Future Therapeutic Perspectives into the Alzheimer's Disease Targeting the Oxidative Stress Hypothesis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
31816853
PubMed Central
PMC6930470
DOI
10.3390/molecules24234410
PII: molecules24234410
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, antioxidants, cellular respiration, free radicals, oxidative stress,
- MeSH
- Alzheimerova nemoc farmakoterapie metabolismus MeSH
- amyloidní beta-protein chemie metabolismus MeSH
- antioxidancia farmakologie terapeutické užití MeSH
- fosforylace MeSH
- klinické zkoušky jako téma MeSH
- lidé MeSH
- oxidační stres účinky léků MeSH
- proteiny tau chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- amyloidní beta-protein MeSH
- antioxidancia MeSH
- proteiny tau MeSH
Alzheimer's disease (AD) is a neurodegenerative disease that is usually accompanied by aging, increasingly being the most common cause of dementia in the elderly. This disorder is characterized by the accumulation of beta amyloid plaques (Aβ) resulting from impaired amyloid precursor protein (APP) metabolism, together with the formation of neurofibrillary tangles and tau protein hyperphosphorylation. The exacerbated production of reactive oxygen species (ROS) triggers the process called oxidative stress, which increases neuronal cell abnormalities, most often followed by apoptosis, leading to cognitive dysfunction and dementia. In this context, the development of new therapies for the AD treatment is necessary. Antioxidants, for instance, are promising species for prevention and treatment because they are capable of disrupting the radical chain reaction, reducing the production of ROS. These species have also proven to be adjunctive to conventional treatments making them more effective. In this sense, several recently published works have focused their attention on oxidative stress and antioxidant species. Therefore, this review seeks to show the most relevant findings of these studies.
Zobrazit více v PubMed
de Castro A.A., Soares F.V., Pereira A.F., Polisel D.A., Caetano M.S., Leal D.H.S., da Cunha E.F.F., Nepovimova E., Kuca K., Ramalho T.C. Non-conventional compounds with potential therapeutic effects against Alzheimer’s disease. Expert Rev. Neurother. 2019;19:375–395. doi: 10.1080/14737175.2019.1608823. PubMed DOI
Gustavsson A., Green C., Jones R.W., Förstl H., Simsek D., de Reydet de Vulpillieres F., Luthman S., Adlard N., Bhattacharyya S., Wimo A. Current issues and future research priorities for health economic modelling across the full continuum of Alzheimer’s disease. Alzheimer’s Dement. 2017;13:312–321. doi: 10.1016/j.jalz.2016.12.005. PubMed DOI
Anand A., Patience A.A., Sharma N., Khurana N. The present and future of pharmacotherapy of Alzheimer’s disease: A comprehensive review. Eur. J. Pharmacol. 2017;815:364–375. doi: 10.1016/j.ejphar.2017.09.043. PubMed DOI
Anand R., Gill K.D., Mahdi A.A. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology. 2014;76:27–50. doi: 10.1016/j.neuropharm.2013.07.004. PubMed DOI
De Castro A.A., da Cunha E.F.F., Pereira A.F., Soares F.V., Leal D.H.S., Kuca K., Ramalho T.C. Insights into the Drug Repositioning Applied to the Alzheimer’s Disease Treatment and Future Perspectives. Curr. Alzheimer Res. 2018;15:1161–1178. doi: 10.2174/1567205015666180813150703. PubMed DOI
Tarafdar A., Pula G. The Role of NADPH Oxidases and Oxidative Stress in Neurodegenerative Disorders. Int. J. Mol. Sci. 2018;19:3824. doi: 10.3390/ijms19123824. PubMed DOI PMC
Kishida K.T., Klann E. Sources and targets of reactive oxygen species in synaptic plasticity and memory. Antioxid. Redox Signal. 2007;9:233–244. doi: 10.1089/ars.2007.9.233. PubMed DOI PMC
Rego A.C., Oliveira C.R. Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: Implications for the pathogenesis of neurodegenerative diseases. Neurochem. Res. 2003;28:1563–1574. doi: 10.1023/A:1025682611389. PubMed DOI
Qiao J., Arthur J.F., Gardiner E.E., Andrews R.K., Zeng L., Xu K. Regulation of platelet activation and thrombus formation by reactive oxygen species. Redox Biol. 2018;14:126–130. doi: 10.1016/j.redox.2017.08.021. PubMed DOI PMC
Finkel T. Signal Transduction by reactive oxygen species. J. Cell Biol. 2011;194:531–549. doi: 10.1083/jcb.201102095. PubMed DOI PMC
Cheignon C., Tomas M., Bonnefont- Rousselot D., Faller P., Hureau C., Collin F. Oxidative Stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018;14:450–464. doi: 10.1016/j.redox.2017.10.014. PubMed DOI PMC
Wang X., Wang W., Li L., Perry G., Lee H., Zhu X. Oxidative Stress and mitochondrial dysfunction in alzheimer disease. Biochim. et Biophys. Acta. 2014;1842:1240–1247. doi: 10.1016/j.bbadis.2013.10.015. PubMed DOI PMC
Tonnies E., Trushina E. Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s disease. J. Alzheimer Diases. 2017;57:1105–1121. doi: 10.3233/JAD-161088. PubMed DOI PMC
Collin F., Cheignon C., Hureau C. Oxidative Stress as a biomarker for alzheimer disease. Biomarker Med. 2018;12:201–203. doi: 10.2217/bmm-2017-0456. PubMed DOI
Wojtunik- Kulesza K., Oniszczuck A., Oniszczuck T., Waksmundzka-Hajnos M. The influence of common free radicals and antoxidants on development of alzheimer’s disease. Biomed. Pharmacoth. 2016;78:39–49. doi: 10.1016/j.biopha.2015.12.024. PubMed DOI
Kim G.H., Kim J.E., Rhie S.J., Yon S. The role of oxidative stress in neurodegenerative disease. Exp. Neurobiol. 2015;24:325–340. doi: 10.5607/en.2015.24.4.325. PubMed DOI PMC
Hung C.H.L., Cheng S.S.Y., Cheung Y.T., Wuwongse S., Zhang N.Q., Ho Y.S., Lee S.M.Y., Chang R.C.C. A reciprocal relationship between reactive oxygen species and mitochondrial dynamics in neurodegeneration. Redox Biol. 2018;14:7–19. doi: 10.1016/j.redox.2017.08.010. PubMed DOI PMC
Jiang T., Sun Q., Chen S. Oxidative Stress: A major pathogenises and potential therapeutics target of antioxidative agents in Parkinson’s disease and Alzheimer disease. Prog. Nurobiol. 2016;147:1–19. doi: 10.1016/j.pneurobio.2016.07.005. PubMed DOI
Kamat P.K., Kalani A., Rai S., Swarnkar S., Tota S., Nath C., Tyagi N. Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of alzheimer’s disease: Understanding the therapeutics strategies. Mol. Neurobiol. 2016;53:648–661. doi: 10.1007/s12035-014-9053-6. PubMed DOI PMC
Dutordoir R.M., Bates D.A.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. et. Biophys. Acta. 2016;1863:2977–2992. doi: 10.1016/j.bbamcr.2016.09.012. PubMed DOI
Karran E., Mercken M., De Strooper B. The amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 2011;10:698–712. doi: 10.1038/nrd3505. PubMed DOI
Jones E.L., Hanney M., Francis P.T., Ballard C.G. Amyloid beta concentrations in older people with Down syndrome and dementia. Neurosci. Lett. 2009;451:162–164. doi: 10.1016/j.neulet.2008.12.030. PubMed DOI
Broadstock M., Ballard C., Corbett A. Latest treatment options for Alzheimer’s disease, Parkinson’s disease dementia and dementia with Lewy bodies. Expert Opin. Pharmacother. 2014;15:1797–1810. doi: 10.1517/14656566.2014.936848. PubMed DOI
Saez-Orellana F., Godoy P.A., Bastidas C.Y., Silva-Grecchi T., Guzman L., Aguayo L.G., Fuentealba J. ATP leakage induces P2XR activation and contributes to acute synaptic excitotoxicity induced by soluble oligomers of beta-amyloid peptide in hippocampal neurons. Neuropharmacology. 2016;100:116–123. doi: 10.1016/j.neuropharm.2015.04.005. PubMed DOI
Godyn J., Jonczyk J., Panek D., Malawska B. Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol. Rep. 2016;68:127–138. doi: 10.1016/j.pharep.2015.07.006. PubMed DOI
Serrano-Pozo A., Frosch M.P., Masliah E., Hyman B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2011;1:a006189. doi: 10.1101/cshperspect.a006189. PubMed DOI PMC
Golde T.E. The pathogenesis of Alzheimer’s disease and the role of Abeta42. CNS Spectr. 2007;12:4–6. doi: 10.1017/S1092852900025876. PubMed DOI
Schenk D., Basi G.S., Pangalos M.N. Treatment strategies targeting amyloid beta-protein. Cold Spring Harb. Perspect. Med. 2012;2:a006387. doi: 10.1101/cshperspect.a006387. PubMed DOI PMC
Xiao Y., Ma B., McElheny D., Parthasarathy S., Long F., Hoshi M., Nussinov R., Ishii Y. Abeta(1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat. Struct. Mol. Biol. 2015;22:499–505. doi: 10.1038/nsmb.2991. PubMed DOI PMC
Hardy J. The amyloid hypothesis for Alzheimer’s disease: A critical reappraisal. J. Neurochem. 2009;110:1129–1134. doi: 10.1111/j.1471-4159.2009.06181.x. PubMed DOI
Hardy J., Selkoe D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science. 2002;297:353–356. doi: 10.1126/science.1072994. PubMed DOI
Hardy J.A., Higgins G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science. 1992;256:184–185. doi: 10.1126/science.1566067. PubMed DOI
Glenner G.G., Wong C.W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 1984;120:885–890. doi: 10.1016/S0006-291X(84)80190-4. PubMed DOI
Thinakaran G., Koo E.H. Amyloid precursor protein trafficking, processing, and function. J. Biol. Chem. 2008;283:29615–29619. doi: 10.1074/jbc.R800019200. PubMed DOI PMC
Sales T.A., Prandi I.G., de Castro A.A., Leal D.H.S., da Cunha E.F.F., Kuca K., Ramalho T.C. Recent Developments in Metal-Based Drugs and Chelating Agents for Neurodegenerative Diseases Treatments. Int. J. Mol. Sci. 2019;20:1829. doi: 10.3390/ijms20081829. PubMed DOI PMC
Grill J.D., Cummings J.L. Current therapeutic targets for the treatment of Alzheimer’s disease. Expert Rev. Neurother. 2010;10:711–728. doi: 10.1586/ern.10.29. PubMed DOI PMC
Bachurin S.O., Bovina E.V., Ustyugov A.A. Drugs in Clinical Trials for Alzheimer’s Disease: The Major Trends. Med. Res. Rev. 2017;37:1186–1225. doi: 10.1002/med.21434. PubMed DOI
Levey A.I., Kitt C.A., Simonds W.F., Price D.L., Brann M.R. Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J. Neurosci. 1991;11:3218–3226. doi: 10.1523/JNEUROSCI.11-10-03218.1991. PubMed DOI PMC
Holtzman D.M., Morris J.C., Goate A.M. Alzheimer’s disease: The challenge of the second century. Sci. Transl. Med. 2011;3:77. doi: 10.1126/scitranslmed.3002369. PubMed DOI PMC
Nisbet R.M., Polanco J.-C., Ittner L.M., Gotz J. Tau aggregation and its interplay with amyloid-beta. Acta. Neuropathol. 2015;129:207–220. doi: 10.1007/s00401-014-1371-2. PubMed DOI PMC
Hardy J., Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol. Sci. 1991;12:383–388. doi: 10.1016/0165-6147(91)90609-V. PubMed DOI
Garcia M.L., Cleveland D.W. Going new places using an old MAP: Tau, microtubules and human neurodegenerative disease. Curr. Opin. Cell Biol. 2001;13:41–48. doi: 10.1016/S0955-0674(00)00172-1. PubMed DOI
Wischik C.M., Harrington C.R., Storey J.M.D. Tau-aggregation inhibitor therapy for Alzheimer’s disease. Biochem. Pharmacol. 2014;88:529–539. doi: 10.1016/j.bcp.2013.12.008. PubMed DOI
Lee V.M.-Y., Trojanowski J.Q. The disordered neuronal cytoskeleton in Alzheimer’s disease. Curr. Opin. Neurobiol. 1992;2:653–656. doi: 10.1016/0959-4388(92)90034-I. PubMed DOI
Clark C.M., Xie S., Chittams J., Ewbank D., Peskind E., Galasko D., Morris J.C., McKeel D.W.J., Farlow M., Weitlauf S.L., et al. Cerebrospinal fluid tau and beta-amyloid: How well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch. Neurol. 2003;60:1696–1702. doi: 10.1001/archneur.60.12.1696. PubMed DOI
Steinhilb M.L., Dias-Santagata D., Fulga T.A., Felch D.L., Feany M.B. Tau phosphorylation sites work in concert to promote neurotoxicity in vivo. Mol. Biol. Cell. 2007;18:5060–5068. doi: 10.1091/mbc.e07-04-0327. PubMed DOI PMC
Schneider A., Mandelkow E. Tau-based treatment strategies in neurodegenerative diseases. Neurotherapeutics. 2008;5:443–457. doi: 10.1016/j.nurt.2008.05.006. PubMed DOI PMC
Illenberger S., Zheng-Fischhofer Q., Preuss U., Stamer K., Baumann K., Trinczek B., Biernat J., Godemann R., Mandelkow E.M., Mandelkow E. The endogenous and cell cycle-dependent phosphorylation of tau protein in living cells: Implications for Alzheimer’s disease. Mol. Biol. Cell. 1998;9:1495–1512. doi: 10.1091/mbc.9.6.1495. PubMed DOI PMC
Gong C.-X., Liu F., Grundke-Iqbal I., Iqbal K. Post-translational modifications of tau protein in Alzheimer’s disease. J. Neural Transm. 2005;112:813–838. doi: 10.1007/s00702-004-0221-0. PubMed DOI
Iqbal K., Liu F., Gong C.-X. Tau and neurodegenerative disease: The story so far. Nat. Rev. Neurol. 2016;12:15–27. doi: 10.1038/nrneurol.2015.225. PubMed DOI
Wu X.-L., Pina-Crespo J., Zhang Y.-W., Chen X.-C., Xu H.-X. Tau-mediated Neurodegeneration and Potential Implications in Diagnosis and Treatment of Alzheimer’s Disease. Chin. Med. J. (Engl.) 2017;130:2978–2990. doi: 10.4103/0366-6999.220313. PubMed DOI PMC
Congdon E.E., Sigurdsson E.M. Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 2018 doi: 10.1038/s41582-018-0013-z. PubMed DOI PMC
Davies P., Maloney A.J. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet (London, England) 1976;2:1403. doi: 10.1016/S0140-6736(76)91936-X. PubMed DOI
Kar S., Issa A.M., Seto D., Auld D.S., Collier B., Quirion R. Amyloid beta-peptide inhibits high-affinity choline uptake and acetylcholine release in rat hippocampal slices. J. Neurochem. 1998;70:2179–2187. doi: 10.1046/j.1471-4159.1998.70052179.x. PubMed DOI
Auld D.S., Kar S., Quirion R. Beta-amyloid peptides as direct cholinergic neuromodulators: A missing link? Trends Neurosci. 1998;21:43–49. doi: 10.1016/S0166-2236(97)01144-2. PubMed DOI
Nordberg A., Alafuzoff I., Winblad B. Nicotinic and muscarinic subtypes in the human brain: Changes with aging and dementia. J. Neurosci. Res. 1992;31:103–111. doi: 10.1002/jnr.490310115. PubMed DOI
Barage S.H., Sonawane K.D. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides. 2015;52:1–18. doi: 10.1016/j.npep.2015.06.008. PubMed DOI
Franklin M.C., Rudolph M.J., Ginter C., Cassidy M.S., Cheung J. Structures of paraoxon-inhibited human acetylcholinesterase reveal perturbations of the acyl loop and the dimer interface. Proteins. 2016;84:1246–1256. doi: 10.1002/prot.25073. PubMed DOI
Lleo A., Greenberg S.M., Growdon J.H. Current pharmacotherapy for Alzheimer’s disease. Ann. Rev. Med. 2006;57:513–533. doi: 10.1146/annurev.med.57.121304.131442. PubMed DOI
Reitz C., Brayne C., Mayeux R. Epidemiology of Alzheimer disease. Nat. Rev. Neurol. 2011;7:137–152. doi: 10.1038/nrneurol.2011.2. PubMed DOI PMC
Contestabile A. The history of the cholinergic hypothesis. Behav. Brain Res. 2011;221:334–340. doi: 10.1016/j.bbr.2009.12.044. PubMed DOI
Hebert L.E., Scherr P.A., Bienias J.L., Bennett D.A., Evans D.A. Alzheimer disease in the US population: Prevalence estimates using the 2000 census. Arch. Neurol. 2003;60:1119–1122. doi: 10.1001/archneur.60.8.1119. PubMed DOI
Rogers S.L., Farlow M.R., Doody R.S., Mohs R., Friedhoff L.T. A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease. Donepezil Study Group. Neurology. 1998;50:136–145. doi: 10.1212/WNL.50.1.136. PubMed DOI
Corey-Bloom J., Anand R., Veach J. A randomized trial evaluating the efficacy and safety of ENA 713 (rivastigmine tartrate), a new acetylcholinesterase inhibitor, in patients with mild to moderately severe Alzheimer’s disease. Int. J. Geriatr. Psyopharmacol. 1998;1:55–65.
Tariot P.N., Solomon P.R., Morris J.C., Kershaw P., Lilienfeld S., Ding C. A 5-month, randomized, placebo-controlled trial of galantamine in AD. The Galantamine USA-10 Study Group. Neurology. 2000;54:2269–2276. doi: 10.1212/WNL.54.12.2269. PubMed DOI
Cummings J.L. Cholinesterase inhibitors: A new class of psychotropic compounds. Am. J. Psychiatry. 2000;157:4–15. doi: 10.1176/ajp.157.1.4. PubMed DOI
Ryan J., Scali J., Carriere I., Ritchie K., Ancelin M.-L. Hormonal treatment, mild cognitive impairment and Alzheimer’s disease. Int. Psychogeriatr. 2008;20:47–56. doi: 10.1017/S1041610207006485. PubMed DOI PMC
Giacobini E. Cholinesterase inhibitors stabilize Alzheimer’s disease. Ann. N. Y. Acad. Sci. 2000;920:321–327. doi: 10.1111/j.1749-6632.2000.tb06942.x. PubMed DOI
Machado L.P., Kohaygawa A., Saito M.E., da Silveira V.F., Yonezawa L.A. Lesão Oxidativa eritrocitária e mecanismos antioxidantes. Rev. Ciências Agroveterinárias. 2009;8:84–94.
Barreiros A.L.B.S., David J.M., David J.P. Estresse oxidativo: relaçÃ\poundso entre geraçÃ\poundso de espÃ\copyrightcies reativas e defesa do organismo. QuÃ\-mica Nov. 2006;29:113–123.
de Oliveira M.C., Schoffen J.P.F. Oxidative stress action in cellular aging. Braz. Arch. Biol. Technol. 2010;53:1333–1342. doi: 10.1590/S1516-89132010000600009. DOI
Celi P. The role of oxidative stress in small ruminants’ health and production. Rev. Bras. Zootec. 2010;39:348–363. doi: 10.1590/S1516-35982010001300038. DOI
Ferreira A.L.A., Matsubara L.S. Radicais livres: Conceitos, doenÃ\Sas relacionadas, sistema de defesa e estresse oxidativo. Rev. da Assoc. MÃ\copyrightdica Bras. 1997;43:61–68. doi: 10.1590/S0104-42301997000100014. PubMed DOI
Halliwell B., Clement M.V., Long L.H. Hydrogen peroxide in the human body. FEBS Lett. 2000;486:10–13. doi: 10.1016/S0014-5793(00)02197-9. PubMed DOI
Babior B.M. Superoxide: A two-edged sword. Braz. J. Med. Biol. Res. 1997;30:141–155. doi: 10.1590/S0100-879X1997000200001. PubMed DOI
Vina J., Lloret A., Orti R., Alonso D. Molecular bases of the treatment of Alzheimer’s disease with antioxidants: Prevention of oxidative stress. Mol. Aspects Med. 2004;25:117–123. doi: 10.1016/j.mam.2004.02.013. PubMed DOI
Aliev G., Obrenovich M.E., Tabrez S., Jabir N.R., Reddy V.P., Li Y., Burnstock G., Cacabelos R., Kamal M.A. Link between cancer and Alzheimer disease via oxidative stress induced by nitric oxide-dependent mitochondrial DNA overproliferation and deletion. Oxid. Med. Cell. Longev. 2013;2013:962984. doi: 10.1155/2013/962984. PubMed DOI PMC
Blennow K., de Leon M.J., Zetterberg H. Alzheimer’s disease. Lancet (London, England) 2006;368:387–403. doi: 10.1016/S0140-6736(06)69113-7. PubMed DOI
Hauptmann S., Keil U., Scherping I., Bonert A., Eckert A., Muller W.E. Mitochondrial dysfunction in sporadic and genetic Alzheimer’s disease. Exp. Gerontol. 2006;41:668–673. doi: 10.1016/j.exger.2006.03.012. PubMed DOI
Ricciarelli R., Argellati F., Pronzato M.A., Domenicotti C. Vitamin E and neurodegenerative diseases. Mol. Aspects Med. 2007;28:591–606. doi: 10.1016/j.mam.2007.01.004. PubMed DOI
Bianchi M.d.L.P., Antunes L.M.G. Radicais livres e os principais antioxidantes da dieta. Rev. Nutr. 1999;12:123–130. doi: 10.1590/S1415-52731999000200001. DOI
Bhatti A.B., Usman M., Ali F., Satti S.A. Vitamin supplementation as an ajuvant treatment for Alzheimer disease. J. Clin. Diagn. Res. 2016;10:7–11. PubMed PMC
Ono K., Yamada M. Vitamin A and Alzheimer’s disease. Geriatrics GerontolIntl. 2012;12:180–188. doi: 10.1111/j.1447-0594.2011.00786.x. PubMed DOI
Gröber U., Kisters K., Schmidt J. Neuroenhancement with vitamin B12-Underestimated neurological significance. Nutrients. 2013;5:5031–5045. PubMed PMC
Presse N., Belleville S., Gaudreau P., Greenwood C.E., Kergoat M.J., Morais J.A. Vitamin K status and cognitive function in healthy older adults. Neurobiol. Aging. 2013;34:2777–2783. doi: 10.1016/j.neurobiolaging.2013.05.031. PubMed DOI
Barbosa K.B.F., Costa N.M.B., Alfenas R.d.C.G., De Paula S.O., Minim V.P.R., Bressan J. Estresse oxidativo: Conceito, implicaçÃ\mues e fatores modulatÃ\textthreesuperiorrios. Rev. Nutr. 2010;23:629–643. doi: 10.1590/S1415-52732010000400013. DOI
Jordao A., Chiarello P.G., Meirelles Bernardes M.S., Vannucchi H., Paulo S. Peroxidação lipídica e etanol: Papel da glutationa reduzida e da vitamina E. Medicina (Ribeirao Preto. Online) 1998;31
Scarmeas N., Luchsinger J.A., Schupf N., Brickman A.M., Cosentino S., Tang M.X., Stern Y. Physical activity, diet, and risk of Alzheimer disease. JAMA. 2009;302:627–637. doi: 10.1001/jama.2009.1144. PubMed DOI PMC
Knopman D.S. Mediterranean diet and late-life cognitive impairment: A taste of benefit. JAMA. 2009;302:686–687. doi: 10.1001/jama.2009.1149. PubMed DOI PMC
Cardoso B.R., Cozzolino S.M.F. Oxidative stress in Alzheimer’s disease: The role of vitamins C and E. Nutr.—Rev. da Soc. Bras. Aliment. e Nutr. 2009;34:249–259.
Manoharan S., Guillemin G.J., Abiramasundari R.S., Essa M.M., Akabar M., Akabar M.D. The Role of Reactive Oxygen Species in the Pathogenesis of Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease: A Mini Review. Oxid. Med. Cell. Longev. 2016:1–15. doi: 10.1155/2016/8590578. PubMed DOI PMC
Hay E., Lucariello A., Contieri M., Esposito T., Luca A., Guerra G., Perna A. Therapeutic effects of turmeric in several diseases: An overview. Chem.-Biol. Interact. 2019:310. doi: 10.1016/j.cbi.2019.108729. PubMed DOI
Santos A.M., Lopes T., Oleastro M., Gato I.V., Floch P., Benejat L., Chaves P., Pereira T., Seixas E., Machado J., et al. Curcumin inhibits gastric inflammation induced by Helicobacter pylori infection in a mouse model. Nutrients. 2015;7:306–320. doi: 10.3390/nu7010306. PubMed DOI PMC
Huang X., Moir R.D., Tanzi R.E., Bush A.I., Rogers J.T. Redox-active metals, oxidative stress, and Alzheimer’s disease pathology. Ann. N. Y. Acad. Sci. 2004;1012:153–163. doi: 10.1196/annals.1306.012. PubMed DOI
Jeynes B., Provias J. Evidence for altered LRP/RAGE expression in Alzheimer lesion pathogenesis. Curr. Alzheimer Res. 2008;5:432–437. doi: 10.2174/156720508785908937. PubMed DOI
Huang W.-J., Zhang X., Chen W.-W. Role of oxidative stress in Alzheimer’s disease. Biomed. Rep. 2016;4:519–522. doi: 10.3892/br.2016.630. PubMed DOI PMC
Chauhan V., Chauhan A. Oxidative stress in Alzheimer’s disease. Pathophysiol. Off. J. Int. Soc. Pathophysiol. 2006;13:195–208. doi: 10.1016/j.pathophys.2006.05.004. PubMed DOI
Peters F., Salihoglu H., Rodrigues E., Herzog E., Blume T., Filser S., Dorostkar M., Shimshek D.R., Brose N., Neumann U., et al. BACE1 inhibition more effectively suppresses initiation than progression of β-amyloid pathology. Acta Neuropathol. 2018;135:695–710. doi: 10.1007/s00401-017-1804-9. PubMed DOI PMC
Golde T.E., Koo E.H., Felsenstein K.M., Osborne B.A., Miele L. γ-Secretase inhibitors and modulators. Biochim. Biophys. Acta. 2013;1828:2898–2907. doi: 10.1016/j.bbamem.2013.06.005. PubMed DOI PMC
Holzer M., Schade N., Opitz A., Hilbrich I., Stieler J., Vogel T., Neukel V., Oberstadt M., Totzke F., Schächtele C., et al. Novel Protein Kinase Inhibitors Related to Tau Pathology Modulate Tau Protein-Self Interaction Using a Luciferase Complementation Assay. Molecules. 2018;23:2335. doi: 10.3390/molecules23092335. PubMed DOI PMC
Giacomini C., Koo C.-Y., Yankova N., Tavares I.A., Wray S., Noble W., Hanger D.P., Morris J.D.H. A new TAO kinase inhibitor reduces tau phosphorylation at sites associated with neurodegeneration in human tauopathies. Acta Neuropathol. Commun. 2018;6:37. doi: 10.1186/s40478-018-0539-8. PubMed DOI PMC
Yadikar H., Torres I., Aiello G., Kurup M., Yang Z., Lin F., Kobeissy F., Yost R., Wang K.K. Screening of Tau Protein Kinase Inhibitors in a Tauopathy-relevant cell-based model of Tau Hyperphosphorylation and Oligomerization. bioRxiv. 2019:821389. PubMed PMC
Simunkova M., Alwasel S.H., Alhazza I.M., Jomova K., Kollar V., Rusko M., Valko M. Management of oxidative stress and other pathologies in Alzheimer’s disease. Arch. Toxicol. 2019;93:2491–2513. doi: 10.1007/s00204-019-02538-y. PubMed DOI
Giacoppo J.O.S., França T.C.C., Kuča K., Da Cunha E.F.F., Abagyan R., Mancini D.T., Ramalho T.C. Molecular modeling and in vitro reactivation study between the oxime BI-6 and acetylcholinesterase inhibited by different nerve agents. J. Biomol. Struct. Dyn. 2015;33:2048–2058. doi: 10.1080/07391102.2014.989408. PubMed DOI
Pereira A.F., de Castro A.A., Soares F.V., Soares Leal D.H., da Cunha E.F.F., Mancini D.T., Ramalho T.C. Development of technologies applied to the biodegradation of warfare nerve agents: Theoretical evidence for asymmetric homogeneous catalysis. Chem. Biol. Interact. 2019;308:323–331. doi: 10.1016/j.cbi.2019.06.007. PubMed DOI
Polisel D.A., de Castro A.A., Mancini D.T., da Cunha E.F.F., França T.C.C., Ramalho T.C., Kuca K. Slight difference in the isomeric oximes K206 and K203 makes huge difference for the reactivation of organophosphorus-inhibited AChE: Theoretical and experimental aspects. Chem. Biol. Interact. 2019;309:108671. doi: 10.1016/j.cbi.2019.05.037. PubMed DOI
Prandi I.G., Ramalho T.C., França T.C.C. Esterase 2 as a fluorescent biosensor for the detection of organophosphorus compounds: Docking and electronic insights from molecular dynamics. Mol. Simul. 2019;45:1432–1436. doi: 10.1080/08927022.2019.1648808. DOI
Da Silva J.A.V., Nepovimova E., Ramalho T.C., Kuca K., Celmar Costa França T. Molecular modeling studies on the interactions of 7-methoxytacrine-4-pyridinealdoxime, 4-PA, 2-PAM, and obidoxime with VX-inhibited human acetylcholinesterase: A near attack conformation approach. J. Enzyme Inhib. Med. Chem. 2019;34:1018–1029. doi: 10.1080/14756366.2019.1609953. PubMed DOI PMC
Soares F.V., de Castro A.A., Pereira A.F., Leal D.H.S., Mancini D.T., Krejcar O., Ramalho T.C., da Cunha E.F.F., Kuca K. Theoretical Studies Applied to the Evaluation of the DFPase Bioremediation Potential against Chemical Warfare Agents Intoxication. Int. J. Mol. Sci. 2018;19:1257. doi: 10.3390/ijms19041257. PubMed DOI PMC