Cobalt-Catalyzed Green Alkylations of Anilines with Tetrahydrofurans
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
075-00276-25-00
Ministry of Science and Higher Education
PubMed
40853782
PubMed Central
PMC12487734
DOI
10.1002/cssc.202402622
Knihovny.cz E-resources
- Keywords
- alkylation, biomass, renewable resources, syngas, tetrahydrofuran,
- Publication type
- Journal Article MeSH
The use of bio-renewable resources as starting materials and reagents in synthetic chemistry is an important area for sustainable development. The use of tetrahydrofuran (THF) and 2-methyltetrahydrofuran (2-MeTHF) is reported, which can be obtained from lignocellulosic biomass, as potential alkylating agents for anilines. The developed N-alkylation process is catalyzed by the readily available cobalt salts and employs industrially available syngas as a reducing agent. The reported approach allows for the green and cost-effective production of N-alkylanilines from readily available feedstocks.
See more in PubMed
Jaswal A., Singh P. P., Mondal T., Green Chem. 2022, 24, 510.
Di Menno Di Bucchianico D., Wang Y., Buvat J.‐C., Pan Y., Casson Moreno V., Leveneur S., Green Chem. 2022, 24, 614.
Granone L. I., Sieland F., Zheng N., Dillert R., Bahnemann D. W., Green Chem. 2018, 20, 1169.
Tomishige K., Yabushita M., Cao J., Nakagawa Y., Green Chem. 2022, 24, 5652.
Nakagawa Y., Yabushita M., Tomishige K., RSC Sustain. 2023, 1, 814.
Zhao K., Wen B., Tang Q., Wang F., Liu X., Xu Q., Yin D., Green Chem. 2024, 26, 9957.
Ibáñez S., Guerrero A., Poyatos M., Peris E., Chem. – A Eur. J. 2015, 21, 10566. PubMed
Bender M., Schelkle K. M., Jürgensen N., Schmid S., Hernandez‐Sosa G., Bunz U. H. F., Macromolecules 2016, 49, 2957.
Pristash S. R., Corp K. L., Rabe E. J., Schlenker C. W., ACS Appl. Energy Mater. 2020, 3, 19.
Dong Q.‐J., Cai Z.‐B., Ding L., Luo P.‐H., He Q.‐J., Li S.‐L., Chen L.‐J., Ye Q., Tian Y.‐P., Dye. Pigment. 2021, 185, 108849.
Zhu H., Fan J., Chen H., Tang Z., Wang G., Fu N., Dye. Pigment. 2015, 113, 181.
Hu H., Li M., Wu D., Li Z., Miao R., Liu Y., Gong P., Bioorg. Med. Chem. 2019, 27, 3135. PubMed
Xiao Q., Mai B., Nie Y., Yuan C., Xiang M., Shi Z., Wu J., Leung W., Xu C., Yao S. Q., Wang P., Gao L., ACS Appl. Mater. Interfaces 2021, 13, 11588. PubMed
Gurrapu S., Jonnalagadda S. K., Alam M. A., Nelson G. L., Sneve M. G., Drewes L. R., Mereddy V. R., ACS Med. Chem. Lett. 2015, 6, 558. PubMed PMC
Moore J. L., Taylor S. M., Soloshonok V. A., Arkivoc 2005, 2005, 287.
Tsygankov A. A., Chusov D., ACS Catal. 2021, 11, 13077.
Podyacheva E., Afanasyev O. I., Ostrovskii V. S., Chusov D., ACS Catal. 2022, 12, 5145.
Podyacheva E., Balalaeva A. I., Afanasyev O. I., Runikhina S. A., Chusova O., Kozlov A. S., Liao S., Chusov D., New J. Chem. 2023, 47, 10514.
Smirnov I., Biriukov K. O., Shvydkiy N. V., Perekalin D. S., Afanasyev O. I., Chusov D., J. Org. Chem. 2024, 89, 10338. PubMed
Ke Z., Zhao Y., Li R., Wang H., Zeng W., Tang M., Han B., Liu Z., Green Chem. 2021, 23, 9147.
Zhou B., Ma Z., Alenad A. M., Kreyenschulte C., Bartling S., Beller M., Jagadeesh R. V., Green Chem. 2022, 24, 4566.
Zhou B., Chandrashekhar V. G., Ma Z., Kreyenschulte C., Bartling S., Lund H., Beller M., Jagadeesh R. V., Angew. Chemie Int. Ed. 2023, 62, e202215699. PubMed
Ma R., Gao J., Zhang L., Wang N., Hu Y., Bartling S., Lund H., Wohlrab S., Jagadeesh R. V., Beller M., Green Chem. 2024, 26, 1471. PubMed PMC
Yuan M.‐L., Xie J.‐H., Zhou Q.‐L., ChemCatChem 2016, 8, 3036.
Pfeffer M., Grellier M., in Comprehensive Organometallic Chemistry III (Eds: Mingos D. M. P., Crabtree R.), Elsevier, Oxford: 2007, pp. 1–119.
Prima D. O., Kulikovskaya N. S., Galushko A. S., Mironenko R. M., Ananikov V. P., Curr. Opin. Green Sustain. Chem. 2021, 31, 100502.
Zalesskiy S. S., Ananikov V. P., Organometallics 2012, 31, 2302.
Reppe H., Kutepow W., Bille N. V., US3014962A.
Whitehurst W. G., Kim J., Koenig S. G., Chirik P. J., ACS Catal. 2023, 13, 8700.
Ai W., Zhong R., Liu X., Liu Q., Chem. Rev. 2019, 119, 2876. PubMed
Hebrard F., Kalck P., Chem. Rev. 2009, 109, 4272. PubMed
Gärtner D., Sandl S., Jacobi von Wangelin A., Catal. Sci. Technol. 2020, 10, 3502.
Strohalm M., Kavan D., Novák P., Volný M., Havlíček V., Anal. Chem. 2010, 82, 4648. PubMed
Chen W., Chen K., Chen W., Liu M., Wu H., ACS Catal. 2019, 9, 8110.
Barker T. J., Jarvo E. R., J. Am. Chem. Soc. 2009, 131, 15598. PubMed
Urgaonkar S., Xu J.‐H., Verkade J. G., J. Org. Chem. 2003, 68, 8416. PubMed
Qin C., Shen T., Tang C., Jiao N., Angew. Chemie Int. Ed. 2012, 51, 6971. PubMed
Jiang D., Fu H., Jiang Y., Zhao Y., J. Org. Chem. 2007, 72, 672. PubMed
Aromí G., Batsanov A. S., Christian P., Helliwell M., Parkin A., Parsons S., Smith A. A., Timco G. A., Winpenny R. E. P., Chem. – A Eur. J. 2003, 9, 5142. PubMed
Bryant W., Fernelius B. E., Busch W. C., Stoufer D. H., Stratton R. C., Inorganic Synthesis 1957, 5, 188.
Durel V., Lalli C., Roisnel T., van de Weghe P., J. Org. Chem. 2016, 81, 849. PubMed
Kluger R., Hunt J. C., J. Am. Chem. Soc. 1989, 111, 5921.
Clive D. L. J., Peng J., Fletcher S. P., Ziffle V. E., Wingert D., J. Org. Chem. 2008, 73, 2330. PubMed
Okano K., Tokuyama H., Fukuyama T., Org. Lett. 2003, 5, 4987. PubMed
Huang L., Yu R., Zhu X., Wan Y., Tetrahedron 2013, 69, 8974.
Pan Y., Luo Z., Han J., Xu X., Chen C., Zhao H., Xu L., Fan Q., Xiao J., Adv. Synth. Catal. 2019, 361, 2301.