Streamlining the synthesis of amides using Nickel-based nanocatalysts
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
670986-NoNaCat
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
PubMed
37591856
PubMed Central
PMC10435480
DOI
10.1038/s41467-023-40614-1
PII: 10.1038/s41467-023-40614-1
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The synthesis of amides is a key technology for the preparation of fine and bulk chemicals in industry, as well as the manufacture of a plethora of daily life products. Furthermore, it constitutes a central bond-forming methodology for organic synthesis and provides the basis for the preparation of numerous biomolecules. Here, we present a robust methodology for amide synthesis compared to traditional amidation reactions: the reductive amidation of esters with nitro compounds under additives-free conditions. In the presence of a specific heterogeneous nickel-based catalyst a wide range of amides bearing different functional groups can be selectively prepared in a more step-economy way compared to previous syntheses. The potential value of this protocol is highlighted by the synthesis of drugs, as well as late-stage modifications of bioactive compounds. Based on control experiments, material characterizations, and DFT computations, we suggest metallic nickel and low-valent Ti-species to be crucial factors that makes this direct amide synthesis possible.
A N Nesmeyanov Institute of Organoelement Compounds 119991 Moscow Russia
Faculty of Environment and Life Beijing University of Technology 100124 Beijing China
Guang dong Medical University 523808 Dongguan China
Leibniz Institut für Katalyse e 5 Albert Einstein Street 29a 18059 Rostock Germany
Zobrazit více v PubMed
Wang X. Challenges and outlook for catalytic direct amidation reactions. Nat. Catal. 2019;2:98–102.
Lundberg H, Tinnis F, Selander N, Adolfsson H. Catalytic amide formation from non-activated carboxylic acids and amines. Chem. Soc. Rev. 2014;43:2714–2742. PubMed
Williams, R. E. & Marshall, C. M. Top 200 brand name drugs by retail sales in 2022. https://njardarson.lab.arizona.edu/sites/njardarson.lab.arizona.edu/files/NjardarsonGroup2022Top200PosterV5.pdf.
Sarak S, et al. One-pot biocatalytic synthesis of nylon monomers from cyclohexanol using Escherichia coli-based concurrent cascade consortia. Green. Chem. 2021;23:9447–9453.
Yokozawa T, Ogawa M, Sekino A, Sugi R, Yokoyama A. Chain-growth polycondensation for well-defined aramide. Synthesis of unprece dented block copolymer containing aramide with low polydispersity. J. Am. Chem. Soc. 2002;124:15158–15159. PubMed
Zhang DW, Zhao X, Hou JL, Li ZT. Aromatic amide foldamers: structures, properties, and functions. Chem. Rev. 2012;112:5271–5316. PubMed
Gnanaprakasam B, Milstein D. Synthesis of amides from esters and amines with liberation of H2 under neutral conditions. J. Am. Chem. Soc. 2011;133:1682–1685. PubMed
Kumar V, Kumar M, Sharma S, Kumar N. Highly selective direct reductive amidation of nitroarenes with carboxylic acids using cobalt(II) phthalocyanine/PMHS. RSC Adv. 2014;4:11826.
Wang SP, Cheung CW, Ma JA. Direct amidation of carboxylic acids with nitroarenes. J. Org. Chem. 2019;84:13922–13934. PubMed
Mahjour B, Shen Y, Liu W, Cernak T. A map of the amine-carboxylic acid coupling system. Nature. 2020;580:71–75. PubMed
Cheung CW, Leendert Ploeger M, Hu X. Amide synthesis via nickel-catalysed reductive aminocarbonylation of aryl halides with nitroarenes. Chem. Sci. 2018;9:655–659. PubMed PMC
Allen CL, Chhatwal AR, Williams JM. Direct amide formation from unactivated carboxylic acids and amines. Chem. Commun. 2012;48:666–668. PubMed
Krause T, Baader S, Erb B, Goossen LJ. Atom-economic catalytic amide synthesis from amines and carboxylic acids activated in situ with acetylenes. Nat. Commun. 2016;7:11732. PubMed PMC
Valeur E, Bradley M. Amide bond formation: beyond the myth of coupling reagents. Chem. Soc. Rev. 2009;38:606–631. PubMed
Constable DJC, et al. Key green chemistry research areas—a perspective from pharmaceutical manufacturers. Green. Chem. 2007;9:411–420.
Zheng Y-L, Newman SG. Methyl esters as cross-coupling electrophiles: direct synthesis of amide bonds. ACS Catal. 2019;9:4426–4433.
Ben Halima T, Vandavasi JK, Shkoor M, Newman SG. A cross-coupling approach to amide bond formation from esters. ACS Catal. 2017;7:2176–2180.
Ben Halima T, Masson-Makdissi J, Newman SG. Nickel-catalyzed amide bond formation from methyl esters. Angew. Chem. Int. Ed. Engl. 2018;57:12925–12929. PubMed
Cheung CW, Ploeger ML, Hu X. Direct amidation of esters with nitroarenes. Nat. Commun. 2017;8:14878. PubMed PMC
Ning Y, et al. Site-specific umpolung amidation of carboxylic acids via triplet synergistic catalysis. Nat. Commun. 2021;12:4637. PubMed PMC
Ploeger ML, Darù A, Harvey JN, Hu X. Reductive cleavage of azoarene as a key step in Nickel-catalyzed amidation of esters with nitroarenes. ACS Catal. 2020;10:2845–2854.
Lundberg H, et al. Mechanistic elucidation of zirconium-catalyzed direct amidation. J. Am. Chem. Soc. 2017;139:2286–2295. PubMed
Ling L, Chen C, Luo M, Zeng X. Chromium-catalyzed activation of acyl C-O bonds with magnesium for amidation of esters with nitroarenes. Org. Lett. 2019;21:1912–1916. PubMed
Runikhina SA, et al. Catalytic utilization of converter gas - an industrial waste for the synthesis of pharmaceuticals. Chem. Sci. 2023;14:4346–4350. PubMed PMC
Gao J, et al. Cobalt single-atom catalysts for domino reductive amination and amidation of levulinic acid and related molecules to N-heterocycles. Chem. Catal. 2022;2:178–194.
Gao J, et al. Ambient hydrogenation and deuteration of alkenes using a nanostructured ni-core-shell catalyst. Angew. Chem. Int. Ed. Engl. 2021;60:18591–18598. PubMed PMC
Murugesan K, Beller M, Jagadeesh RV. Reusable Nickel nanoparticles-catalyzed reductive amination for selective synthesis of primary amines. Angew. Chem. Int. Ed. Engl. 2019;58:5064–5068. PubMed
Murugesan K, et al. Cobalt-nanoparticles catalyzed efficient and selective hydrogenation of aromatic hydrocarbons. ACS Catal. 2019;9:8581–8591.
Hernandez Mejia C, van der Hoeven JES, de Jongh PE, de Jong KP. Cobalt-Nickel nanoparticles supported on reducible oxides as Fischer-Tropsch catalysts. ACS Catal. 2020;10:7343–7354. PubMed PMC
Kim SS, Lee HH, Hong SC. The effect of the morphological characteristics of TiO2 supports on the reverse water–gas shift reaction over Pt/TiO2 catalysts. Appl. Catal. B: Environ. 2012;119-120:100–108.
Sarmah B, Srivastava R. Simple and economical synthesis of alkyl phenyl ethers by the reaction of phenols and alkyl esters using nanocrystalline beta. ACS Sustain. Chem. Eng. 2015;3:210–215.
Biswas S, et al. Expedient synthesis of bridged bicyclic nitrogen scaffolds via orthogonal tandem catalysis. Angew. Chem. Int. Ed. Engl. 2021;60:21988–21996. PubMed
Winn M, et al. Discovery, characterization and engineering of ligases for amide synthesis. Nature. 2021;593:391–398. PubMed
Huang Z, et al. Mn-catalyzed selective double and mono-n-formylation and n-methylation of amines by using CO2. ChemSusChem. 2019;12:3054–3059. PubMed
Liu W, et al. A durable Nickel single-atom catalyst for hydrogenation reactions and cellulose valorization under harsh conditions. Angew. Chem. Int Ed. Engl. 2018;57:7071–7075. PubMed
Hahn G, Kunnas P, de Jonge N, Kempe R. General synthesis of primary amines via reductive amination employing a reusable nickel catalyst. Nat. Catal. 2018;2:71–77.
Jagadeesh RV, et al. MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science. 2017;358:326–332. PubMed
Jagadeesh RV, et al. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science. 2013;342:1073–1076. PubMed
Gao J, et al. Probing the enhanced catalytic activity of carbon nanotube supported Ni-LaOx hybrids for the CO2 reduction reaction. Nanoscale. 2018;10:14207–14219. PubMed
Pews-Davtyan A, et al. Biomolecule-derived supported cobalt nanoparticles for hydrogenation of industrial olefins, natural oils and more in water. Green. Chem. 2019;21:5104–5112.
Nie R, et al. Recent advances in catalytic transfer hydrogenation with formic acid over heterogeneous transition metal catalysts. ACS Catal. 2021;11:1071–1095.
Ambrosi A, Denmark SE. Harnessing the power of the water-gas shift reaction for organic synthesis. Angew. Chem. Int. Ed. Engl. 2016;55:12164–12189. PubMed PMC
Wang T, et al. Engineering catalytic interfaces in Cu(δ+)/CeO2-TiO2 photocatalysts for synergistically boosting CO2 reduction to ethylene. ACS Nano. 2022;16:2306–2318. PubMed
Tarditi AM, et al. XPS study of the surface properties and Ni particle size determination of Ni-supported catalysts. Surf. Interface Anal. 2014;46:521–529.
Kang L, et al. Photo-thermo catalytic oxidation over a TiO2 -WO3 -supported platinum catalyst. Angew. Chem. Int. Ed. Engl. 2020;59:12909–12916. PubMed
Wang G, Liu Y, Ye J, Qiu W. Synthesis, microstructural characterization, and electrochemical performance of novel rod-like Ti4O7 powders. J. Alloy. Compd. 2017;704:18–25.
Biesinger MC, Payne BP, Lau LWM, Gerson A, Smart RSC. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf. Interface Anal. 2009;41:324–332.
Grosvenor AP, Biesinger MC, Smart RSC, McIntyre NS. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 2006;600:1771–1779.
Zhang K, et al. Levulinic acid hydrogenation to γ-valerolactone over single Ru atoms on a TiO2@nitrogen doped carbon support. Green. Chem. 2021;23:1621–1627.
Liang Z, et al. Highly curved nanostructure-coated Co, N-doped carbon materials for oxygen electrocatalysis. Angew. Chem. Int. Ed. Engl. 2021;60:12759–12764. PubMed
Xiao X, Lim SH, Chu W, Liu Y. Chitosan-derived porous N-doped carbon as a promising support for ru catalysts in one-pot conversion of cellobiose to hexitol. ACS Sustain. Chem. Eng. 2021;9:12655–12662.
Huang L, et al. Tuning the electron density of metal Nickel via interfacial electron transfer in Ni/MCM-41 for efficient and selective catalytic hydrogenation of halogenated nitroarenes. ACS Sustain. Chem. Eng. 2022;10:2947–2959.
Hanawa T. A comprehensive review of techniques for biofunctionalization of titanium. J. Periodontal. Implant Sci. 2011;41:263–272. PubMed PMC
Hauser JL, et al. A mesoporous aluminosilicate nanoparticle-supported Nickel–boron composite for the catalytic reduction of nitroarenes. ACS Appl. Nano Mater. 2019;2:1472–1483.
Natte K, Neumann H, Jagadeesh RV, Beller M. Convenient iron-catalyzed reductive aminations without hydrogen for selective synthesis of N-methylamines. Nat. Commun. 2017;8:1344. PubMed PMC