Structural Variations Affecting Genes and Transposable Elements of Chromosome 3B in Wheats
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33014014
PubMed Central
PMC7461782
DOI
10.3389/fgene.2020.00891
Knihovny.cz E-zdroje
- Klíčová slova
- Triticum, bread wheat, copy number variations, genome evolution, structural variations, transposable elements,
- Publikační typ
- časopisecké články MeSH
Structural variations (SVs) such as copy number and presence-absence variations are polymorphisms that are known to impact genome composition at the species level and are associated with phenotypic variations. In the absence of a reference genome sequence, their study has long been hampered in wheat. The recent production of new wheat genomic resources has led to a paradigm shift, making possible to investigate the extent of SVs among cultivated and wild accessions. We assessed SVs affecting genes and transposable elements (TEs) in a Triticeae diversity panel of 45 accessions from seven tetraploid and hexaploid species using high-coverage shotgun sequencing of sorted chromosome 3B DNA and dedicated bioinformatics approaches. We showed that 23% of the genes are variable within this panel, and we also identified 330 genes absent from the reference accession Chinese Spring. In addition, 60% of the TE-derived reference markers were absent in at least one accession, revealing a high level of intraspecific and interspecific variability affecting the TE space. Chromosome extremities are the regions where we observed most of the variability, confirming previous hypotheses made when comparing wheat with the other grasses. This study provides deeper insights into the genomic variability affecting the complex Triticeae genomes at the intraspecific and interspecific levels and suggests a phylogeny with independent hybridization events leading to different hexaploid species.
Zobrazit více v PubMed
Alkan C., Coe B. P., Eichler E. E. (2011). Genome structural variation discovery and genotyping. Nat. Rev. Genet. 12 363–376. 10.1038/nrg2958 PubMed DOI PMC
Altschul S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25 3389–3402. 10.1093/nar/25.17.3389 PubMed DOI PMC
Arystanbekkyzy M., Nadeem M. A., Aktaş H., Yeken M. Z., Zencirci N., Nawaz M. A., et al. (2019). Phylogenetic and taxonomic relationship of turkish wild and cultivated emmer (Triticum turgidum ssp. dicoccoides) revealed by iPBSretrotransposons markers. Int. J. Agric. Biol. 21 155–163. 10.17957/IJAB/15.0876 PubMed DOI
Baker F. B. (1974). Stability of two hierarchical grouping techniques case I: sensitivity to data errors. J. Am. Stat. Assoc. 69 440–445. 10.1080/01621459.1974.10482971 DOI
Balfourier F., Bouchet S., Robert S., De Oliveira R., Rimbert H., Kitt J., et al. (2019). Worldwide phylogeography and history of wheat genetic diversity. Sci. Adv. 5:eaav0536. 10.1126/sciadv.aav0536 PubMed DOI PMC
Blatter R. H. E., Jacomet S., Schlumbaum A. (2004). About the origin of European spelt (Triticum spelta L.): allelic differentiation of the HMW Glutenin B1-1 and A1-2 subunit genes. Theor. Appl. Genet. 108 360–367. 10.1007/s00122-003-1441-1447 PubMed DOI
Chen J., Gupta A. K. (2012). Parametric Statistical Change Point Analysis. Boston: Springer.
Chevreux B. (2004). Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res. 14 1147–1159. 10.1101/gr.1917404 PubMed DOI PMC
Choulet F., Alberti A., Theil S., Glover N., Barbe V., Daron J., et al. (2014). Structural and functional partitioning of bread wheat chromosome 3B. Science 345 1249721–1249721. 10.1126/science.1249721 PubMed DOI
Cook D. E., Lee T. G., Guo X., Melito S., Wang K., Bayless A. M., et al. (2012). Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338 1206–1209. 10.1126/science.1228746 PubMed DOI
Daron J., Glover N., Pingault L., Theil S., Jamilloux V., Paux E., et al. (2014). Organization and evolution of transposable elements along the bread wheat chromosome 3B. Genome Biol. 15:546 10.1186/s13059-014-0546-544 PubMed DOI PMC
Darrier B., Rimbert H., Balfourier F., Pingault L., Josselin A.-A., Servin B., et al. (2017). High-resolution mapping of crossover events in the hexaploid wheat genome suggests a universal recombination mechanism. Genetics 206 1373–1388. 10.1534/genetics.116.196014 PubMed DOI PMC
Díaz A., Zikhali M., Turner A. S., Isaac P., Laurie D. A. (2012). Copy number variation affecting the photoperiod-B1 and vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS One 7:e33234. 10.1371/journal.pone.0033234 PubMed DOI PMC
Doležel J., Kubaláková M., Paux E., Bartoš J., Feuillet C. (2007). Chromosome-based genomics in the cereals. Chromosom. Res. 15 51–66. 10.1007/s10577-006-1106-x PubMed DOI
Galili T. (2015). dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 31 3718–3720. 10.1093/bioinformatics/btv428 PubMed DOI PMC
Glover N. M., Daron J., Pingault L., Vandepoele K., Paux E., Feuillet C., et al. (2015). Small-scale gene duplications played a major role in the recent evolution of wheat chromosome 3B. Genome Biol. 16:188 10.1186/s13059-015-0754-756 PubMed DOI PMC
Gutierrez-Gonzalez J. J., Mascher M., Poland J., Muehlbauer G. J. (2019). Dense genotyping-by-sequencing linkage maps of two Synthetic W7984×Opata reference populations provide insights into wheat structural diversity. Sci. Rep. 9:1793 10.1038/s41598-018-38111-38113 PubMed DOI PMC
Hawkesford M. J., Araus J.-L., Park R., Calderini D., Miralles D., Shen T., et al. (2013). Prospects of doubling global wheat yields. Food Energy Secur. 2 34–48. 10.1002/fes3.15 DOI
Horvath A., Didier A., Koenig J., Exbrayat F., Charmet G., Balfourier F. (2009). Analysis of diversity and linkage disequilibrium along chromosome 3B of bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 119 1523–1537. 10.1007/s00122-009-1153-1158 PubMed DOI
IWGSC (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191. 10.1126/science.aar7191 PubMed DOI
Keidar-Friedman D., Bariah I., Kashkush K. (2018). Genome-wide analyses of miniature inverted-repeat transposable elements reveals new insights into the evolution of the Triticum-Aegilops group. PLoS One 13:e0204972. 10.1371/journal.pone.0204972 PubMed DOI PMC
Koboldt D. C., Zhang Q., Larson D. E., Shen D., McLellan M. D., Lin L., et al. (2012). VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22 568–576. 10.1101/gr.129684.111 PubMed DOI PMC
Li H., Durbin R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26 589–595. 10.1093/bioinformatics/btp698 PubMed DOI PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., et al. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25 2078–2079. 10.1093/bioinformatics/btp352 PubMed DOI PMC
Li W., Godzik A. (2006). Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22 1658–1659. 10.1093/bioinformatics/btl158 PubMed DOI
Li Y., Xiao J., Wu J., Duan J., Liu Y., Ye X., et al. (2012). A tandem segmental duplication (TSD) in green revolution gene Rht-D1b region underlies plant height variation. New Phytol. 196 282–291. 10.1111/j.1469-8137.2012.04243.x PubMed DOI
Marcussen T., Sandve S. R., Heier L., Spannagl M., Pfeifer M., Jakobsen K. S., et al. (2014). Ancient hybridizations among the ancestral genomes of bread wheat. Science 345 1250092–1250092. 10.1126/science.1250092 PubMed DOI
Maron L. G., Guimaraes C. T., Kirst M., Albert P. S., Birchler J. A., Bradbury P. J., et al. (2013). Aluminum tolerance in maize is associated with higher MATE1 gene copy number. Proc. Natl. Acad. Sci. U.S.A. 110 5241–5246. 10.1073/pnas.1220766110 PubMed DOI PMC
Mascher M., Gundlach H., Himmelbach A., Beier S., Twardziok S. O., Wicker T., et al. (2017). A chromosome conformation capture ordered sequence of the barley genome. Nature 544 427–433. 10.1038/nature22043 PubMed DOI
Matsuoka Y. (2011). Evolution of polyploid Triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol. 52 750–764. 10.1093/pcp/pcr018 PubMed DOI
Montenegro J. D., Golicz A. A., Bayer P. E., Hurgobin B., Lee H., Chan C.-K. K., et al. (2017). The pangenome of hexaploid bread wheat. Plant J. 90 1007–1013. 10.1111/tpj.13515 PubMed DOI
Muñoz-Amatriaín M., Eichten S. R., Wicker T., Richmond T. A., Mascher M., Steuernagel B., et al. (2013). Distribution, functional impact, and origin mechanisms of copy number variation in the barley genome. Genome Biol. 14:R58. 10.1186/gb-2013-14-6-r58 PubMed DOI PMC
Pin P. A., Nilsson O. (2012). The multifaceted roles of FLOWERING LOCUS T in plant development. Plant. Cell Environ. 35 1742–1755. 10.1111/j.1365-3040.2012.02558.x PubMed DOI
Pingault L., Choulet F., Alberti A., Glover N., Wincker P., Feuillet C., et al. (2015). Deep transcriptome sequencing provides new insights into the structural and functional organization of the wheat genome. Genome Biol. 16:29 10.1186/s13059-015-0601-609 PubMed DOI PMC
Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M. A., Bender D., et al. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81 559–575. 10.1086/519795 PubMed DOI PMC
Quinlan A. R., Hall I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26 841–842. 10.1093/bioinformatics/btq033 PubMed DOI PMC
Ramírez-González R. H., Borrill P., Lang D., Harrington S. A., Brinton J., Venturini L., et al. (2018). The transcriptional landscape of polyploid wheat. Science 361:eaar6089. 10.1126/science.aar6089 PubMed DOI
Rimbert H., Darrier B., Navarro J., Kitt J., Choulet F., Leveugle M., et al. (2018). High throughput SNP discovery and genotyping in hexaploid wheat. PLoS One 13:e0186329. 10.1371/journal.pone.0186329 PubMed DOI PMC
Saintenac C., Jiang D., Akhunov E. D. (2011). Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome. Genome Biol. 12:R88. 10.1186/gb-2011-12-9-r88 PubMed DOI PMC
Šimková H., Svensson J. T., Condamine P., Hřibová E., Suchánková P., Bhat P. R., et al. (2008). Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics 9:294. 10.1186/1471-2164-9-294 PubMed DOI PMC
Slater G. S. C., Birney E. (2005). Automated generation of heuristics for biological sequence comparison. BMC Bioinform. 6:31. 10.1186/1471-2105-6-31 PubMed DOI PMC
Sorrells M. E., Gustafson J. P., Somers D., Chao S., Benscher D., Guedira-Brown G., et al. (2011). Reconstruction of the Synthetic W7984 × Opata M85 wheat reference population. Genome 54 875–882. 10.1139/g11-054 PubMed DOI
Sutton T., Baumann U., Hayes J., Collins N. C., Shi B.-J., Schnurbusch T., et al. (2007). Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318 1446–1449. 10.1126/science.1146853 PubMed DOI
Thind A. K., Wicker T., Müller T., Ackermann P. M., Steuernagel B., Wulff B. B. H., et al. (2018). Chromosome-scale comparative sequence analysis unravels molecular mechanisms of genome dynamics between two wheat cultivars. Genome Biol. 19:104 10.1186/s13059-018-1477-1472 PubMed DOI PMC
Vrána J., Kubaláková M., Šimková H., Číhalíková J., Lysák M. A., Doležel J. (2000). Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156 2033–2041. PubMed PMC
Wicker T., Gundlach H., Spannagl M., Uauy C., Borrill P., Ramírez-González R. H., et al. (2018). Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol. 19:103 10.1186/s13059-018-1479-1470 PubMed DOI PMC
Würschum T., Boeven P. H. G., Langer S. M., Longin C. F. H., Leiser W. L. (2015). Multiply to conquer: copy number variations at Ppd-B1 and Vrn-A1 facilitate global adaptation in wheat. BMC Genet. 16:96 10.1186/s12863-015-0258-250 PubMed DOI PMC