Development and characterization of a chronic hepatitis B murine model with a mutation in the START codon of an HBV polymerase
Language English Country Czech Republic Media print-electronic
Document type Journal Article
PubMed
36545874
PubMed Central
PMC10069812
DOI
10.33549/physiolres.934979
PII: 934979
Knihovny.cz E-resources
- MeSH
- Hepatitis B, Chronic * genetics MeSH
- Codon, Initiator MeSH
- Disease Models, Animal MeSH
- Mutation MeSH
- Mice, Inbred C3H MeSH
- Mice MeSH
- Hepatitis B virus genetics MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Codon, Initiator MeSH
- P protein, Hepatitis B virus MeSH Browser
Chronic hepatitis B (CHB) is caused by the Hepatitis B virus (HBV) and affects millions of people worldwide. Developing an effective CHB therapy requires using in vivo screening methods, such as mouse models reflecting CHB based on hydrodynamic delivery of plasmid vectors containing a replication-competent HBV genome. However, long-term expression of HBV proteins is accompanied by production of progeny virions, thereby requiring a Biosafety Level (BSL) 3 animal facility. In the present study, we introduced a point mutation in the START codon of the HBV polymerase to develop a mouse model reflecting chronic hepatitis B infection without formation of viral progeny. We induced the mouse model by hydrodynamic injection of adeno-associated virus plasmid vector (pAAV) and minicircle plasmid (pMC) constructs into C57Bl/6 and C3H/HeN mouse strains, monitoring HBV antigens and antibodies in blood by enzyme-linked immunosorbent assay and analyzing liver expression of HBV core antigen by immunohistology. Persisting expression of viral antigens over 140 days (study endpoint) was observed only in the C3H/HeN mouse strain when using pAAV/1.2HBV-A and pMC/1.0HBV-D with pre-C and pre-S recombination sites. In addition, pAAV/1.2HBV-A in C3H/HeN sustained HBV core antigen positivity up to the study endpoint in C3H/HeN mice. Moreover, introducing the point mutation in the START codon of polymerase effectively prevented the formation of viral progeny. Our study establishes an accessible and affordable experimental paradigm for developing a robust mouse model reflecting CHB suitable for preclinical testing of anti-HBV therapeutics in a BSL2 animal facility.
See more in PubMed
Sunbul M. Hepatitis B virus genotypes: Global distribution and clinical importance. World J Gastroenterol. 2014;20:5427–5434. doi: 10.3748/wjg.v20.i18.5427. PubMed DOI PMC
World Health Organization. Global Hepatitis Report 2017. 2017
Krajden M, McNabb G, Petric M. The laboratory diagnosis of hepatitis B virus. Can J Infect Dis Med Microbiol. 2005;16:65–72. doi: 10.1155/2005/450574. PubMed DOI PMC
Ha HL, Shin HJ, Feitelson MA, Yu DY. Oxidative stress and antioxidants in hepatic pathogenesis. World J Gastroenterol. 2010;16:6035–6043. doi: 10.3748/wjg.v16.i48.6035. PubMed DOI PMC
Liu L, Yang F. Application of modified mesenchymal stem cells transplantation in the treatment of liver injury. Physiol Res. 2021;70:327–343. doi: 10.33549/physiolres.934623. PubMed DOI PMC
Farghali H, Kgalalelo Kemelo M, Wojnarová L, Kutinová Canová N. In vitro and in vivo experimental hepatotoxic models in liver research: applications to the assessment of potential hepatoprotective drugs. Physiol Res. 2016;65(Suppl 4):S417–S425. doi: 10.33549/physiolres.933506. PubMed DOI
Akbar SMF, Al Mahtab M, Aguilar JC, Yoshida O, Khan S, Penton E, Gerardo GN, Hiasa Y. The Safety and Efficacy of a Therapeutic Vaccine for Chronic Hepatitis B: A Follow-Up Study of Phase III Clinical Trial. Vaccines (Basel) 2022;10:45. doi: 10.3390/vaccines10010045. PubMed DOI PMC
Leowattana W, Leowattana T. Chronic hepatitis B: New potential therapeutic drugs target. World J Virol. 2022;11:57. doi: 10.5501/wjv.v11.i1.57. PubMed DOI PMC
Liu T, Sun Q, Gu J, Cen S, Zhang Q. Characterization of the tenofovir resistance-associated mutations in the hepatitis B virus isolates across genotypes A to D. Antiviral Res. 2022;203:105348. doi: 10.1016/j.antiviral.2022.105348. PubMed DOI
Wieland SF. The chimpanzee model for hepatitis B virus infection. Cold Spring Harb Perspect Med. 2015;5:a021469. doi: 10.1101/cshperspect.a021469. PubMed DOI PMC
Summers J, Smolec JM, Snyder R. A virus similar to human hepatitis B virus associated with hepatitis and hepatoma in woodchucks. Proc Natl Acad Sci U S A. 1978;75:4533. doi: 10.1073/pnas.75.9.4533. PubMed DOI PMC
Mason WS, Seal G, Summers J. Virus of Pekin ducks with structural and biological relatedness to human hepatitis B virus. J Virol. 1980;36:829. doi: 10.1128/jvi.36.3.829-836.1980. PubMed DOI PMC
Marion PL, Oshiro LS, Regnery DC, Scullard GH, Robinson WS. A virus in Beechey ground squirrels that is related to hepatitis B virus of humans. Proc Natl Acad Sci U S A. 1980;77:2941. doi: 10.1073/pnas.77.5.2941. PubMed DOI PMC
Guidotti LG, Matzke B, Schaller H, Chisari FV. High-level hepatitis B virus replication in transgenic mice. J Virol. 1995;69:6158–6169. doi: 10.1128/jvi.69.10.6158-6169.1995. PubMed DOI PMC
Grompe M, Al-Dhalimy M, Finegold M, Ou CN, Burlingame T, Kennaway NG, Soriano P. Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes Dev. 1993;7:2298–2307. doi: 10.1101/gad.7.12a.2298. PubMed DOI
Wu LL, Wang HY, Chen PJ. Hydrodynamic HBV transfection mouse model. Methods Mol Biol. 2017;1540:227–235. doi: 10.1007/978-1-4939-6700-1_19. PubMed DOI
Yan Z, Zeng J, Yu Y, Xiang K, Hu H, Zhou X, Gu L, Wang L, Zhao J, Young JAT, Gao L. HBVcircle: A novel tool to investigate hepatitis B virus covalently closed circular DNA. J Hepatol. 2017;66:1149–1157. doi: 10.1016/j.jhep.2017.02.004. PubMed DOI
Ortega-Prieto AM, Cherry C, Gunn H, Dorner M. In vivo model systems for hepatitis B virus research. ACS Infect Dis. 2019;5:688–702. doi: 10.1021/acsinfecdis.8b00223. PubMed DOI PMC
Milich DR, Leroux-Roels GG. Immunogenetics of the response to HBsAg vaccination. Autoimmun Rev. 2003;2:248–257. doi: 10.1016/S1568-9972(03)00031-4. PubMed DOI
Peng XH, Ren XN, Chen LX, Shi BS, Xu CH, Fang Z, Liu X, Chen JL, Zhang XN, Hu YW, Zhou XH. High persistence rate of hepatitis B virus in a hydrodynamic injection-based transfection model in C3H/HeN mice. World J Gastroenterol. 2015;21:3527–3536. doi: 10.3748/wjg.v21.i12.3527. PubMed DOI PMC
Santantonio T, Jung MC, Pastore G, Angarano G, Günther S, Will H. Familial clustering of HBV pre-C and pre-S mutants. J Hepatol. 1997;26:221–227. doi: 10.1016/S0168-8278(97)80034-7. PubMed DOI
Huang LR, Wu HL, Chen PJ, Chen DS. An immunocompetent mouse model for the tolerance of human chronic hepatitis B virus infection. Proc Natl Acad Sci U S A. 2006;103:17862–17867. doi: 10.1073/pnas.0608578103. PubMed DOI PMC
Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019;18:358–378. doi: 10.1038/s41573-019-0012-9. PubMed DOI PMC
Guo X, Chen P, Hou X, Xu W, Wang D, Wang TY, Zhang L, Zheng G, Gao ZL, He CY, Zhou B, Chen ZY. The recombined cccDNA produced using minicircle technology mimicked HBV genome in structure and function closely. Sci Rep. 2016;6:25552. doi: 10.1038/srep25552. PubMed DOI PMC
Wang L, Cao M, Wei QL, Zhao ZH, Xiang Q, Wang HJ, Zhang HT, Lai GQ. A new model mimicking persistent HBV e antigen-negative infection using covalently closed circular DNA in immunocompetent mice. PLoS One. 2017;12:e0175992. doi: 10.1371/journal.pone.0175992. PubMed DOI PMC
Chou HH, Chien WH, Wu LL, Cheng CH, Chung CH, Horng JH, Ni YH, et al. Age-related immune clearance of hepatitis B virus infection requires the establishment of gut microbiota. Proc Natl Acad Sci U S A. 2015;112:2175–2180. doi: 10.1073/pnas.1424775112. PubMed DOI PMC
Li L, Li S, Zhou Y, Yang L, Zhou D, Yang Y, Lu M, Yang D, Song J. The dose of HBV genome contained plasmid has a great impact on HBV persistence in hydrodynamic injection mouse model. Virol J. 2017;14:1–12. doi: 10.1186/s12985-017-0874-6. PubMed DOI PMC
Suda T, Liu D. Hydrodynamic delivery. Adv Genet. 2015;89:89–111. doi: 10.1016/bs.adgen.2014.10.002. PubMed DOI
Sun Y, Qi Y, Peng B, Li W. NTCP-reconstituted in vitro HBV infection system. Methods Mol Biol. 2017;1540:1–14. doi: 10.1007/978-1-4939-6700-1_1. PubMed DOI
Du Y, Broering R, Li X, Zhang X, Liu J, Yang D, Lu M. In vivo mouse models for hepatitis B virus infection and their application. Front Immunol. 2021;12:4578. doi: 10.3389/fimmu.2021.766534. PubMed DOI PMC
Řezáčová P, Pokorná J, Brynda J, Kožíšek M, Cígler P, Lepšík M, Fanfrlík J, et al. Design of HIV protease inhibitors based on inorganic polyhedral metallacarboranes. J Med Chem. 2009;52:7132–7141. doi: 10.1021/jm9011388. PubMed DOI
Kao JH. Diagnosis of hepatitis B virus infection through serological and virological markers. Expert Rev Gastroenterol Hepatol. 2008;2:553–562. doi: 10.1586/17474124.2.4.553. PubMed DOI
Kramvis A. Genotypes and genetic variability of hepatitis B virus. Intervirology. 2014;57:141–150. doi: 10.1159/000360947. PubMed DOI
Sengupta S, Rehman S, Durgapal H, Acharya SK, Panda SK. Role of surface promoter mutations in hepatitis B surface antigen production and secretion in occult hepatitis B virus infection. J Med Virol. 2007;79:220–228. doi: 10.1002/jmv.20790. PubMed DOI
Zhou T, Guo H, Guo JT, Cuconati A, Mehta A, Block TM. Hepatitis B virus e antigen production is dependent upon covalently closed circular (ccc) DNA in HepAD38 cell cultures and may serve as a cccDNA surrogate in antiviral screening assays. Antiviral Res. 2006;72:116–124. doi: 10.1016/j.antiviral.2006.05.006. PubMed DOI
Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M. Control of cccDNA function in hepatitis B virus infection. J Hepatol. 2009;51:581–592. doi: 10.1016/j.jhep.2009.05.022. PubMed DOI
The World Health Organisation. Guidelines on Hepatitis B and C Testing. 2017