov. 2002;1:367. doi: 10.1038/nrd796. PubMed DOI

Strange R.W., Antonyuk S.V, Hough M.A., Doucette P.A., Valentine J.S., Hasnain S.S. Variable Metallation of Human Superoxide Dismutase: Atomic Resolution Crystal Structures of Cu–Zn, Zn–Zn and As-isolated Wild-type Enzymes. J. Mol. Biol. 2006;356:1152–1162. doi: 10.1016/j.jmb.2005.11.081. PubMed DOI

Wanninger S., Lorenz V., Subhan A., Edelmann F.T. Metal complexes of curcumin – synthetic strategies, structures and medicinal applications. Chem. Soc. Rev. 2015;44:4986–5002. doi: 10.1039/C5CS00088B. PubMed DOI

Sumanont Y., Murakami Y., Tohda M., Vajragupta O., Matsumoto K., Watanabe H. Evaluation of the Nitric Oxide Radical Scavenging Activity of Manganese Complexes of Curcumin and Its Derivative. Biol. Pharm. Bull. 2004;27:170–173. doi: 10.1248/bpb.27.170. PubMed DOI

Vajragupta O., Boonchoong P., Watanabe H., Tohda M., Kummasud N., Sumanont Y. Manganese complexes of curcumin and its derivatives: Evaluation for the radical scavenging ability and neuroprotective activity. Free Radic. Biol. Med. 2003;35:1632–1644. doi: 10.1016/j.freeradbiomed.2003.09.011. PubMed DOI

Sumanont Y., Murakami Y., Tohda M., Vajragupta O., Watanabe H., Matsumoto K. Effects of Manganese Complexes of Curcumin and Diacetylcurcumin on Kainic Acid-Induced Neurotoxic Responses in the Rat Hippocampus. Biol. Pharm. Bull. 2007;30:1732–1739. doi: 10.1248/bpb.30.1732. PubMed DOI

Belda R., Blasco S., Verdejo B., Jiménez H.R., Doménech-Carbó A., Soriano C., Latorre J., Terencio C., García-España E. Homo- and heterobinuclear Cu2+ and Zn2+ complexes of abiotic cyclic hexaazapyridinocyclophanes as SOD mimics. Dalt. Trans. 2013;42:11194–11204. doi: 10.1039/c3dt51012c. PubMed DOI

Wang X., Zhang B., Zhao C., Wang Y., He L., Cui M., Zhu X., Du W. Inhibition of human prion neuropeptide PrP106-126 aggregation by hexacoordinated ruthenium complexes. J. Inorg. Biochem. 2013;128:1–10. doi: 10.1016/j.jinorgbio.2013.07.009. PubMed DOI

Zahn R., Liu A., Lührs T., Riek R., von Schroetter C., López García F., Billeter M., Calzolai L., Wider G., Wüthrich K. NMR solution structure of the human prion protein. Proc. Natl. Acad. Sci. USA. 2000;97:145–150. doi: 10.1073/pnas.97.1.145. PubMed DOI PMC

Messori L., Camarri M., Ferraro T., Gabbiani C., Franceschini D. Promising in Vitro anti-Alzheimer Properties for a Ruthenium(III) Complex. ACS Med. Chem. Lett. 2013;4:329–332. doi: 10.1021/ml3003567. PubMed DOI PMC

Moss D.E., Perez R.G., Kobayashi H. Cholinesterase Inhibitor Therapy in Alzheimer’s: The limits and tolerability of Irreversible CNS-selective Acetylcholinesterase Inhibition in Primates. J. Alzheimers Dis. 2017;55:1285–1294. doi: 10.3233/JAD-160733. PubMed DOI PMC

Vyas N.A., Bhat S.S., Kumbhar A.S., Sonawane U.B., Jani V., Joshi R.R., Ramteke S.N., Kulkarni P.P., Joshi B. Ruthenium(II) polypyridyl complex as inhibitor of acetylcholinesterase and Aβ aggregation. Eur. J. Med. Chem. 2014;75:375–381. doi: 10.1016/j.ejmech.2014.01.052. PubMed DOI

Lu L., Zhong H.-J., Wang M., Ho S.-L., Li H.-W., Leung C.-H., Ma D.-L. Inhibition of Beta-Amyloid Fibrillation by Luminescent Iridium(III) Complex Probes. Sci. Rep. 2015;5:14619. doi: 10.1038/srep14619. PubMed DOI PMC

Barnham K.J., Kenche V.B., Ciccotosto G.D., Smith D.P., Tew D.J., Liu X., Perez K., Cranston G.A., Johanssen T.J., Volitakis I., et al. Platinum-based inhibitors of amyloid-β as therapeutic agents for Alzheimer’s disease. Proc. Natl. Acad. Sci. USA. 2008;105:6813–6818. doi: 10.1073/pnas.0800712105. PubMed DOI PMC

Kenche V.B., Hung L.W., Perez K., Volitakes I., Ciccotosto G., Kwok J., Critch N., Sherratt N., Cortes M., Lal V., et al. Development of a Platinum Complex as an anti-Amyloid Agent for the Therapy of Alzheimer’s Disease. Angew. Chem. Int. Ed. 2013;52:3374–3378. doi: 10.1002/anie.201209885. PubMed DOI

Franz K.J. Application of inorganic chemistry for non-cancer therapeutics. Dalt. Trans. 2012;41:6333–6334. doi: 10.1039/c2dt90061k. PubMed DOI

Streltsov V.A., Chandana Epa V., James S.A., Churches Q.I., Caine J.M., Kenche V.B., Barnham K.J. Structural insights into the interaction of platinum-based inhibitors with the Alzheimer’s disease amyloid-β peptide. Chem. Commun. 2013;49:11364–11366. doi: 10.1039/c3cc47326k. PubMed DOI

Avan A., Postma T.J., Ceresa C., Avan A., Cavaletti G., Giovannetti E., Peters G.J. Platinum-Induced Neurotoxicity and Preventive Strategies: Past, Present, and Future. Oncologist. 2015;20:411–432. doi: 10.1634/theoncologist.2014-0044. PubMed DOI PMC

Li M., Howson S.E., Dong K., Gao N., Ren J., Scott P., Qu X. Chiral metallohelical complexes enantioselectively target amyloid β for Treating Alzheimer’s disease. J. Am. Chem. Soc. 2014;136:11655–11663. doi: 10.1021/ja502789e. PubMed DOI

Chen W., Ouyang J., Yi X., Xu Y., Niu C., Zhang W., Wang L., Sheng J., Deng L., Liu Y.-N., et al. Black Phosphorus Nanosheets as a Neuroprotective Nanomedicine for Neurodegenerative Disorder Therapy. Adv. Mater. 2018;30:1703458. doi: 10.1002/adma.201703458. PubMed DOI

Mir J M. Alzheimer’s Disease & Treatment. MedDocs Publishers LLC; Reno, NV, USA: 2017. Design of Metal Complexes as Anti-AD Agents; p. 7.

Jalili-Baleh L., Nadri H., Forootanfar H., Samzadeh-Kermani A., Küçükkılınç T.T., Ayazgok B., Rahimifard M., Baeeri M., Doostmohammadi M., Firoozpour L., et al. Novel 3-phenylcoumarin–lipoic acid conjugates as multi-functional agents for potential treatment of Alzheimer’s disease. Bioorg. Chem. 2018;79:223–234. doi: 10.1016/j.bioorg.2018.04.030. PubMed DOI

Uversky V.N., Li J., Fink A.L. Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J. Biol. Chem. 2001;276:44284–44296. doi: 10.1074/jbc.M105343200. PubMed DOI

Xu Y., Wang H., Li X., Dong S., Liu W., Gong Q., Wang T., Tang Y., Zhu J., Li J., et al. Discovery of novel propargylamine-modified 4-aminoalkyl imidazole substituted pyrimidinylthiourea derivatives as multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2018;143:33–47. doi: 10.1016/j.ejmech.2017.08.025. PubMed DOI

Grasso G., Santoro A.M., Lanza V., Sbardella D., Tundo G.R., Ciaccio C., Marini S., Coletta M., Milardi D. The double faced role of copper in Aβ homeostasis: A survey on the interrelationship between metal dyshomeostasis, UPS functioning and autophagy in neurodegeneration. Coord. Chem. Rev. 2017;347:1–22. doi: 10.1016/j.ccr.2017.06.004. DOI

Rana M., Cho H.-J., Roy T.K., Mirica L.M., Sharma A.K. Azo-dyes based small bifunctional molecules for metal chelation and controlling amyloid formation. Inorganica Chim. Acta. 2018;471:419–429. doi: 10.1016/j.ica.2017.11.029. PubMed DOI PMC

Wang X.-Q., Zhao C.-P., Zhong L.-C., Zhu D.-L., Mai D.-H., Liang M.-G., He M.-H. Preparation of 4-Flexible Amino-2-Arylethenyl-Quinoline Derivatives as Multi-target Agents for the Treatment of Alzheimer’s Disease. Molecules. 2018;23:3100. doi: 10.3390/molecules23123100. PubMed DOI PMC

Prachayasittikul V., Prachayasittikul V., Prachayasittikul S., Ruchirawat S. 8-Hydroxyquinolines: A review of their metal chelating properties and medicinal applications. Drug Des. Devel. Ther. 2013;7:1157. doi: 10.2147/DDDT.S49763. PubMed DOI PMC

Ono M., Watanabe H., Watanabe R., Haratake M., Nakayama M., Saji H. Diphenylpropynone derivatives as probes for imaging β-amyloid plaques in Alzheimer’s brains. Bioorg. Med. Chem. Lett. 2011;21:117–120. doi: 10.1016/j.bmcl.2010.11.058. PubMed DOI

Jones M.R., Mathieu E., Dyrager C., Faissner S., Vaillancourt Z., Korshavn K.J., Lim M.H., Ramamoorthy A., Wee Yong V., Tsutsui S., et al. Multi-target-directed phenol–triazole ligands as therapeutic agents for Alzheimer’s disease. Chem. Sci. 2017;8:5636–5643. doi: 10.1039/C7SC01269A. PubMed DOI PMC

Zhang C., Gomes L.M.F., Zhang T., Storr T. A small bifunctional chelator that modulates Aβ42 aggregation. Can. J. Chem. 2018;96:78–82. doi: 10.1139/cjc-2017-0623. DOI

Liu Y., Kochi A., Pithadia A.S., Lee S., Nam Y., Beck M.W., He X., Lee D., Lim M.H. Tuning Reactivity of Diphenylpropynone Derivatives with Metal-Associated Amyloid-β Species via Structural Modifications. Inorg. Chem. 2013;52:8121–8130. doi: 10.1021/ic400851w. PubMed DOI

Cao Z., Yang J., Xu R., Song Q., Zhang X., Liu H., Qiang X., Li Y., Tan Z., Deng Y. Design, synthesis and evaluation of 4′-OH-flurbiprofen-chalcone hybrids as potential multifunctional agents for Alzheimer’s disease treatment. Bioorg. Med. Chem. 2018;26:1102–1115. doi: 10.1016/j.bmc.2018.01.030. PubMed DOI

Fosso M.Y., LeVine H., 3rd, Green K.D., Tsodikov O.V., Garneau-Tsodikova S. Effects of structural modifications on the metal binding, anti-amyloid activity, and cholinesterase inhibitory activity of chalcones. Org. Biomol. Chem. 2015;13:9418–9426. doi: 10.1039/C5OB01478F. PubMed DOI

Schugar H., Green D.E., Bowen M.L., Scott L.E., Storr T., Böhmerle K., Thomas F., Allen D.D., Lockman P.R., Merkel M., et al. Combating Alzheimer’s Disease With Multifunctional Molecules Designed for Metal Passivation. Angew. Chem. Int. Ed. 2007;46:1716–1718. doi: 10.1002/anie.200603866. PubMed DOI

Telpoukhovskaia M.A., Cawthray J.F., Rodríguez-Rodríguez C., Scott L.E., Page B.D.G., Patrick B.O., Orvig C. 3-Hydroxy-4-pyridinone derivatives designed for fluorescence studies to determine interaction with amyloid protein as well as cell permeability. Bioorg. Med. Chem. Lett. 2015;25:3654–3657. doi: 10.1016/j.bmcl.2015.06.059. PubMed DOI

Telpoukhovskaia M.A., Rodríguez-Rodríguez C., Cawthray J.F., Scott L.E., Page B.D.G., Alí-Torres J., Sodupe M., Bailey G.A., Patrick B.O., Orvig C. 3-Hydroxy-4-pyridinone derivatives as metal ion and amyloid binding agents. Metallomics. 2014;6:249–262. doi: 10.1039/C3MT00135K. PubMed DOI

Green D.E., Bowen M.L., Scott L.E., Storr T., Merkel M., Böhmerle K., Thompson K.H., Patrick B.O., Schugar H.J., Orvig C. In vitro studies of 3-hydroxy-4-pyridinones and their glycosylated derivatives as potential agents for Alzheimer’s disease. Dalt. Trans. 2010;39:1604–1615. doi: 10.1039/B918439B. PubMed DOI

Yang X., Cai P., Liu Q., Wu J., Yin Y., Wang X., Kong L. Novel 8-hydroxyquinoline derivatives targeting β -amyloid aggregation, metal chelation and oxidative stress against Alzheimer’s disease. Bioorg. Med. Chem. 2018;26:3191–3201. doi: 10.1016/j.bmc.2018.04.043. PubMed DOI

Gomes L.M.F., Vieira R.P., Jones M.R., Wang M.C.P., Dyrager C., Souza-Fagundes E.M., Da Silva J.G., Storr T., Beraldo H. 8-Hydroxyquinoline Schiff-base compounds as antioxidants and modulators of copper-mediated Aβ peptide aggregation. J. Inorg. Biochem. 2014;139:106–116. doi: 10.1016/j.jinorgbio.2014.04.011. PubMed DOI

Wang Z., Hu J., Yang X., Feng X., Li X., Huang L., Chan A.S.C. Design, Synthesis, and Evaluation of Orally Bioavailable Quinoline–Indole Derivatives as Innovative Multitarget-Directed Ligands: Promotion of Cell Proliferation in the Adult Murine Hippocampus for the Treatment of Alzheimer’s Disease. J. Med. Chem. 2018;61:1871–1894. doi: 10.1021/acs.jmedchem.7b01417. PubMed DOI

Zheng H., Youdim M.B.H., Fridkin M. Site-Activated Multifunctional Chelator with Acetylcholinesterase and Neuroprotective−Neurorestorative Moieties for Alzheimer’s Therapy. J. Med. Chem. 2009;52:4095–4098. doi: 10.1021/jm900504c. PubMed DOI

Oliveri V., Grasso G.I., Bellia F., Attanasio F., Viale M., Vecchio G. Soluble Sugar-Based Quinoline Derivatives as New Antioxidant Modulators of Metal-Induced Amyloid Aggregation. Inorg. Chem. 2015;54:2591–2602. doi: 10.1021/ic502713f. PubMed DOI

Yang Y., Chen T., Zhu S., Gu X., Jia X., Lu Y., Zhu L. Two macrocyclic polyamines as modulators of metal-mediated Aβ40 aggregation. Integr. Biol. 2015;7:655–662. doi: 10.1039/C5IB00064E. PubMed DOI

Lanza V., D’Agata R., Iacono G., Bellia F., Spoto G., Vecchio G. Cyclam glycoconjugates as lectin ligands and protective agents of metal-induced amyloid aggregation. J. Inorg. Biochem. 2015;153:377–382. doi: 10.1016/j.jinorgbio.2015.06.016. PubMed DOI

Lincoln K.M., Gonzalez P., Richardson T.E., Julovich D.A., Saunders R., Simpkins J.W., Green K.N. A potent antioxidant small molecule aimed at targeting metal-based oxidative stress in neurodegenerative disorders. Chem. Commun. 2013;49:2712. doi: 10.1039/c2cc36808k. PubMed DOI PMC

Lincoln K.M., Richardson T.E., Rutter L., Gonzalez P., Simpkins J.W., Green K.N. An N-Heterocyclic Amine Chelate Capable of Antioxidant Capacity and Amyloid Disaggregation. ACS Chem. Neurosci. 2012;3:919–927. doi: 10.1021/cn300060v. PubMed DOI PMC

Gonzalez P., da Costa V.C.P., Hyde K., Wu Q., Annunziata O., Rizo J., Akkaraju G., Green K.N. Bimodal-hybrid heterocyclic amine targeting oxidative pathways and copper mis-regulation in Alzheimer’s disease. Metallomics. 2014;6:2072–2082. doi: 10.1039/C4MT00161C. PubMed DOI PMC

Jones M.R., Mu C., Wang M.C.P., Webb M.I., Walsby C.J., Storr T. Modulation of the Aβ peptide aggregation pathway by KP1019 limits Aβ-associated neurotoxicity. Metallomics. 2015;7:129–135. doi: 10.1039/C4MT00252K. PubMed DOI

Zhang Y., Chen L.-Y., Yin W.-X., Yin J., Zhang S.-B., Liu C.-L. The chelation targeting metal–Aβ40 aggregates may lead to formation of Aβ40 oligomers. Dalt. Trans. 2011;40:4830. doi: 10.1039/c1dt00020a. PubMed DOI

Rodríguez-Rodríguez C., Telpoukhovskaia M.A., Alí-Torres J., Rodríguez-Santiago L., Manso Y., Bailey G.A., Hidalgo J., Sodupe M., Orvig C. Thioflavin-based molecular probes for application in Alzheimer’s disease: from in silico to in vitro models. Metallomics. 2015;7:83–92. doi: 10.1039/C4MT00167B. PubMed DOI

Rodríguez-Rodríguez C., SáNchez De Groot N., Rimola A., Álvarez-Larena Á., Lloveras V., Vidal-Gancedo J., Ventura S., Vendrell J., Sodupe M., GonzáLez-Duarte P. Design, Selection, and Characterization of Thioflavin-Based Intercalation Compounds with Metal Chelating Properties for Application in Alzheimer’s Disease. J. Am. Chem. Soc. 2009;131:1436–1451. PubMed

Hindo S.S., Mancino A.M., Braymer J.J., Liu Y., Vivekanandan S., Ramamoorthy A., Lim M.H. Small Molecule Modulators of Copper-Induced Aβ Aggregation. J. Am. Chem. Soc. 2009;131:16663–16665. doi: 10.1021/ja907045h. PubMed DOI PMC

Viveiros R., Karim K., Piletsky S.A., Heggie W., Casimiro T. Development of a molecularly imprinted polymer for a pharmaceutical impurity in supercritical CO2: Rational design using computational approach. J. Clean. Prod. 2017;168:1025–1031. doi: 10.1016/j.jclepro.2017.09.026. DOI

Braymer J.J., Choi J.-S., DeToma A.S., Wang C., Nam K., Kampf J.W., Ramamoorthy A., Lim M.H. Development of Bifunctional Stilbene Derivatives for Targeting and Modulating Metal-Amyloid-β Species. Inorg. Chem. 2011;50:10724–10734. doi: 10.1021/ic2012205. PubMed DOI PMC

Geldenhuys W.J., Ko K.S., Stinnett H., Van der Schyf C.J., Lim M.H. Identification of multifunctional small molecule-based reversible monoamine oxidase inhibitors. Medchemcomm. 2011;2:1099. doi: 10.1039/c1md00176k. DOI

Choi J.-S., Braymer J.J., Nanga R.P.R., Ramamoorthy A., Lim M.H. Design of small molecules that target metal-A{beta} species and regulate metal-induced A{beta} aggregation and neurotoxicity. Proc. Natl. Acad. Sci. USA. 2010;107:21990–21995. doi: 10.1073/pnas.1006091107. PubMed DOI PMC

Beck M.W., Derrick J.S., Kerr R.A., Oh S.B., Cho W.J., Lee S.J.C., Ji Y., Han J., Tehrani Z.A., Suh N., et al. Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer’s disease. Nat. Commun. 2016;7:13115. doi: 10.1038/ncomms13115. PubMed DOI PMC

Jiang N., Wang X.-B., Li Z.-R., Li S.-Y., Xie S.-S., Huang M., Kong L.-Y. Design of a structural framework with potential use to develop balanced multifunctional agents against Alzheimer’s disease. RSC Adv. 2015;5:14242–14255. doi: 10.1039/C4RA10692J. DOI

Lee S., Zheng X., Krishnamoorthy J., Savelieff M.G., Park H.M., Brender J.R., Kim J.H., Derrick J.S., Kochi A., Lee H.J., et al. Rational Design of a Structural Framework with Potential Use to Develop Chemical Reagents That Target and Modulate Multiple Facets of Alzheimer’s Disease. J. Am. Chem. Soc. 2014;136:299–310. doi: 10.1021/ja409801p. PubMed DOI PMC

Savelieff M.G., Liu Y., Senthamarai R.R.P., Korshavn K.J., Lee H.J., Ramamoorthy A., Lim M.H. A small molecule that displays marked reactivity toward copper- versus zinc-amyloid-β implicated in Alzheimer’s disease. Chem. Commun. 2014;50:5301–5303. doi: 10.1039/C3CC48473D. PubMed DOI PMC

Xu P., Zhang M., Sheng R., Ma Y. Synthesis and biological evaluation of deferiprone-resveratrol hybrids as antioxidants, Aβ 1–42 aggregation inhibitors and metal-chelating agents for Alzheimer’s disease. Eur. J. Med. Chem. 2017;127:174–186. doi: 10.1016/j.ejmech.2016.12.045. PubMed DOI

Li S.-Y., Wang X.-B., Kong L.-Y. Design, synthesis and biological evaluation of imine resveratrol derivatives as multi-targeted agents against Alzheimer’s disease. Eur. J. Med. Chem. 2014;71:36–45. doi: 10.1016/j.ejmech.2013.10.068. PubMed DOI

DeToma A.S., Krishnamoorthy J., Nam Y., Lee H.J., Brender J.R., Kochi A., Lee D., Onnis V., Congiu C., Manfredini S., et al. Interaction and reactivity of synthetic aminoisoflavones with metal-free and metal-associated amyloid-β. Chem. Sci. 2014;5:4851–4862. doi: 10.1039/C4SC01531B. PubMed DOI PMC

He X., Park H.M., Hyung S.-J., DeToma A.S., Kim C., Ruotolo B.T., Lim M.H. Exploring the reactivity of flavonoid compounds with metal-associated amyloid-β species. Dalt. Trans. 2012;41:6558. doi: 10.1039/c2dt12207c. PubMed DOI PMC

Zheng H., Youdim M.B.H., Fridkin M. Selective Acetylcholinesterase Inhibitor Activated by Acetylcholinesterase Releases an Active Chelator with Neurorescuing and Anti-Amyloid Activities. ACS Chem. Neurosci. 2010;1:737–746. doi: 10.1021/cn100069c. PubMed DOI PMC

Wang Z.-M., Cai P., Liu Q.-H., Xu D.-Q., Yang X.-L., Wu J.-J., Kong L.-Y., Wang X.-B. Rational modification of donepezil as multifunctional acetylcholinesterase inhibitors for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2016;123:282–297. doi: 10.1016/j.ejmech.2016.07.052. PubMed DOI

Li F., Wang Z.-M., Wu J.-J., Wang J., Xie S.-S., Lan J.-S., Xu W., Kong L.-Y., Wang X.-B. Synthesis and pharmacological evaluation of donepezil-based agents as new cholinesterase/monoamine oxidase inhibitors for the potential application against Alzheimer’s disease. J. Enzyme Inhib. Med. Chem. 2016;31:41–53. doi: 10.1080/14756366.2016.1201814. PubMed DOI

Wu M.-Y., Esteban G., Brogi S., Shionoya M., Wang L., Campiani G., Unzeta M., Inokuchi T., Butini S., Marco-Contelles J. Donepezil-like multifunctional agents: Design, synthesis, molecular modeling and biological evaluation. Eur. J. Med. Chem. 2016;121:864–879. doi: 10.1016/j.ejmech.2015.10.001. PubMed DOI

Wang L., Esteban G., Ojima M., Bautista-Aguilera O.M., Inokuchi T., Moraleda I., Iriepa I., Samadi A., Youdim M.B.H., Romero A., et al. Donepezil + propargylamine + 8-hydroxyquinoline hybrids as new multifunctional metal-chelators, ChE and MAO inhibitors for the potential treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2014;80:543–561. doi: 10.1016/j.ejmech.2014.04.078. PubMed DOI

Bolognesi M.L., Cavalli A., Valgimigli L., Bartolini M., Rosini M., Andrisano V., Recanatini M., Melchiorre C. Multi-Target-Directed Drug Design Strategy: From a Dual Binding Site Acetylcholinesterase Inhibitor to a Trifunctional Compound against Alzheimer’s Disease. J. Med. Chem. 2007;50:6446–6449. doi: 10.1021/jm701225u. PubMed DOI

Hui A., Chen Y., Zhu S., Gan C., Pan J., Zhou A. Design and synthesis of tacrine-phenothiazine hybrids as multitarget drugs for Alzheimer’s disease. Med. Chem. Res. 2014;23:3546–3557. doi: 10.1007/s00044-014-0931-2. DOI

Nepovimova E., Uliassi E., Korabecny J., Peña-Altamira L.E., Samez S., Pesaresi A., Garcia G.E., Bartolini M., Andrisano V., Bergamini C., et al. Multitarget Drug Design Strategy: Quinone–Tacrine Hybrids Designed To Block Amyloid-β Aggregation and To Exert Anticholinesterase and Antioxidant Effects. J. Med. Chem. 2014;57:8576–8589. doi: 10.1021/jm5010804. PubMed DOI

Fang L., Kraus B., Lehmann J., Heilmann J., Zhang Y., Decker M. Design and synthesis of tacrine–ferulic acid hybrids as multi-potent anti-Alzheimer drug candidates. Bioorg. Med. Chem. Lett. 2008;18:2905–2909. doi: 10.1016/j.bmcl.2008.03.073. PubMed DOI

Benchekroun M., Romero A., Egea J., León R., Michalska P., Buendía I., Jimeno M.L., Jun D., Janockova J., Sepsova V., et al. The Antioxidant Additive Approach for Alzheimer’s Disease Therapy: New Ferulic (Lipoic) Acid Plus Melatonin Modified Tacrines as Cholinesterases Inhibitors, Direct Antioxidants, and Nuclear Factor (Erythroid-Derived 2)-Like 2 Activators. J. Med. Chem. 2016;59:9967–9973. doi: 10.1021/acs.jmedchem.6b01178. PubMed DOI

Benchekroun M., Bartolini M., Egea J., Romero A., Soriano E., Pudlo M., Luzet V., Andrisano V., Jimeno M.-L., López M.G., et al. Novel Tacrine-Grafted Ugi Adducts as Multipotent Anti-Alzheimer Drugs: A Synthetic Renewal in Tacrine-Ferulic Acid Hybrids. ChemMedChem. 2015;10:523–539. doi: 10.1002/cmdc.201402409. PubMed DOI

Fernández-Bachiller M.I., Pérez C., González-Muñoz G.C., Conde S., López M.G., Villarroya M., García A.G., Rodríguez-Franco M.I. Novel Tacrine−8-Hydroxyquinoline Hybrids as Multifunctional Agents for the Treatment of Alzheimer’s Disease, with Neuroprotective, Cholinergic, Antioxidant, and Copper-Complexing Properties. J. Med. Chem. 2010;53:4927–4937. doi: 10.1021/jm100329q. PubMed DOI

Hepnarova V., Korabecny J., Matouskova L., Jost P., Muckova L., Hrabinova M., Vykoukalova N., Kerhartova M., Kucera T., Dolezal R., et al. The concept of hybrid molecules of tacrine and benzyl quinolone carboxylic acid (BQCA) as multifunctional agents for Alzheimer’s disease. Eur. J. Med. Chem. 2018;150:292–306. doi: 10.1016/j.ejmech.2018.02.083. PubMed DOI

Antequera D., Bolos M., Spuch C., Pascual C., Ferrer I., Fernandez-Bachiller M.I., Rodríguez-Franco M.I., Carro E. Effects of a tacrine-8-hydroxyquinoline hybrid (IQM-622) on Aβ accumulation and cell death: Involvement in hippocampal neuronal loss in Alzheimer’s disease. Neurobiol. Dis. 2012;46:682–691. doi: 10.1016/j.nbd.2012.03.009. PubMed DOI

Skibiński R., Czarnecka K., Girek M., Bilichowski I., Chufarova N., Mikiciuk-Olasik E., Szymański P. Novel tetrahydroacridine derivatives with iodobenzoic acid moiety as multifunctional acetylcholinesterase inhibitors. Chem. Biol. Drug Des. 2018;91:505–518. doi: 10.1111/cbdd.13111. PubMed DOI

Mao F., Huang L., Luo Z., Liu A., Lu C., Xie Z., Li X. O-Hydroxyl- or o-amino benzylamine-tacrine hybrids: Multifunctional biometals chelators, antioxidants, and inhibitors of cholinesterase activity and amyloid-β aggregation. Bioorg. Med. Chem. 2012;20:5884–5892. doi: 10.1016/j.bmc.2012.07.045. PubMed DOI

Dgachi Y., Sokolov O., Luzet V., Godyń J., Panek D., Bonet A., Martin H., Iriepa I., Moraleda I., García-Iriepa C., et al. Tetrahydropyranodiquinolin-8-amines as new, non hepatotoxic, antioxidant, and acetylcholinesterase inhibitors for Alzheimer’s disease therapy. Eur. J. Med. Chem. 2017;126:576–589. doi: 10.1016/j.ejmech.2016.11.050. PubMed DOI

Li S.-Y., Wang X.-B., Xie S.-S., Jiang N., Wang K.D.G., Yao H.-Q., Sun H.-B., Kong L.-Y. Multifunctional tacrine–flavonoid hybrids with cholinergic, β-amyloid-reducing, and metal chelating properties for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2013;69:632–646. doi: 10.1016/j.ejmech.2013.09.024. PubMed DOI

Sun Q., Peng D.-Y., Yang S.-G., Zhu X.-L., Yang W.-C., Yang G.-F. Syntheses of coumarin–tacrine hybrids as dual-site acetylcholinesterase inhibitors and their activity against butylcholinesterase, Aβ aggregation, and β-secretase. Bioorg. Med. Chem. 2014;22:4784–4791. doi: 10.1016/j.bmc.2014.06.057. PubMed DOI

Zhang Q., Jin B., Shi Z., Wang X., Lei S., Tang X., Liang H., Liu Q., Gong M., Peng R. New tris(dopamine) derivative as an iron chelator. Synthesis, solution thermodynamic stability, and antioxidant research. J. Inorg. Biochem. 2017;171:29–36. doi: 10.1016/j.jinorgbio.2017.03.003. PubMed DOI

Rajasekhar K., Madhu C., Govindaraju T. Natural Tripeptide-Based Inhibitor of Multifaceted Amyloid β Toxicity. ACS Chem. Neurosci. 2016;7:1300–1310. doi: 10.1021/acschemneuro.6b00175. PubMed DOI

Trapaidze A., Hureau C., Bal W., Winterhalter M., Faller P. Thermodynamic study of Cu2+ binding to the DAHK and GHK peptides by isothermal titration calorimetry (ITC) with the weaker competitor glycine. JBIC J. Biol. Inorg. Chem. 2012;17:37–47. doi: 10.1007/s00775-011-0824-5. PubMed DOI

Márquez M., Blancas-Mejía L.M., Campos A., Rojas L., Castañeda-Hernández G., Quintanar L. A bifunctional non-natural tetrapeptide modulates amyloid-beta peptide aggregation in the presence of Cu(ii) Metallomics. 2014;6:2189–2192. doi: 10.1039/C4MT00257A. PubMed DOI

McCabe J.W., Vangala R., Angel L.A. Binding Selectivity of Methanobactin from Methylosinus trichosporium OB3b for Copper(I), Silver(I), Zinc(II), Nickel(II), Cobalt(II), Manganese(II), Lead(II), and Iron(II) J. Am. Soc. Mass Spectrom. 2017;28:2588–2601. doi: 10.1007/s13361-017-1778-9. PubMed DOI

Iraji A., Firuzi O., Khoshneviszadeh M., Tavakkoli M., Mahdavi M., Nadri H., Edraki N., Miri R. Multifunctional iminochromene-2H-carboxamide derivatives containing different aminomethylene triazole with BACE1 inhibitory, neuroprotective and metal chelating properties targeting Alzheimer’s disease. Eur. J. Med. Chem. 2017;141:690–702. doi: 10.1016/j.ejmech.2017.09.057. PubMed DOI

De Simone A., Bartolini M., Baschieri A., Apperley K.Y.P., Chen H.H., Guardigni M., Montanari S., Kobrlova T., Soukup O., Valgimigli L., et al. Hydroxy-substituted trans-cinnamoyl derivatives as multifunctional tools in the context of Alzheimer’s disease. Eur. J. Med. Chem. 2017;139:378–389. doi: 10.1016/j.ejmech.2017.07.058. PubMed DOI

Hayne D.J., Lim S., Donnelly P.S. Metal complexes designed to bind to amyloid-β for the diagnosis and treatment of Alzheimer’s disease. Chem. Soc. Rev. 2014;43:6701–6715. doi: 10.1039/C4CS00026A. PubMed DOI

Kim I., Kim C.H., Kim J.H., Lee J., Choi J.J., Chen Z.A., Lee M.G., Chung K.C., Hsu C.Y., Ahn Y.S. Pyrrolidine dithiocarbamate and zinc inhibit proteasome-dependent proteolysis. Exp. Cell Res. 2004;298:229–238. doi: 10.1016/j.yexcr.2004.04.017. PubMed DOI

Thom V.J., Hosken G.D., Hancock R. Anomalous Metal Ion Size Selectivity of Tetraaza Macrocycles. Inorg. Chem. 1985;24:33783381.

Sharma A., Pachauri V., Flora S.J.S. Advances in Multi-Functional Ligands and the Need for Metal-Related Pharmacology for the Management of Alzheimer Disease. Front. Pharmacol. 2018;9:1247. doi: 10.3389/fphar.2018.01247. PubMed DOI PMC

Lanza V., Milardi D., Di Natale G., Pappalardo G. Repurposing of Copper(II)-chelating Drugs for the Treatment of Neurodegenerative Diseases. Curr. Med. Chem. 2018;25:525–539. doi: 10.2174/0929867324666170518094404. PubMed DOI

Kim T.-W. Drug Repositioning Approaches for the Discovery of New Therapeutics for Alzheimer’s Disease. Neurotherapeutics. 2015;12:132–142. doi: 10.1007/s13311-014-0325-7. PubMed DOI PMC

Durães F., Pinto M., Sousa E., Durães F., Pinto M., Sousa E. Old Drugs as New Treatments for Neurodegenerative Diseases. Pharmaceuticals. 2018;11:44. doi: 10.3390/ph11020044. PubMed DOI PMC

Mucke H.A. The case of galantamine: repurposing and late blooming of a cholinergic drug. Futur. Sci. OA. 2015;1:FSO73. doi: 10.4155/fso.15.73. PubMed DOI PMC

Hayes C.D., Dey D., Palavicini J.P., Wang H., Patkar K.A., Minond D., Nefzi A., Lakshmana M.K. Striking reduction of amyloid plaque burden in an Alzheimer’s mouse model after chronic administration of carmustine. BMC Med. 2013;11:81. doi: 10.1186/1741-7015-11-81. PubMed DOI PMC

Fukasawa H., Nakagomi M., Yamagata N., Katsuki H., Kawahara K., Kitaoka K., Miki T., Shudo K. Tamibarotene: A Candidate Retinoid Drug for Alzheimer’s Disease. Biol. Pharm. Bull. 2012;35:1206–1212. doi: 10.1248/bpb.b12-00314. PubMed DOI

Netzer W.J., Dou F., Cai D., Veach D., Jean S., Li Y., Bornmann W.G., Clarkson B., Xu H., Greengard P. Gleevec inhibits beta-amyloid production but not Notch cleavage. Proc. Natl. Acad. Sci. USA. 2003;100:12444–12449. doi: 10.1073/pnas.1534745100. PubMed DOI PMC

Tousi B. The emerging role of bexarotene in the treatment of Alzheimer’s disease: current evidence. Neuropsychiatr. Dis. Treat. 2015;11:311. PubMed PMC

Brunden K.R., Yao Y., Potuzak J.S., Ferrer N.I., Ballatore C., James M.J., Hogan A.-M.L., Trojanowski J.Q., Smith A.B., Lee V.M.-Y. The characterization of microtubule-stabilizing drugs as possible therapeutic agents for Alzheimer’s disease and related tauopathies. Pharmacol. Res. 2011;63:341–351. doi: 10.1016/j.phrs.2010.12.002. PubMed DOI PMC

Ryu J.K., McLarnon J.G. Thalidomide inhibition of perturbed vasculature and glial-derived tumor necrosis factor-α in an animal model of inflamed Alzheimer’s disease brain. Neurobiol. Dis. 2008;29:254–266. doi: 10.1016/j.nbd.2007.08.019. PubMed DOI

Diomede L., Cassata G., Fiordaliso F., Salio M., Ami D., Natalello A., Doglia S.M., De Luigi A., Salmona M. Tetracycline and its analogues protect Caenorhabditis elegans from β amyloid-induced toxicity by targeting oligomers. Neurobiol. Dis. 2010;40:424–431. doi: 10.1016/j.nbd.2010.07.002. PubMed DOI

Dexter D.T., Statton S.A., Whitmore C., Freinbichler W., Weinberger P., Tipton K.F., Della Corte L., Ward R.J., Crichton R.R. Clinically available iron chelators induce neuroprotection in the 6-OHDA model of Parkinson’s disease after peripheral administration. J. Neural Transm. 2011;118:223–231. doi: 10.1007/s00702-010-0531-3. PubMed DOI

Molina-Holgado F., Gaeta A., Francis P.T., Williams R.J., Hider R.C. Neuroprotective actions of deferiprone in cultured cortical neurones and SHSY-5Y cells. J. Neurochem. 2008;105:2466–2476. doi: 10.1111/j.1471-4159.2008.05332.x. PubMed DOI

Abbruzzese G., Cossu G., Balocco M., Marchese R., Murgia D., Melis M., Galanello R., Barella S., Matta G., Ruffinengo U., et al. A pilot trial of deferiprone for neurodegeneration with brain iron accumulation. Haematologica. 2011;96:1708–1711. doi: 10.3324/haematol.2011.043018. PubMed DOI PMC

Fredenburg A.M., Sethi R.K., Allen D.D., Yokel R.A. The pharmacokinetics and blood-brain barrier permeation of the chelators 1,2 dimethly-, 1,2 diethyl-, and 1-[ethan-1’ol]-2-methyl-3-hydroxypyridin-4-one in the rat. Toxicology. 1996;108:191–199. doi: 10.1016/0300-483X(95)03301-U. PubMed DOI

Athauda D., Foltynie T. Drug Repurposing in Parkinson’s Disease. CNS Drugs. 2018;32:747–761. doi: 10.1007/s40263-018-0548-y. PubMed DOI

Sohn Y.-S., Mitterstiller A.-M., Breuer W., Weiss G., Cabantchik Z.I. Rescuing iron-overloaded macrophages by conservative relocation of the accumulated metal. Br. J. Pharmacol. 2011;164:406–418. doi: 10.1111/j.1476-5381.2010.01120.x. PubMed DOI PMC

Li S.-J., Qin W.-X., Peng D.-J., Yuan Z.-X., He S.-N., Luo Y.-N., Aschner M., Jiang Y.-M., Liang D.-Y., Xie B.-Y., et al. Sodium P -aminosalicylic acid inhibits sub-chronic manganese-induced neuroinflammation in rats by modulating MAPK and COX-2. Neurotoxicology. 2018;64:219–229. doi: 10.1016/j.neuro.2017.06.012. PubMed DOI

Noetzli M., Eap C.B. Pharmacodynamic, Pharmacokinetic and Pharmacogenetic Aspects of Drugs Used in the Treatment of Alzheimer’s Disease. Clin. Pharmacokinet. 2013;52:225–241. doi: 10.1007/s40262-013-0038-9. PubMed DOI

Noetzli M., Guidi M., Ebbing K., Eyer S., Zumbach S., Giannakopoulos P., von Gunten A., Csajka C., Eap C.B. Relationship of CYP2D6, CYP3A, POR, and ABCB1 Genotypes With Galantamine Plasma Concentrations. Ther. Drug Monit. 2013;35:270–275. doi: 10.1097/FTD.0b013e318282ff02. PubMed DOI

Chianella C., Gragnaniello D., Maisano Delser P., Visentini M.F., Sette E., Tola M.R., Barbujani G., Fuselli S. BCHE and CYP2D6 genetic variation in Alzheimer’s disease patients treated with cholinesterase inhibitors. Eur. J. Clin. Pharmacol. 2011;67:1147–1157. doi: 10.1007/s00228-011-1064-x. PubMed DOI

Pilotto A., Franceschi M., D’Onofrio G., Bizzarro A., Mangialasche F., Cascavilla L., Paris F., Matera M.G., Pilotto A., Daniele A., et al. Effect of a CYP2D6 polymorphism on the efficacy of donepezil in patients with Alzheimer disease. Neurology. 2009;73:761–767. doi: 10.1212/WNL.0b013e3181b6bbe3. PubMed DOI PMC

Varsaldi F., Miglio G., Scordo M.G., Dahl M.-L., Villa L.M., Biolcati A., Lombardi G. Impact of the CYP2D6 polymorphism on steady-state plasma concentrations and clinical outcome of donepezil in Alzheimer’s disease patients. Eur. J. Clin. Pharmacol. 2006;62:721–726. doi: 10.1007/s00228-006-0168-1. PubMed DOI

Seripa D., Bizzarro A., Pilotto A., DʼOnofrio G., Vecchione G., Gallo A.P., Cascavilla L., Paris F., Grandone E., Mecocci P., et al. Role of cytochrome P4502D6 functional polymorphisms in the efficacy of donepezil in patients with Alzheimerʼs disease. Pharmacogenet. Genom. 2010;21:1. doi: 10.1097/FPC.0b013e32833f984c. PubMed DOI

Makhtar S.M., Husin A., Baba A.A., Ankathil R. Genetic variations in influx transporter gene SLC22A1 are associated with clinical responses to imatinib mesylate among Malaysian chronic myeloid leukaemia patients. J. Genet. 2018;97:835–842. doi: 10.1007/s12041-018-0978-9. PubMed DOI

Ben Hassine I., Gharbi H., Soltani I., Ben Hadj Othman H., Farrah A., Amouri H., Teber M., Ghedira H., Ben Youssef Y., Safra I., et al. Molecular study of ABCB1 gene and its correlation with imatinib response in chronic myeloid leukemia. Cancer Chemother. Pharmacol. 2017;80:829–839. doi: 10.1007/s00280-017-3424-4. PubMed DOI

Andriguetti N.B., Raymundo S., Antunes M.V., Perassolo M.S., Verza S.G., Suyenaga E.S., Linden R. Pharmacogenetic and Pharmacokinetic Dose Individualization of the Taxane Chemotherapeutic Drugs Paclitaxel and Docetaxel. Curr. Med. Chem. 2017;24 doi: 10.2174/0929867324666170623093445. PubMed DOI

Kroetz D.L., Pauli-Magnus C., Hodges L.M., Huang C.C., Kawamoto M., Johns S.J., Stryke D., Ferrin T.E., DeYoung J., Taylor T., et al. Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene. Pharmacogenetics. 2003;13:481–494. doi: 10.1097/00008571-200308000-00006. PubMed DOI

Dadheech S., Rao A.V., Shaheen U., Hussien M.D., Jain S., Jyothy A., Munshi A. Three most common nonsynonymous UGT1A6*2 polymorphisms (Thr181Ala, Arg184Serand Ser7Ala) and therapeutic response to deferiprone in β-thalassemia major patients. Gene. 2013;531:301–305. doi: 10.1016/j.gene.2013.08.078. PubMed DOI

Ritchie C.W., Bush A.I., Masters C.L. Metal-protein attenuating compounds and Alzheimer’s disease. Expert Opin. Investig. Drugs. 2004;13:1585–1592. doi: 10.1517/13543784.13.12.1585. PubMed DOI

Barnham K.J., Masters C.L., Bush A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 2004;3:205–214. doi: 10.1038/nrd1330. PubMed DOI

Matlack K.E.S., Tardiff D.F., Narayan P., Hamamichi S., Caldwell K.A., Caldwell G.A., Lindquist S. Clioquinol promotes the degradation of metal-dependent amyloid- (A) oligomers to restore endocytosis and ameliorate A toxicity. Proc. Natl. Acad. Sci. USA. 2014;111:4013–4018. doi: 10.1073/pnas.1402228111. PubMed DOI PMC

Richards D.A. Prophylactic value of clioquinol against travellers’ diarrhoea. Lancet. 1971;1:44–45. PubMed

Cherny R.A., Atwood C.S., Xilinas M.E., Gray D.N., Jones W.D., McLean C.A., Barnham K.J., Volitakis I., Fraser F.W., Kim Y., et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron. 2001;30:665–676. doi: 10.1016/S0896-6273(01)00317-8. PubMed DOI

Zatta P., Drago D., Bolognin S., Sensi S.L. Alzheimer’s disease, metal ions and metal homeostatic therapy. Trends Pharmacol. Sci. 2009;30:346–355. doi: 10.1016/j.tips.2009.05.002. PubMed DOI

Rodríguez-Rodríguez C., Telpoukhovskaia M., Orvig C. The art of building multifunctional metal-binding agents from basic molecular scaffolds for the potential application in neurodegenerative diseases. Coord. Chem. Rev. 2012;256:2308–2332.

Ritchie C.W., Bush A.I., Mackinnon A., Macfarlane S., Mastwyk M., MacGregor L., Kiers L., Cherny R., Li Q.-X., Tammer A., et al. Metal-Protein Attenuation With Iodochlorhydroxyquin (Clioquinol) Targeting Aβ Amyloid Deposition and Toxicity in Alzheimer Disease. Arch. Neurol. 2003;60:1685. doi: 10.1001/archneur.60.12.1685. PubMed DOI

Adlard P.A., Cherny R.A., Finkelstein D.I., Gautier E., Robb E., Cortes M., Volitakis I., Liu X., Smith J.P., Perez K., et al. Rapid Restoration of Cognition in Alzheimer’s Transgenic Mice with 8-Hydroxy Quinoline Analogs Is Associated with Decreased Interstitial Aβ. Neuron. 2008;59:43–55. doi: 10.1016/j.neuron.2008.06.018. PubMed DOI

Zhang Y.-H., Raymick J., Sarkar S., Lahiri D.K., Ray B., Holtzman D., Dumas M., Schmued L.C. Efficacy and toxicity of clioquinol treatment and A-beta42 inoculation in the APP/PSI mouse model of Alzheimer’s disease. Curr. Alzheimer Res. 2013;10:494–506. doi: 10.2174/1567205011310050005. PubMed DOI

Faux N.G., Ritchie C.W., Gunn A., Rembach A., Tsatsanis A., Bedo J., Harrison J., Lannfelt L., Blennow K., Zetterberg H., et al. PBT2 Rapidly Improves Cognition in Alzheimer’s Disease: Additional Phase II Analyses. J. Alzheimer’s Dis. 2010;20:509–516. doi: 10.3233/JAD-2010-1390. PubMed DOI

Lannfelt L., Blennow K., Zetterberg H., Batsman S., Ames D., Harrison J., Masters C.L., Targum S., Bush A.I., Murdoch R., et al. Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 2008;7:779–786. PubMed

Cukierman D.S., Pinheiro A.B., Castiñeiras-Filho S.L.P., da Silva A.S.P., Miotto M.C., De Falco A., de P Ribeiro T., Maisonette S., da Cunha A.L.M.C., Hauser-Davis R.A., et al. A moderate metal-binding hydrazone meets the criteria for a bioinorganic approach towards Parkinson’s disease: Therapeutic potential, blood-brain barrier crossing evaluation and preliminary toxicological studies. J. Inorg. Biochem. 2017;170:160–168. PubMed

Hauser-Davis R.A., de Freitas L.V., Cukierman D.S., Cruz W.S., Miotto M.C., Landeira-Fernandez J., Valiente-Gabioud A.A., Fernández C.O., Rey N.A. Disruption of zinc and copper interactions with Aβ(1–40) by a non-toxic, isoniazid-derived, hydrazone: A novel biometal homeostasis restoring agent in Alzheimer’s disease therapy? Metallomics. 2015;7:743–747. doi: 10.1039/C5MT00003C. PubMed DOI

Cukierman D.S., Accardo E., Gomes R.G., De Falco A., Miotto M.C., Freitas M.C.R., Lanznaster M., Fernández C.O., Rey N.A. Aroylhydrazones constitute a promising class of ‘metal-protein attenuating compounds’ for the treatment of Alzheimer’s disease: A proof-of-concept based on the study of the interactions between zinc(II) and pyridine-2-carboxaldehyde isonicotinoyl hydrazone. JBIC J. Biol. Inorg. Chem. 2018;23:1227–1241. doi: 10.1007/s00775-018-1606-0. PubMed DOI

Ji H.-F., Zhang H.-Y. A new strategy to combat Alzheimer’s disease. Combining radical-scavenging potential with metal-protein-attenuating ability in one molecule. Bioorg. Med. Chem. Lett. 2005;15:21–24. doi: 10.1016/j.bmcl.2004.10.047. PubMed DOI

Kuca K., Soukup O., Maresova P., Korabecny J., Nepovimova E., Klimova B., Honegr J., Ramalho T.C., França T.C.C. Current Approaches Against Alzheimer’s Disease in Clinical Trials. J. Braz. Chem. Soc. 2016;27:641–649. doi: 10.5935/0103-5053.20160048. DOI

Gonçalves A.S., França T.C.C., Caetano M.S., Ramalho T.C. Reactivation steps by 2-PAM of tabun-inhibited human acetylcholinesterase: Reducing the computational cost in hybrid QM/MM methods. J. Biom. Struct. Dyn. 2014;32:301–307. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...