Streamlining the synthesis of amides using Nickel-based nanocatalysts

. 2023 Aug 17 ; 14 (1) : 5013. [epub] 20230817

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37591856

Grantová podpora
670986-NoNaCat EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)

Odkazy

PubMed 37591856
PubMed Central PMC10435480
DOI 10.1038/s41467-023-40614-1
PII: 10.1038/s41467-023-40614-1
Knihovny.cz E-zdroje

The synthesis of amides is a key technology for the preparation of fine and bulk chemicals in industry, as well as the manufacture of a plethora of daily life products. Furthermore, it constitutes a central bond-forming methodology for organic synthesis and provides the basis for the preparation of numerous biomolecules. Here, we present a robust methodology for amide synthesis compared to traditional amidation reactions: the reductive amidation of esters with nitro compounds under additives-free conditions. In the presence of a specific heterogeneous nickel-based catalyst a wide range of amides bearing different functional groups can be selectively prepared in a more step-economy way compared to previous syntheses. The potential value of this protocol is highlighted by the synthesis of drugs, as well as late-stage modifications of bioactive compounds. Based on control experiments, material characterizations, and DFT computations, we suggest metallic nickel and low-valent Ti-species to be crucial factors that makes this direct amide synthesis possible.

Zobrazit více v PubMed

Wang X. Challenges and outlook for catalytic direct amidation reactions. Nat. Catal. 2019;2:98–102.

Lundberg H, Tinnis F, Selander N, Adolfsson H. Catalytic amide formation from non-activated carboxylic acids and amines. Chem. Soc. Rev. 2014;43:2714–2742. PubMed

Williams, R. E. & Marshall, C. M. Top 200 brand name drugs by retail sales in 2022. https://njardarson.lab.arizona.edu/sites/njardarson.lab.arizona.edu/files/NjardarsonGroup2022Top200PosterV5.pdf.

Sarak S, et al. One-pot biocatalytic synthesis of nylon monomers from cyclohexanol using Escherichia coli-based concurrent cascade consortia. Green. Chem. 2021;23:9447–9453.

Yokozawa T, Ogawa M, Sekino A, Sugi R, Yokoyama A. Chain-growth polycondensation for well-defined aramide. Synthesis of unprece dented block copolymer containing aramide with low polydispersity. J. Am. Chem. Soc. 2002;124:15158–15159. PubMed

Zhang DW, Zhao X, Hou JL, Li ZT. Aromatic amide foldamers: structures, properties, and functions. Chem. Rev. 2012;112:5271–5316. PubMed

Gnanaprakasam B, Milstein D. Synthesis of amides from esters and amines with liberation of H2 under neutral conditions. J. Am. Chem. Soc. 2011;133:1682–1685. PubMed

Kumar V, Kumar M, Sharma S, Kumar N. Highly selective direct reductive amidation of nitroarenes with carboxylic acids using cobalt(II) phthalocyanine/PMHS. RSC Adv. 2014;4:11826.

Wang SP, Cheung CW, Ma JA. Direct amidation of carboxylic acids with nitroarenes. J. Org. Chem. 2019;84:13922–13934. PubMed

Mahjour B, Shen Y, Liu W, Cernak T. A map of the amine-carboxylic acid coupling system. Nature. 2020;580:71–75. PubMed

Cheung CW, Leendert Ploeger M, Hu X. Amide synthesis via nickel-catalysed reductive aminocarbonylation of aryl halides with nitroarenes. Chem. Sci. 2018;9:655–659. PubMed PMC

Allen CL, Chhatwal AR, Williams JM. Direct amide formation from unactivated carboxylic acids and amines. Chem. Commun. 2012;48:666–668. PubMed

Krause T, Baader S, Erb B, Goossen LJ. Atom-economic catalytic amide synthesis from amines and carboxylic acids activated in situ with acetylenes. Nat. Commun. 2016;7:11732. PubMed PMC

Valeur E, Bradley M. Amide bond formation: beyond the myth of coupling reagents. Chem. Soc. Rev. 2009;38:606–631. PubMed

Constable DJC, et al. Key green chemistry research areas—a perspective from pharmaceutical manufacturers. Green. Chem. 2007;9:411–420.

Zheng Y-L, Newman SG. Methyl esters as cross-coupling electrophiles: direct synthesis of amide bonds. ACS Catal. 2019;9:4426–4433.

Ben Halima T, Vandavasi JK, Shkoor M, Newman SG. A cross-coupling approach to amide bond formation from esters. ACS Catal. 2017;7:2176–2180.

Ben Halima T, Masson-Makdissi J, Newman SG. Nickel-catalyzed amide bond formation from methyl esters. Angew. Chem. Int. Ed. Engl. 2018;57:12925–12929. PubMed

Cheung CW, Ploeger ML, Hu X. Direct amidation of esters with nitroarenes. Nat. Commun. 2017;8:14878. PubMed PMC

Ning Y, et al. Site-specific umpolung amidation of carboxylic acids via triplet synergistic catalysis. Nat. Commun. 2021;12:4637. PubMed PMC

Ploeger ML, Darù A, Harvey JN, Hu X. Reductive cleavage of azoarene as a key step in Nickel-catalyzed amidation of esters with nitroarenes. ACS Catal. 2020;10:2845–2854.

Lundberg H, et al. Mechanistic elucidation of zirconium-catalyzed direct amidation. J. Am. Chem. Soc. 2017;139:2286–2295. PubMed

Ling L, Chen C, Luo M, Zeng X. Chromium-catalyzed activation of acyl C-O bonds with magnesium for amidation of esters with nitroarenes. Org. Lett. 2019;21:1912–1916. PubMed

Runikhina SA, et al. Catalytic utilization of converter gas - an industrial waste for the synthesis of pharmaceuticals. Chem. Sci. 2023;14:4346–4350. PubMed PMC

Gao J, et al. Cobalt single-atom catalysts for domino reductive amination and amidation of levulinic acid and related molecules to N-heterocycles. Chem. Catal. 2022;2:178–194.

Gao J, et al. Ambient hydrogenation and deuteration of alkenes using a nanostructured ni-core-shell catalyst. Angew. Chem. Int. Ed. Engl. 2021;60:18591–18598. PubMed PMC

Murugesan K, Beller M, Jagadeesh RV. Reusable Nickel nanoparticles-catalyzed reductive amination for selective synthesis of primary amines. Angew. Chem. Int. Ed. Engl. 2019;58:5064–5068. PubMed

Murugesan K, et al. Cobalt-nanoparticles catalyzed efficient and selective hydrogenation of aromatic hydrocarbons. ACS Catal. 2019;9:8581–8591.

Hernandez Mejia C, van der Hoeven JES, de Jongh PE, de Jong KP. Cobalt-Nickel nanoparticles supported on reducible oxides as Fischer-Tropsch catalysts. ACS Catal. 2020;10:7343–7354. PubMed PMC

Kim SS, Lee HH, Hong SC. The effect of the morphological characteristics of TiO2 supports on the reverse water–gas shift reaction over Pt/TiO2 catalysts. Appl. Catal. B: Environ. 2012;119-120:100–108.

Sarmah B, Srivastava R. Simple and economical synthesis of alkyl phenyl ethers by the reaction of phenols and alkyl esters using nanocrystalline beta. ACS Sustain. Chem. Eng. 2015;3:210–215.

Biswas S, et al. Expedient synthesis of bridged bicyclic nitrogen scaffolds via orthogonal tandem catalysis. Angew. Chem. Int. Ed. Engl. 2021;60:21988–21996. PubMed

Winn M, et al. Discovery, characterization and engineering of ligases for amide synthesis. Nature. 2021;593:391–398. PubMed

Huang Z, et al. Mn-catalyzed selective double and mono-n-formylation and n-methylation of amines by using CO2. ChemSusChem. 2019;12:3054–3059. PubMed

Liu W, et al. A durable Nickel single-atom catalyst for hydrogenation reactions and cellulose valorization under harsh conditions. Angew. Chem. Int Ed. Engl. 2018;57:7071–7075. PubMed

Hahn G, Kunnas P, de Jonge N, Kempe R. General synthesis of primary amines via reductive amination employing a reusable nickel catalyst. Nat. Catal. 2018;2:71–77.

Jagadeesh RV, et al. MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science. 2017;358:326–332. PubMed

Jagadeesh RV, et al. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science. 2013;342:1073–1076. PubMed

Gao J, et al. Probing the enhanced catalytic activity of carbon nanotube supported Ni-LaOx hybrids for the CO2 reduction reaction. Nanoscale. 2018;10:14207–14219. PubMed

Pews-Davtyan A, et al. Biomolecule-derived supported cobalt nanoparticles for hydrogenation of industrial olefins, natural oils and more in water. Green. Chem. 2019;21:5104–5112.

Nie R, et al. Recent advances in catalytic transfer hydrogenation with formic acid over heterogeneous transition metal catalysts. ACS Catal. 2021;11:1071–1095.

Ambrosi A, Denmark SE. Harnessing the power of the water-gas shift reaction for organic synthesis. Angew. Chem. Int. Ed. Engl. 2016;55:12164–12189. PubMed PMC

Wang T, et al. Engineering catalytic interfaces in Cu(δ+)/CeO2-TiO2 photocatalysts for synergistically boosting CO2 reduction to ethylene. ACS Nano. 2022;16:2306–2318. PubMed

Tarditi AM, et al. XPS study of the surface properties and Ni particle size determination of Ni-supported catalysts. Surf. Interface Anal. 2014;46:521–529.

Kang L, et al. Photo-thermo catalytic oxidation over a TiO2 -WO3 -supported platinum catalyst. Angew. Chem. Int. Ed. Engl. 2020;59:12909–12916. PubMed

Wang G, Liu Y, Ye J, Qiu W. Synthesis, microstructural characterization, and electrochemical performance of novel rod-like Ti4O7 powders. J. Alloy. Compd. 2017;704:18–25.

Biesinger MC, Payne BP, Lau LWM, Gerson A, Smart RSC. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf. Interface Anal. 2009;41:324–332.

Grosvenor AP, Biesinger MC, Smart RSC, McIntyre NS. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 2006;600:1771–1779.

Zhang K, et al. Levulinic acid hydrogenation to γ-valerolactone over single Ru atoms on a TiO2@nitrogen doped carbon support. Green. Chem. 2021;23:1621–1627.

Liang Z, et al. Highly curved nanostructure-coated Co, N-doped carbon materials for oxygen electrocatalysis. Angew. Chem. Int. Ed. Engl. 2021;60:12759–12764. PubMed

Xiao X, Lim SH, Chu W, Liu Y. Chitosan-derived porous N-doped carbon as a promising support for ru catalysts in one-pot conversion of cellobiose to hexitol. ACS Sustain. Chem. Eng. 2021;9:12655–12662.

Huang L, et al. Tuning the electron density of metal Nickel via interfacial electron transfer in Ni/MCM-41 for efficient and selective catalytic hydrogenation of halogenated nitroarenes. ACS Sustain. Chem. Eng. 2022;10:2947–2959.

Hanawa T. A comprehensive review of techniques for biofunctionalization of titanium. J. Periodontal. Implant Sci. 2011;41:263–272. PubMed PMC

Hauser JL, et al. A mesoporous aluminosilicate nanoparticle-supported Nickel–boron composite for the catalytic reduction of nitroarenes. ACS Appl. Nano Mater. 2019;2:1472–1483.

Natte K, Neumann H, Jagadeesh RV, Beller M. Convenient iron-catalyzed reductive aminations without hydrogen for selective synthesis of N-methylamines. Nat. Commun. 2017;8:1344. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Synthesis of aromatic amides from lignin and its derivatives

. 2025 Apr 11 ; 16 (1) : 3476. [epub] 20250411

Cobalt nanoparticle-catalysed N-alkylation of amides with alcohols

. 2024 Feb 05 ; 26 (3) : 1471-1477. [epub] 20231208

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...