Cobalt nanoparticle-catalysed N-alkylation of amides with alcohols
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38323305
PubMed Central
PMC10840649
DOI
10.1039/d3gc03286h
PII: d3gc03286h
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A protocol for efficient N-alkylation of benzamides with alcohols in the presence of cobalt-nanocatalysts is described. Key to the success of this general methodology is the use of highly dispersed cobalt nanoparticles supported on carbon, which are obtained from the pyrolysis of cobalt(ii) acetate and o-phenylenediamine as a ligand at suitable temperatures. The catalytic material shows a broad substrate scope and good tolerance to functional groups. Apart from the synthesis of a variety of secondary amides (>45 products), the catalyst allows for the conversion of more challenging aliphatic alcohols and amides, including biobased and macromolecular amides. The practical applicability of the catalyst is underlined by the successful recycling and reusability.
Faculty of Environment and Life Beijing University of Technology 100124 Beijing China
Leibniz Institut für Katalyse e 5 Albert Einstein Str 29a 18059 Rostock Germany
Zobrazit více v PubMed
Sabatini M. T. Boulton L. T. Sneddon H. F. Sheppard T. D. Nat. Catal. 2019;2:10–17. doi: 10.1038/s41929-018-0211-5. DOI
Montalbetti C. A. G. N. Falque V. Tetrahedron. 2005;61:10827–10852. doi: 10.1016/j.tet.2005.08.031. DOI
Valeur E. Bradley M. Chem. Soc. Rev. 2009;38:606–631. doi: 10.1039/B701677H. PubMed DOI
Dai X. Shi F. Org. Biomol. Chem. 2019;17:2044–2054. doi: 10.1039/C8OB03091J. PubMed DOI
Das J. Banerjee D. J. Org. Chem. 2018;83:3378–3384. doi: 10.1021/acs.joc.7b03215. PubMed DOI
Chen C. Verpoort F. Wu Q. RSC Adv. 2016;6:55599–55607. doi: 10.1039/C6RA10643A. DOI
Wu X. J. Wang H. J. Yang Z. Q. Tang X. S. Yuan Y. Su W. Chen C. Verpoort F. Org. Chem. Front. 2019;6:563–570. doi: 10.1039/C8QO00902C. DOI
Gunanathan C. Milstein D. Science. 2013;341:1229712. doi: 10.1126/science.1229712. PubMed DOI
Kerdphon S. Quan X. Parihar V. S. Andersson P. G. J. Org. Chem. 2015;80:11529–11537. doi: 10.1021/acs.joc.5b01324. PubMed DOI
Wang A. Xie Y. Wang J. Shi D. Yu H. Chem. Commun. 2022;58:1127–1130. doi: 10.1039/D1CC05417A. PubMed DOI
Wang N. Zou X. Ma J. Li F. Chem. Commun. 2014;50:8303–8305. doi: 10.1039/C4CC02742F. PubMed DOI
Watanabe Y. Ohta T. Tsuji Y. Bull. Chem. Soc. Jpn. 1983;56:2647–2651. doi: 10.1246/bcsj.56.2647. DOI
Yu X. C. Jiang L. Li Q. Xie Y. Y. Xu Q. Chin. J. Chem. 2012;30:2322–2332. doi: 10.1002/cjoc.201200462. DOI
Xu P. Han F.-S. Wang Y.-H. Adv. Synth. Catal. 2015;357:3441–3446. doi: 10.1002/adsc.201500331. DOI
Choo G. C. Y. Miyamura H. Kobayashi S. Chem. Sci. 2015;6:1719–1727. doi: 10.1039/C4SC03627A. PubMed DOI PMC
Sardar B. Jamatia R. Samanta A. Srimani D. J. Org. Chem. 2022;87:5556–5567. doi: 10.1021/acs.joc.1c02913. PubMed DOI
Jagadeesh R. V. Stemmler T. Surkus A. E. Junge H. Junge K. Beller M. Nat. Protoc. 2015;10:548–557. doi: 10.1038/nprot.2015.025. PubMed DOI
Gao J. Feng L. Ma R. Su B.-J. Alenad A. M. Liu Y. Beller M. Jagadeesh R. V. Chem. Catal. 2022;2:178–194. doi: 10.1016/j.checat.2021.12.009. DOI
Gao J. Ma R. Feng L. Liu Y. Jackstell R. Jagadeesh R. V. Beller M. Angew. Chem., Int. Ed. 2021;60:18591–18598. doi: 10.1002/anie.202105492. PubMed DOI PMC
Gao J. Ma R. Poovan F. Zhang L. Atia H. Kalevaru N. V. Sun W. Wohlrab S. Chusov D. A. Wang N. Jagadeesh R. V. Beller M. Nat. Commun. 2023;14:5013. doi: 10.1038/s41467-023-40614-1. PubMed DOI PMC
Jagadeesh R. V. Murugesan K. Alshammari A. S. Neumann H. Pohl M. M. Radnik J. Beller M. Science. 2017;358:326–332. doi: 10.1126/science.aan6245. PubMed DOI
Coan P. D. Griffin M. B. Ciesielski P. N. Medlin J. W. J. Catal. 2019;372:311–320. doi: 10.1016/j.jcat.2019.03.011. DOI
Sun K. Shan H. Lu G. P. Cai C. Beller M. Angew. Chem., Int. Ed. 2021;60:25188–25202. doi: 10.1002/anie.202104979. PubMed DOI PMC
Watson A. J. Maxwell A. C. Williams J. M. J. Org. Chem. 2011;76:2328–2331. doi: 10.1021/jo102521a. PubMed DOI
Lida K. Miura T. Ando J. Saito S. Org. Lett. 2013;15:1436–1439. doi: 10.1021/ol4001262. PubMed DOI
Miura T. Kose O. Li F. Kai S. Saito S. Chem. – Eur. J. 2011;17:11146–11151. doi: 10.1002/chem.201101752. PubMed DOI
Hwang B. J. J. Phys. Chem. C. 2007;111:15267–15276. doi: 10.1021/jp072681r. DOI
Belles L. Moularas C. Smykała S. Deligiannakis Y. Nanomaterials. 2021;11:925. doi: 10.3390/nano11040925. PubMed DOI PMC
Deori K. Deka S. CrystEngComm. 2013;15:8465–8474. doi: 10.1039/C3CE41502C. DOI
Rao Penki T. Shanmughasundara D. Kishore B. Munichandraiah N. Adv. Mater. Lett. 2014;5:184–190. doi: 10.5185/amlett.2013.8530. DOI
Jansson J. Palmqvist A. E. C. Fridell E. Skoglundh M. Österlund L. Thormählen P. Langer V. J. Catal. 2002;211:387–397. doi: 10.1016/S0021-9517(02)93738-3. DOI
Datye A. K. Bravo J. Nelson T. R. Pfefferle L. Appl. Catal., A. 2000;198:179–196. doi: 10.1016/S0926-860X(99)00512-8. DOI
Deng X. Yang Y. Wang L. Fu X. Z. Luo J. L. Adv. Sci. 2021;8:1–9. PubMed PMC
Sun X. Lu Y. Li T. Zhao S. Gao Z. Song Y.-Y. J. Mater. Chem. A. 2019;7:372–380. doi: 10.1039/C8TA09733J. DOI
Mu J. Zhang L. Zhao G. Wang Y. Phys. Chem. Chem. Phys. 2014;16:15709–15716. doi: 10.1039/C4CP01326C. PubMed DOI
Guan B. Y. Yu X. Y. Wu H. B. Lou X. W. D. Adv. Mater. 2017;29:1703614. doi: 10.1002/adma.201703614. PubMed DOI
Malafatti J. O. D. Moreira A. J. Paris E. C. Cardenas Flechas L. J. Pereira O. A. P. Rincón Joya M. Catalysts. 2022;12:1199. doi: 10.3390/catal12101199. DOI
Peng X. Wang L. Hu L. Li Y. Gao B. Song H. Huang C. Zhang X. Fu J. Huo K. Chu P. K. Nano Energy. 2017;34:1–7. doi: 10.1016/j.nanoen.2017.02.016. DOI
Chen J. Yuan X. Lyu F. Zhong Q. Hu H. Pan Q. Zhang Q. J. Mater. Chem. A. 2019;7:1281–1286. doi: 10.1039/C8TA10574J. DOI
Biesinger M. C. Payne B. P. Grosvenor A. P. Lau L. W. M. Gerson A. R. Appl. Surf. Sci. 2011;257:2717–2730. doi: 10.1016/j.apsusc.2010.10.051. DOI
Chen L. Zhang Y. Wang H. Wang Y. Li D. Duan C. Nanoscale. 2018;10:21019–21024. doi: 10.1039/C8NR07535B. PubMed DOI
Yang X. Chen C. Zhou Z. Sun S. Acta Phys.-Chim. Sin. 2019;35:472–485.
Matsoso B. J. Ranganathan K. Mutuma B. K. Lerotholi T. Jones G. Coville N. J. RSC Adv. 2016;6:106914–106920. doi: 10.1039/C6RA24094A. DOI
Jagadeesh R. V. Surkus A. E. Junge H. Pohl M. Radnik J. Rabeah J. Huan H. Schünemann V. Brückner A. Beller M. Science. 2013;342:1073–1076. doi: 10.1126/science.1242005. PubMed DOI