Sensitivity Analysis of Stochastic Calculation of SCC Regarding Aggressive Environment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34832240
PubMed Central
PMC8618124
DOI
10.3390/ma14226838
PII: ma14226838
Knihovny.cz E-zdroje
- Klíčová slova
- concrete, fibres, self-compacting concrete, sensitivity analysis, stochastic analysis,
- Publikační typ
- časopisecké články MeSH
Probabilistic procedures considering the durability with respect to corrosion of reinforcement caused by aggressive substances are widely applied; however, they are based on narrow assumptions. The aspects need to be evaluated both in terms of the search for suitable application of the various experimental results and in terms of their impact on the result of the stochastic assessment itself. In this article, sensitivity analysis was used as an ideal tool to prove how input parameters affect the results of the evaluation, with consideration of different types of concrete (ordinary or self-compacting with and without fibres). These concretes may be used in aggressive environments, as an industrial floor or as a part of the load-bearing bridge structure. An example of a reinforced concrete bridge deck was selected as the solved structure. The results show that in the case of a classic evaluation, a larger amount of fibre reports a lower resistance of concrete, which contradicts the assumptions. The sensitivity analysis then shows that self-compacting concrete is more sensitive to the values of the diffusion coefficient, and with the consideration of fibres, the effect is even greater.
Zobrazit více v PubMed
Yan L., Chouw N. Sustainable Concrete and Structures with Natural Fibre Reinforcements. In: Lu Y., editor. Infrastructure Corrosion and Durability—A Sustainability Study. OMICS Group Incorporation; Hyderabad, India: 2014. pp. 1–25.
Sharbatdar M.K., Abbasi M., Fakharian P. Improving the Properties of Self-compacted Concrete with Using Combined Silica Fume and Metakaolin. Period. Polytech. Civ. Eng. 2020;62:535–544. doi: 10.3311/PPci.11463. DOI
Kocot A., Ponikiewski T. Influence of Artificial Waste Modification on Strength of Cementitious Composite. Trans. VSB—Tech. Univ. Ostrav. Civ. Eng. Ser. 2021;21:7. doi: 10.35181/tces-2021-0003. DOI
Stevulova N., Vaclavik V., Hospodarova V., Dvorský T. Recycled Cellulose Fiber Reinforced Plaster. Materials. 2021;14:2986. doi: 10.3390/ma14112986. PubMed DOI PMC
Gholampour A., Ozbakkaloglu T. Time-dependent and long-term mechanical properties of concretes incorporating different grades of coarse recycled concrete aggregates. Eng. Struct. 2018;157:224–234. doi: 10.1016/j.engstruct.2017.12.015. DOI
Lee D., Son S., Kim D., Kim S. Special-Length-Priority Algorithm to Minimize Reinforcing Bar-Cutting Waste for Sustainable Construction. Sustainability. 2020;12:5950. doi: 10.3390/su12155950. DOI
Svintsov A.P., Shchesnyak E.L., Galishnikova V.V., Fediuk R.S., Stashevskaya N.A. Effect of nano-modified additives on properties of concrete mixtures during winter season. Constr. Build. Mater. 2020;237:117527. doi: 10.1016/j.conbuildmat.2019.117527. DOI
Okrajnov-Bajic R., Vasovic D. Self-compacting concrete and its application in contemporary architectural practice. Spatium. 2009:28–34. doi: 10.2298/SPAT0920028O. DOI
Alberti M., Enfedaque A., Galvez J. Fibre reinforced concrete with a combination of polyolefin and steel-hooked fibres. Compos. Struct. 2017;171:317–325. doi: 10.1016/j.compstruct.2017.03.033. DOI
Ponikiewski T., Katzer J. Fresh Mix Characteristics of Self-Compacting Concrete Reinforced by Fibre. Period. Polytech. Civ. Eng. 2016;61:226–231. doi: 10.3311/PPci.9008. DOI
Geiker M., Jacobsen S. Self-compacting concrete (SCC) Dev. Formul. Reinf. Concr. 2019:229–256. doi: 10.1016/b978-0-08-102616-8.00010-1. DOI
Kessler S., Gehlen C. Measurement Uncertainty and POD and Its Influence Remaining Service Life Evaluation; Proceedings of the 3rd International fib Congress and Exhibition, Incorporating the PCI Annual Convention and Bridge Conference: Think Globally, Build Locally, Proceedings; Washington, DC, USA. 29 May–3 June 2010.
Abrishambaf A., Barros J.A., Cunha V.M. Tensile stress–crack width law for steel fibre reinforced self-compacting concrete obtained from indirect (splitting) tensile tests. Cem. Concr. Compos. 2015;57:153–165. doi: 10.1016/j.cemconcomp.2014.12.010. DOI
Faraj R.H., Mohammed A.A., Mohammed A., Omer K.M., Ahmed H.U. Systematic multiscale models to predict the compressive strength of self-compacting concretes modified with nanosilica at different curing ages. Eng. Comput. 2021:1–24. doi: 10.1007/s00366-021-01385-9. DOI
Asteris P.G., Ashrafian A., Rezaie-Balf M. Prediction of the Compressive Strength of Self-Compacting Concrete Using Surrogate Models. Comput. Concr. 2019;24:137–150. doi: 10.12989/cac.2019.24.2.137. DOI
Lehner P., Konečný P., Ponikiewski T. Comparison of Material Properties of SCC Concrete with Steel Fibres Related to Ingress of Chlorides. Crystals. 2020;10:220. doi: 10.3390/cryst10030220. DOI
Stawiski B., Kania T. Tests of Concrete Strength across the Thickness of Industrial Floor Using the Ultrasonic Method with Exponential Spot Heads. Materials. 2020;13:2118. doi: 10.3390/ma13092118. PubMed DOI PMC
Ganesha M., Umesh S.S., Anand V.R. Research on the Strength Parameters of Poly Propylene Fiber Reinforced Concrete and Steel Fiber Reinforced Concrete. Int. J. Recent Technol. Eng. 2019;8:954–957. doi: 10.35940/ijrte.b1182.0882s819. DOI
da Silva G.C.S., Christ R., Pacheco F., de Souza C.F.N., Gil A.M., Tutikian B.F. Evaluating steel fiber-reinforced self-consolidating concrete performance. Struct. Concr. 2020;21:448–457. doi: 10.1002/suco.201900141. DOI
Safehian M., Ramezanianpour A.A. Prediction of RC structure service life from field long term chloride diffusion. Comput. Concr. 2015;15:589–606. doi: 10.12989/cac.2015.15.4.589. DOI
Zhuo W., Yan Q., Yang Z., Lin S., Lin K., He F. Chloride Penetration in Coastal Concrete Structures: Field Investigation and Model Development. Adv. Mater. Sci. Eng. 2019;2019:1–16. doi: 10.1155/2019/4537283. DOI
Kožar I., Malić N.T., Simonetti D., Božić Ž. Stochastic properties of bond-slip parameters at fibre pull-out. Eng. Fail. Anal. 2020;111:104478. doi: 10.1016/j.engfailanal.2020.104478. DOI
Zambon I., Ariza M.P.S., e Matos J.C., Strauss A. Value of Information (VoI) for the Chloride Content in Reinforced Concrete Bridges. Appl. Sci. 2020;10:567. doi: 10.3390/app10020567. DOI
Loreto G., Di Benedetti M., De Luca A., Nanni A. Assessment of reinforced concrete structures in marine environment: A case study. Corros. Rev. 2019;37:57–69. doi: 10.1515/corrrev-2018-0046. DOI
Zięba J., Buda-Ożóg L., Skrzypczak I. Probabilistic method and FEM analysis in the design and analysis of cracks widths. Eng. Struct. 2019;209:110022. doi: 10.1016/j.engstruct.2019.110022. DOI
Arregui-Mena J.D., Margetts L., Mummery P.M. Practical Application of the Stochastic Finite Element Method. Arch. Comput. Methods Eng. 2014;23:171–190. doi: 10.1007/s11831-014-9139-3. DOI
Vu K.A.T., Stewart M.G. Structural reliability of concrete bridges including improved chloride-induced corrosion models. Struct. Saf. 2000;22:313–333. doi: 10.1016/S0167-4730(00)00018-7. DOI
Metropolis N., Ulam S. The Monte Carlo Method. J. Am. Stat. Assoc. 1949;44:335. doi: 10.1080/01621459.1949.10483310. PubMed DOI
Marek P., Brozzetti J., Gustar M., Elishakoff I. Probabilistic Assessment of Structures using Monte Carlo Simulations. Appl. Mech. Rev. 2002;55:B31–B32. doi: 10.1115/1.1451167. DOI
Lehner P., Horňáková M., Konečný P. Numerical Approximation of Time-Dependent Chloride Diffusion Model Parameters via Probabilistic Monte Carlo Method. AIP Conf. Proc. 2020;2293:130007.
Rao K.D., Gopika V., Rao V.S., Kushwaha H., Verma A., Srividya A. Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment. Reliab. Eng. Syst. Saf. 2009;94:872–883. doi: 10.1016/j.ress.2008.09.007. DOI
Saltelli A. Sensitivity Analysis for Importance Assessment. Risk Anal. 2002;22:579–590. doi: 10.1111/0272-4332.00040. PubMed DOI
Faifer M., Ferrara L., Ottoboni R., Toscani S. Low Frequency Electrical and Magnetic Methods for Non-Destructive Analysis of Fiber Dispersion in Fiber Reinforced Cementitious Composites: An Overview. Sensors. 2013;13:1300–1318. doi: 10.3390/s130101300. PubMed DOI PMC
Zhu Y., Blumenthal W.R., Lowe T.C. Determination of Non-Symmetric 3-D Fiber-Orientation Distribution and Average Fiber Length in Short-Fiber Composites. J. Compos. Mater. 1997;31:1287–1301. doi: 10.1177/002199839703101302. DOI
Balázs G.L., Czoboly O., Lublóy É., Kapitány K., Barsi Á. Observation of steel fibres in concrete with Computed Tomography. Constr. Build. Mater. 2017;140:534–541. doi: 10.1016/j.conbuildmat.2017.02.114. DOI
Scannell W.T., Sohanghpurwala A.A. Verification of Effectiveness of Epoxy-Coated Rebars. Pennsylvania Department of Transportation; Harrisburg, PA, USA: 1998. pp. 5–96. Epoxy-Coated Rebars, Final Report to Pennsylvania Department of Transportation, Project No 94-05; Concorr. Ing.
Darwin D., Browning J., O’Reilly M., Xing L., Ji J. Critical Chloride Corrosion Threshold of Galvanized Reinforcing Bars. ACI Mater. J. 2009;106:176–183.
Weyers R.E., Pyc W., Sprinkel M.M. Estimating the Service Life of Epoxy-Coated Reinforcing Steel. ACI Mater. J. 1998;95:546–557.
Lehner P., Konečnỳ P., Ponikiewski T. Relationship between Mechanical Properties and Conductivity of SCC Mixtures with Steel Fibres. In: Katzer J., Cichocki K., Domski J., editors. Research and Modelling in Civil Engineering 2018. Koszalin University of Technology; Koszalin, Poland: 2018.
Konečný P., Lehner P., Ponikiewski T., Miera P. Comparison of Chloride Diffusion Coefficient Evaluation Based on Electrochemical Methods. Procedia Eng. 2017;190:193–198. doi: 10.1016/j.proeng.2017.05.326. DOI
Sucharda O., Lehner P., Konečný P., Ponikiewski T. Investigation of Fracture Properties by Inverse Analysis on Selected SCC Concrete Beams with Different Amount of Fibres. Volume 13. Elsevier; Amsterdam, The Netherlands: 2018. pp. 1533–1538.
Lehner P., Ghosh P., Konečný P. Statistical analysis of time dependent variation of diffusion coefficient for various binary and ternary based concrete mixtures. Constr. Build. Mater. 2018;183:75–87. doi: 10.1016/j.conbuildmat.2018.06.048. DOI
Konečný P., Lehner P., Ghosh P., Morávková Z., Tran Q. Comparison of procedures for the evaluation of time dependent concrete diffusion coefficient model. Constr. Build. Mater. 2020;258:119535. doi: 10.1016/j.conbuildmat.2020.119535. DOI
Konečný P., Veselý V., Lehner P., Pieszka D., Žídek L. Investigation of Selected Physical Parameters of Cementitious Composite during Sequential Fracture Test. Adv. Mater. Res. 2014;969:228–233. doi: 10.4028/www.scientific.net/AMR.969.228. DOI
Le T.D., Lehner P., Konečný P. Probabilistic Modeling of Chloride Penetration with Respect to Concrete Heterogeneity and Epoxy-Coating on the Reinforcement. Materials. 2019;12:4068. doi: 10.3390/ma12244068. PubMed DOI PMC
Konečný P., Lehner P. Effect of cracking and randomness of inputs on corrosion initiation of reinforced concrete bridge decks exposed to chlorides. Frat. Ed. Integrità Strutt. 2016;11:29–37. doi: 10.3221/IGF-ESIS.39.04. DOI
Boddy A., Bentz E., Thomas M., Hooton R. An overview and sensitivity study of a multimechanistic chloride transport model. Cem. Concr. Res. 1999;29:827–837. doi: 10.1016/S0008-8846(99)00045-9. DOI
Král P., Hradil P., Hušek M., Kala J., Kala Z. Sensitivity analysis and optimization as tools for the inverse concrete material model parameter identification; Proceedings of the International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2017); Thessaloniki, Greece. 25–30 September 2017; New York, NY, USA: AIP Publishing; 2018. p. 430010.
Kala Z., Kala J., Simos T.E., Psihoyios G., Tsitouras C., Anastassi Z. Sensitivity Analysis of Stability Problems of Steel Structures using Shell Finite Elements and Nonlinear Computation Methods. AIP Conf. Proc. 2011;1389:1865.
Schober P., Boer C., Schwarte L.A. Correlation Coefficients. Anesth. Analg. 2018;126:1763–1768. doi: 10.1213/ANE.0000000000002864. PubMed DOI
Ghosh P., Konečný P., Tikalsky P.J. SBRA Model for Corrosion Initiation of Concrete Structures. Model. Corroding Concr. Struct. 2011;5:85–100. doi: 10.1007/978-94-007-0677-4_5. DOI
Zhang X.-G., Zhao Y.-G., Xing F., Lu Z.-H. Coupling effects of influence factors on probability of corrosion initiation time of reinforced concrete. J. Cent. South. Univ. Technol. 2011;18:223–229. doi: 10.1007/s11771-011-0683-9. DOI
Ponikiewski T., Katzer J., Bugdol M., Rudzki M. X-ray computed tomography harnessed to determine 3D spacing of steel fibres in self compacting concrete (SCC) slabs. Constr. Build. Mater. 2015;74:102–108. doi: 10.1016/j.conbuildmat.2014.10.024. DOI