Temporal Visual Field Border
Status PubMed-not-MEDLINE Jazyk angličtina Země Nový Zéland Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34376968
PubMed Central
PMC8349196
DOI
10.2147/opth.s321110
PII: 321110
Knihovny.cz E-zdroje
- Klíčová slova
- optimal eye parameters, perimetry, temporal visual field border, visual field,
- Publikační typ
- časopisecké články MeSH
PURPOSE: The aim of the study was to determine the physiological temporal visual field border, based on theoretical calculations and by perimetric examination itself. MATERIALS AND METHODS: A perimetry test was performed on 15 healthy subjects - seven women (27-30 years old) and eight men (28-46 years old), all of whom had healthy eyes with a visual acuity value of 1.0. The visual field was evaluated using a Medmont M700 with nasal displacement of the fixation point of 40 degrees. In total, 179 examined points of visual field were included. The model of the entry of temporal rays into the eye was created on the basis of the measured biometric values of the eye and with the help of the AD systems AutoCad and SolidWorks. RayViz for SolidWorks was able to simulate the passage of light rays through the model. RESULTS: The temporal part of the subjective visual field border was up to 110 degrees in all eyes. Modelling of the input rays based on geometric optics in one of the participants in the testing revealed a theoretical temporal boundary of the visual field of 102 degrees. CONCLUSION: Theoretical calculations of geometric optics have shown that the temporal boundary of the visual field reaches up to 102 degrees in a healthy individual. By perimetric examination, this limit reached 110 degrees.
Zobrazit více v PubMed
Kuthan V. Some contributions of J. E. Purkyně to the visual physiology. Physiol Bohemoslov. 1987;36:255–267. PubMed
Kurz J. Neuro-O phthalmology Diagnostics. SZN Praha; 1956:1018.
Heissigerová J. Ophthalmology. Maxdorf Jessenius; 2018. ISBN 978-80-7345-580-4.
Skorkovská K. Perimetry. Grada Publishing a.s; 2015. ISBN 978-80-247-5282-2.
Pöppel E, Harvey LO Jr. Light-difference threshold and subjective brightness in the periphery of the visual field. Psychol Forsch. 1973;36:145–161. doi:10.1007/BF00424967 PubMed DOI
Spector RH. Chapter 16: Visual Fields. In: Clinical Methods: The History, Physical, and Laboratory Examinations. Walker K, Hall WD, Hurst JW, editors. 3rd ed. Boston: Butterworths; 1990. ISBN-10: 0-409-90077-X. PubMed
Heijl A, Patella VM. Essential Perimetry. The Field Analyser Primer. 3rd ed. Carl Zeiss Meditec, Inc; 2002. ISBN 0-9721560-0-3.
Heijl A, Patella VM, Bengtssone B. Effective Perimetry: The Field Analyser Primer. 4th ed. Carl Zeiss Meditec, Inc.; 2012. ISBN 0-9884795-0-8.
Racette L, Fischer M, Bebie H, Holló G, Johnson CA, Matsumoto C. A Guide to Perimetry and the Octopus Perimeter. 7th ed. Könitz, Switzerland: Haag-Streit AG; 2018. ISBN: 978-3-033-06551-2.
Simpson MJ. Mini-review: far peripheral vision. Vision Res. 2017;140:96–105. doi:10.1016/j.visres.2017.08.001 PubMed DOI
Ramasubramanian V, Meyer D, Kollbaum PS, Bradley A. Experimental model of far temporal field negative dysphotopsia generated in Phakic eyes. Invest Ophthalmol Vis Sci. 2020;61(5):24. doi:10.1167/iovs.61.5.24 PubMed DOI PMC
Østerberg G. Topography of the layer of rods and cones in the human retina. Acta Ophthalmol Suppl. 1935;13:1–102.
Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. Human photoreceptor topogtraphy. J Comp Neurol. 1990;292:497–523. doi:10.1002/cne.902920402 PubMed DOI
Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990;300(1):5–25. PMID: 2229487. doi:10.1002/cne.903000103 PubMed DOI
Otradovec J. Klinická Neurooftalmologie. Grada Publishing; 2003. ISBN 80-247-0280-0.
Morgan JE, Uchida H, Caprioli J. Retinal ganglion cell death in experimental glaucoma. Br J Ophthalmol. 2000;84:303–310. doi:10.1136/bjo.84.3.303 PubMed DOI PMC
Shou T, Liu J, Wang W, et al. Differential dendritic shrinkage of α and β retinal ganglion cells in cats with chronic glaucoma. Invest Ophthalmol Vis Sci. 2003;44:3005–3010. doi:10.1167/iovs.02-0620 PubMed DOI
Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci. 2000;41:741–748. PubMed
Lešták J, Fůs M. Visual field assessment in hypertension glaucoma. Cesk Slov Oftalmol. 2021;77:20–24. doi:10.31348/2021/12 PubMed DOI