Flow sorting of C-genome chromosomes from wild relatives of wheat Aegilops markgrafii, Ae. triuncialis and Ae. cylindrica, and their molecular organization
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26043745
PubMed Central
PMC4512188
DOI
10.1093/aob/mcv073
PII: mcv073
Knihovny.cz E-zdroje
- Klíčová slova
- Ae. cylindrica, Ae. triuncialis, Aegilops markgrafii, COS, FISH, GISH, Poaceae, Triticum aestivum, conserved orthologous set markers, flow cytometric chromosome sorting, fluorescence in situ hybridization, genomic in situ hybridization, goatgrass, physical mapping, wheat,
- MeSH
- chromozomy rostlin genetika MeSH
- genom rostlinný * MeSH
- hybridizace in situ fluorescenční MeSH
- indoly MeSH
- karyotyp MeSH
- karyotypizace MeSH
- konzervovaná sekvence genetika MeSH
- lipnicovité genetika MeSH
- metafáze MeSH
- průtoková cytometrie metody MeSH
- pšenice genetika MeSH
- sekvenční homologie nukleových kyselin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DAPI MeSH Prohlížeč
- indoly MeSH
BACKGROUND AND AIMS: Aegilops markgrafii (CC) and its natural hybrids Ae. triuncialis (U(t)U(t)C(t)C(t)) and Ae. cylindrica (D(c)D(c)C(c)C(c)) represent a rich reservoir of useful genes for improvement of bread wheat (Triticum aestivum), but the limited information available on their genome structure and the shortage of molecular (cyto-) genetic tools hamper the utilization of the extant genetic diversity. This study provides the complete karyotypes in the three species obtained after fluorescent in situ hybridization (FISH) with repetitive DNA probes, and evaluates the potential of flow cytometric chromosome sorting. METHODS: The flow karyotypes obtained after the analysis of 4',6-diamidino-2-phenylindole (DAPI)-stained chromosomes were characterized and the chromosome content of the peaks on the flow karyotypes was determined by FISH. Twenty-nine conserved orthologous set (COS) markers covering all seven wheat homoeologous chromosome groups were used for PCR with DNA amplified from flow-sorted chromosomes and genomic DNA. KEY RESULTS: FISH with repetitive DNA probes revealed that chromosomes 4C, 5C, 7C(t), T6U(t)S.6U(t)L-5C(t)L, 1C(c) and 5D(c) could be sorted with purities ranging from 66 to 91 %, while the remaining chromosomes could be sorted in groups of 2-5. This identified a partial wheat-C-genome homology for group 4 and 5 chromosomes. In addition, 1C chromosomes were homologous with group 1 of wheat; a small segment from group 2 indicated 1C-2C rearrangement. An extensively rearranged structure of chromosome 7C relative to wheat was also detected. CONCLUSIONS: The possibility of purifying Aegilops chromosomes provides an attractive opportunity to investigate the structure and evolution of the Aegilops C genome and to develop molecular tools to facilitate the identification of alien chromatin and support alien introgression breeding in bread wheat.
Zobrazit více v PubMed
Badaeva ED, Friebe B, Gill BS. 1996a. Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome 39: 293–306. PubMed
Badaeva ED, Friebe B, Gill BS. 1996b. Genome differentiation in Aegilops. 2. Physical mapping of 5S and 18S–26S ribosomal RNA gene families in diploid species. Genome 39: 1150–1158. PubMed
Badaeva ED, Amosova AV, Muravenko OV, et al. 2002. Genome differentiation in Aegilops. 3. Evolution of the D-genome cluster. Plant Systematics and Evolution 231: 163–190.
Badaeva ED, Amosova AV, Samatadze TE, et al. 2004. Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Systematics and Evolution 246: 45–76.
Bai D, Scoles GJ, Knott DR. 1995. Rust resistance in Triticum cylindricum Ces. (4x, CCDD) and its transfer into durum and hexaploid wheats. Genome 38: 8–16. PubMed
Bedbrook J, Jones J, O’Dell M, Thompson RD, Flavell RB. 1980. A molecular description of telomeric heterochromatin in Secale species. Cell 19: 545–560. PubMed
Bennetzen JL. 2007. Patterns in grass genome evolution. Current Opinion in Plant Biology 10: 176–181. PubMed
Brenchley R, Spannag M, Pfeifer M, et al. 2012. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491: 705–710. PubMed PMC
Burt C, Nicholson P. 2011. Exploiting co-linearity among grass species to map the Aegilops ventricosa-derived Pch1 eyespot resistance in wheat and establish its relationship to Pch2. Theoretical and Applied Genetics 123: 1387–1400. PubMed
Chang KD, Fang SA, Chang FC, Chung MC. 2010. Chromosomal conservation and sequence diversity of ribosomal RNA genes of two distant Oryza species. Genomics 96: 181–190. PubMed
Choulet F, Alberti A, Theil S, et al. 2014. Structural and functional partitioning of bread wheat chromosome 3B. Science 345: 1249721. PubMed
Colmer TD, Flowers TJ, Munns R. 2006. Use of wild relatives to improve salt tolerance in wheat. Journal of Experimental Botany 57: 1059–1078. PubMed
Contento A, Heslop-Harrison JS, Schwarzacher T. 2005. Diversity of a major repetitive DNA sequence in diploid and polyploid Triticeae. Cytogenetic and Genome Research 109: 34–42. PubMed
Cox TS. 1998. Deepening the wheat gene pool. Journal of Crop Production 1: 1–25.
Cseh A, Soós V, Rakszegi M, Türkösi E, Balázs E, Molnár-Láng M. 2013. Expression of HvCslF9 and HvCslF6 barley genes in the genetic background of wheat and their influence on the wheat β-glucan content. Annals of Applied Biology 163: 142–150.
Doležel J, Binarová P, Lucretti S. 1989. Analysis of nuclear DNA content in plant cells by flow cytometry. Biologia Plantarum 31: 113–120.
Doležel J, Bartoš J, Voglmayr H, Greilhuber J. 2003. Nuclear DNA content and genome size of trout and human. Cytometry 51: 127–128. PubMed
Doležel J, Kubaláková M, Paux E, Bartoš J, Feuillet C. 2007. Chromosome based genomics in the cereals. Chromosome Research 15: 51–66. PubMed
Doležel J, Vrána J, Safář J, Bartoš J, Kubaláková M, Simková H. 2012. Chromosomes in the flow to simplify genome analysis. Functional and Integrative Genomics 12: 397–416. PubMed PMC
Dvořák J. 2009. Triticeae genome structure and evolution. In: Muehlbauer GJ, Feuillet C, eds. Genetics and genomics of the Triticeae. Plant genetics and genomics: crops and models. New York: Springer-Verlag, 685–711.
Eichler EE, Sankoff D. 2003. Structural dynamics of eukaryotic chromosome evolution. Science 301: 793–797. PubMed
Eilam T, Anikster Y, Millet E, Manisterski J, Sagi-Assif O, Feldman M. 2007. Genome size and genome evolution in diploid Triticeae species. Genome 50: 1029–1037. PubMed
Eilam T, Anikster Y, Millet E, Manisterski J, Feldman M. 2008. Nuclear DNA amount and genome downsizing in natural and synthetic allopolyploids of the genera Aegilops and Triticum. Genome 51: 616–627. PubMed
Feuillet C, Keller B. 2002. Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Annals of Botany 89: 3–10. PubMed PMC
Feuillet C, Langridge P, Waugh R. 2008. Cereal breeding takes a walk on the wild side. Trends in Genetics 24: 24–32. PubMed
Friebe B, Schubert V, Blüthner WD, Hammer K. 1992. C-banding pattern and polymorphism of Aegilops caudata and chromosomal constitutions of the amphiploid T. aestivum – Ae. caudata and six derived chromosome addition lines. Theoretical and Applied Genetics 83: 589–596. PubMed
Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS. 1996. Characterization of wheat–alien translocations conferring resistance to diseases and pests: current status. Euphytica 91: 59–87.
Furuta Y. 1970. DNA content per nucleus in Aegilops species. Wheat Information Service 30: 20–22.
Galiba G, Quarrie SA, Sutka J, Morgounov A, Snape JW. 1995. RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theoretical and Applied Genetics 90: 1174–1179. PubMed
Gerlach WL, Bedbrook JR. 1979. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Research 7: 1869–1885. PubMed PMC
Giorgi D, Farina A, Grosso V, Gennaro A, Ceoloni C, Lucretti S. 2013. FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS One 8: e57994. PubMed PMC
Grosso V, Farina A, Gennaro A, Giorgi D, Lucretti S. 2012. Flow sorting and molecular cytogenetic identification of individual chromosomes of Dasypyrum villosum L. (H. villosa) by a single DNA probe. PLoS One 7: e50151. PubMed PMC
International Wheat Genome Sequencing Consortium. 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345: 1251788. PubMed
Jia J, Zhao S, Kong X, et al. 2013. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496: 91–95. PubMed
Kilian B, Mammen K, Millet E, et al. 2011. Aegilops . In: Kole C, ed. Wild crop relatives: genomic and breeding resources, cereals . Berlin: Springer-Verlag, 1–76.
Koebner RMD, Martin PK, Orford SM, Miller TE. 1996. Responses to salt stress controlled by the homeologous group 5 chromosomes of hexaploid wheat. Plant Breeding 115: 81–84.
Kubaláková M, Macas J, Doležel J. 1997. Mapping of repeated DNA sequences in plant chromosomes by PRINS and C-PRINS. Theoretical and Applied Genetics 94: 758–763.
Kubaláková M, Valárik M, Bartoš J, et al. 2003. Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome 46: 893–905. PubMed
Kubaláková M, Kovářová P, Suchánková P, et al. 2005. Chromosome sorting in tetraploid wheat and its potential for genome analysis. Genetics 170: 823–829. PubMed PMC
Linc G, Friebe B, Kynast RG, et al. 1999. Molecular cytogenetic analysis of Aegilops cylindrica Host. Genome 42: 497–503. PubMed
Ling H-Q, Zhao S, Liu D, et al. 2013. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496: 87–90. PubMed
Luo M-C, Gu YQ, You FM, et al. 2013. A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proceedings of the National Academy of Sciences, USA 110: 7940–7945. PubMed PMC
Lysák MA, Číhalíková J, Kubaláková M, Šimková H, Künzel G, Doležel J. 1999. Flow karyotyping and sorting of mitotic chromosomes of barley (Hordeum vulgare L.). Chromosome Research 7: 431–444. PubMed
Martin-Sanchez JA, Gomez-Colmenarejo M, Del Moral J, et al. 2003. A new Hessian fly resistance gene (H30) transferred from the wild grass Aegilops triuncialis to hexaploid wheat. Theoretical and Applied Genetics 106: 1248–1255. PubMed
Mayer KFX, Martis M, Hedley PE, et al. 2011. Unlocking the barley genome by chromosomal and comparative genomics. The Plant Cell 23: 1249–1263. PubMed PMC
Molnár I, Cifuentes M, Schneider A, Benavente E, Molnár-Láng M. 2011a. Association between simple sequence repeat-rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats. Annals of Botany 107: 65–76. PubMed PMC
Molnár I, Kubaláková M, Šimková H, Cseh A, Molnár-Láng M, Doležel J. 2011b. Chromosome isolation by flow sorting in Aegilops umbellulata and Ae. comosa and their allotetraploid hybrids Ae. biuncialis and Ae. geniculata. PLoS One 6: e27708. PubMed PMC
Molnár I, Šimková H, Leverington-Waite M, et al. 2013. Syntenic relationships between the U and M genomes of Aegilops, wheat and the model species Brachypodium and rice as revealed by COS markers. PLoS One 8: e70844. PubMed PMC
Molnár I, Kubaláková M, Šimková H, et al. 2014. Flow cytometric chromosome sorting from diploid progenitors of bread wheat, T. urartu, Ae. speltoides and Ae. tauschii. Theoretical and Applied Genetics 127: 1091–1104. PubMed
Molnár-Láng M, Molnár I, Szakács É, Linc G, Bedő Z. 2014. Production and molecular cytogenetic identification of wheat–alien hybrids and introgression lines. In: Tuberosa R, Graner A, Frison E, eds, Genomics of plant genetic resources, Vol. 1, Managing, sequencing and mining genetic resources . Dordrecht, The Netherlands: Springer, 255–283.
Mukai Y, Nakahara Y, Yamamoto M. 1993. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolour fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36: 489–494. PubMed
Muramatsu M. 1973. Genetic homology and cytological differentiation of the homoeologous-group-5 chromosomes of wheat and related species. In: Sears ER, Sears LMS, eds, Proceedings of the 4th international wheat genetics symposium . Agriculture Experiment Station, College of Agriculture, University of Missouri, Columbia, USA, 719–724.
Nagaki K, Tsujimoto H, Isono K, Sasakuma T. 1995. Molecular characterization of a tandem repeat, Afa family, and its distribution among Triticeae. Genome 38: 479–486. PubMed
Paux E, Sourdille P, Salse J, et al. 2008. A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322: 101–104. PubMed
Qi L, Friebe B, Gill BS. 2006. Complex genome rearrangements reveal evolutionary dynamics of pericentromeric regions in the Triticeae . Genome 49: 1628–1639. PubMed
Quarrie SA, Gulli M, Calestani C, Steed A, Marmiroli N. 1994. Location of a gene regulating drought-induced abscisic acid production on the long arm of chromosome 5A of wheat. Theoretical and Applied Genetics 89: 794–800. PubMed
Quraishi UM, Abrouk M, Bolot S, et al. 2009. Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Functional and Integrative Genomics 9: 473–484. PubMed
Raskina O, Barber JC, Nevo E, Belyayev A. 2008. Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenetic and Genome Research 120: 351–357. PubMed
Rayburn AL, Gill BS. 1986. Isolation of a D genome specific repeated DNA sequence from Aegilops squarrosa. Plant Molecular Biology Reporter 4: 102–109.
Rawat N, Tiwari VK, Singh N, et al. 2009. Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genetic Resources and Crop Evolution 56: 53–64.
Riar AK, Kaur S, Dhaliwal HS, Singh K, Chhuneja P. 2012. Introgression of a leaf rust resistance gene from Aegilops caudata to bread wheat. Journal of Genetics 91: 155–161. PubMed
Riley R, Chapman V. 1967. The inheritance in wheat of crossability with rye. Genetics Research 9: 259–267.
Romero MD, Montes MJ, Sin E, et al. 1998. A cereal cyst nematode (Heterodera avenae Woll.) resistance gene transferred from Aegilops triuncialis to hexaploid wheat. Theoretical and Applied Genetics 96: 1135–1140.
Šafář J, Bartoš J, Janda J, et al. 2004. Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. The Plant Journal 39: 960–968. PubMed
Schneider A, Linc G, Molnár I, Molnár-Láng M. 2005. Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of 5 derived wheat–Aegilops biuncialis addition lines. Genome 48: 1070–1082. PubMed
Schneider A, Molnár I, Molnár-Láng M. 2008. Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163: 1–19.
Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS. 1989. In situ localization of parental genomes in a wild hybrid. Annals of Botany 64: 315–324.
Sears ER. 1956. The transfer of leaf-rust resistance from Aegilops umbellulata to wheat. Brookhaven Symposia in Biology 9: 1–22.
Šimková H, Svensson JT, Condamine P, et al. 2008. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics 9: 294. PubMed PMC
Snape JW, Semikhodskii A, Fish L, et al. 1997. Mapping frost resistance loci in wheat and comparative mapping with other cereals. Acta Agronomica Hungarica 45: 265–270.
Sutka J, Snape JW. 1989. Location of a gene for frost resistance on chromosome 5A of wheat. Euphytica 42: 41–44.
Tiwari VK, Wang SC, Sehgal S, et al. 2014. SNP discovery for mapping alien introgressions in wheat. BMC Genomics 15: 273. PubMed PMC
Váguújfalvi A, Galiba G, Cattivelli L, Dubcovsky J. 2003. The cold regulated transcriptional activator Cbf3 is linked to the frost-tolerance gene Fr-A2 on wheat chromosome 5A. Molecular Genetics and Genomics 269: 60–67. PubMed PMC
Van Slageren MW. 1994. Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae): a revision of all taxa closely related to wheat, excluding wild Triticum species, with notes on other genera in the tribe Triticcae, especially Triticum, Wageningen, The Netherlands: Wageningen Agricultural University Papers.
Vida Gy, Cséplő M, Gulyás G, Karsai I, et al. 2011. Effectiveness of major resistance genes and identification of new sources for disease resistance in wheat. Acta Agronomica Hungarica 59: 241–248.
Vrána J, Kubaláková M, Šimková H, Číhalíková J, Lysák MA, Doležel J. 2000. Flow-sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156: 2033–2041. PubMed PMC
Yu J, Wang J, Lin W, et al. 2005. The genomes of Oryza sativa: a history of duplications. PLoS Biology 3: e38. PubMed PMC
Zhang H, Jia J, Gale MD, Devos KM. 1998. Relationships between the chromosomes of Aegilops umbellulata and wheat. Theoretical and Applied Genetics 96: 69–75.
Flow Cytometric Analysis and Sorting of Plant Chromosomes
Chromosome analysis and sorting