Chromosome-based genomics in the cereals

. 2007 ; 15 (1) : 51-66.

Jazyk angličtina Země Nizozemsko Médium print

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid17295126

The cereals are of enormous importance to mankind. Many of the major cereal species - specifically, wheat, barley, oat, rye, and maize - have large genomes. Early cytogenetics, genome analysis and genetic mapping in the cereals benefited greatly from their large chromosomes, and the allopolyploidy of wheat and oats that has allowed for the development of many precise cytogenetic stocks. In the genomics era, however, large genomes are disadvantageous. Sequencing large and complex genomes is expensive, and the assembly of genome sequence is hampered by a significant content of repetitive DNA and, in allopolyploids, by the presence of homoeologous genomes. Dissection of the genome into its component chromosomes and chromosome arms provides an elegant solution to these problems. In this review we illustrate how this can be achieved by flow cytometric sorting. We describe the development of methods for the preparation of intact chromosome suspensions from the major cereals, and their analysis and sorting using flow cytometry. We explain how difficulties in the discrimination of specific chromosomes and their arms can be overcome by exploiting extant cytogenetic stocks of polyploid wheat and oats, in particular chromosome deletion and alien addition lines. Finally, we discuss some of the applications of flow-sorted chromosomes, and present some examples demonstrating that a chromosome-based approach is advantageous for the analysis of the complex genomes of cereals, and that it can offer significant potential for the delivery of genome sequencing and gene cloning in these crops.

Zobrazit více v PubMed

Chromosoma. 1996;104(5):315-20 PubMed

Nat Rev Genet. 2006 Mar;7(3):174-84 PubMed

Planta. 1992 Aug;188(1):93-8 PubMed

Methods Cell Sci. 2001;23(1-3):71-82 PubMed

Genomics. 1992 Jul;13(3):718-25 PubMed

Mol Gen Genet. 1994 Mar;242(5):551-8 PubMed

Chromosoma. 2000 Nov;109(7):482-9 PubMed

Hereditas. 2001;134(2):141-5 PubMed

Plant J. 2006 Sep;47(6):977-86 PubMed

Chromosome Res. 2004;12(1):77-91 PubMed

Chromosome Res. 1999;7(6):431-44 PubMed

Funct Integr Genomics. 2005 Apr;5(2):97-103 PubMed

Theor Appl Genet. 2006 Aug;113(4):651-9 PubMed

Biotechniques. 1995 Sep;19(3):402-4; 407-8 PubMed

Science. 2002 Apr 5;296(5565):92-100 PubMed

Theor Appl Genet. 1993 Feb;85(6-7):665-72 PubMed

Plant Biotechnol J. 2004 May;2(3):181-8 PubMed

Genetics. 2004 Oct;168(2):701-12 PubMed

Mol Cells. 2000 Dec 31;10(6):619-25 PubMed

Plant Biotechnol J. 2003 Jan;1(1):23-31 PubMed

Theor Appl Genet. 1997 Jan;94(1):91-7 PubMed

Science. 2002 Apr 5;296(5565):79-92 PubMed

Theor Appl Genet. 1995 May;90(6):797-802 PubMed

Genome Res. 2001 Jun;11(6):1095-9 PubMed

Plant J. 2006 Nov;48(3):463-74 PubMed

Proc Natl Acad Sci U S A. 2004 Oct 5;101(40):14349-54 PubMed

Proc Natl Acad Sci U S A. 2005 Jul 12;102(28):9842-7 PubMed

Trends Plant Sci. 1999 Jul;4(7):258-263 PubMed

Theor Appl Genet. 1987 Oct;74(6):820-6 PubMed

Nature. 2005 Aug 11;436(7052):793-800 PubMed

Planta. 2002 Aug;215(4):666-71 PubMed

Theor Appl Genet. 1996 Jul;93(1-2):123-35 PubMed

Genetics. 2000 Jan;154(1):397-412 PubMed

Mol Cells. 1999 Aug 31;9(4):436-9 PubMed

Theor Appl Genet. 2002 Jun;104(8):1362-1372 PubMed

Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9915-20 PubMed

Cytogenet Genome Res. 2005;109(1-3):250-8 PubMed

Nat Rev Genet. 2004 Aug;5(8):578-88 PubMed

Theor Appl Genet. 2004 Nov;109(7):1337-45 PubMed

Genome. 1997 Oct;40(5):589-93 PubMed

Cytometry. 1997 Jul 1;28(3):236-42 PubMed

Trends Biotechnol. 1999 Jul;17(7):297-302 PubMed

Genome. 2003 Oct;46(5):893-905 PubMed

Genome. 1997 Oct;40(5):633-8 PubMed

Genomics. 2003 Sep;82(3):378-89 PubMed

Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9921-6 PubMed

Plant J. 2004 Sep;39(6):960-8 PubMed

Theor Appl Genet. 2004 Apr;108(6):1079-88 PubMed

Philos Trans R Soc Lond B Biol Sci. 1976 May 27;274(933):227-74 PubMed

Genetics. 2000 Dec;156(4):2033-41 PubMed

Genetics. 2005 Jun;170(2):823-9 PubMed

Theor Appl Genet. 1994 Oct;89(2-3):240-8 PubMed

Plant J. 2004 Mar;37(6):940-50 PubMed

Genome. 1996 Aug;39(4):697-703 PubMed

Nucleic Acids Res. 1992 Apr 25;20(8):1897-901 PubMed

Plant Mol Biol. 2005 Sep;59(1):7-26 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Flow Cytometric Analysis and Sorting of Plant Chromosomes

Flow karyotyping of wheat-Aegilops additions facilitate dissecting the genomes of Ae. biuncialis and Ae. geniculata into individual chromosomes

. 2022 ; 13 () : 1017958. [epub] 20221003

Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential

. 2021 Apr ; 53 (4) : 564-573. [epub] 20210318

Structural Variations Affecting Genes and Transposable Elements of Chromosome 3B in Wheats

. 2020 ; 11 () : 891. [epub] 20200818

Flow cytometric characterisation of the complex polyploid genome of Saccharum officinarum and modern sugarcane cultivars

. 2019 Dec 18 ; 9 (1) : 19362. [epub] 20191218

Fine Mapping of Lr49 Using 90K SNP Chip Array and Flow-Sorted Chromosome Sequencing in Wheat

. 2019 ; 10 () : 1787. [epub] 20200204

Sequencing flow-sorted short arm of Haynaldia villosa chromosome 4V provides insights into its molecular structure and virtual gene order

. 2017 Oct 16 ; 18 (1) : 791. [epub] 20171016

A high-resolution physical map integrating an anchored chromosome with the BAC physical maps of wheat chromosome 6B

. 2015 Aug 12 ; 16 (1) : 595. [epub] 20150812

Flow sorting of C-genome chromosomes from wild relatives of wheat Aegilops markgrafii, Ae. triuncialis and Ae. cylindrica, and their molecular organization

. 2015 Aug ; 116 (2) : 189-200. [epub] 20150604

Characterization of repetitive DNA landscape in wheat homeologous group 4 chromosomes

. 2015 May 12 ; 16 (1) : 375. [epub] 20150512

High-throughput physical map anchoring via BAC-pool sequencing

. 2015 Apr 11 ; 15 () : 99. [epub] 20150411

Intraspecific sequence comparisons reveal similar rates of non-collinear gene insertion in the B and D genomes of bread wheat

. 2012 Aug 30 ; 12 () : 155. [epub] 20120830

BAC libraries from wheat chromosome 7D: efficient tool for positional cloning of aphid resistance genes

. 2011 ; 2011 () : 302543. [epub] 20101223

Integration of genetic and physical maps of the chickpea (Cicer arietinum L.) genome using flow-sorted chromosomes

. 2011 Aug ; 19 (6) : 729-39. [epub] 20110927

A first survey of the rye (Secale cereale) genome composition through BAC end sequencing of the short arm of chromosome 1R

. 2008 Sep 19 ; 8 () : 95. [epub] 20080919

Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley

. 2008 Jun 19 ; 9 () : 294. [epub] 20080619

A novel resource for genomics of Triticeae: BAC library specific for the short arm of rye (Secale cereale L.) chromosome 1R (1RS)

. 2008 May 21 ; 9 () : 237. [epub] 20080521

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace