Recycled Cellulose Fiber Reinforced Plaster

. 2021 May 31 ; 14 (11) : . [epub] 20210531

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34072982

Grantová podpora
VEGA 1/0222/19 Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR

This paper aims to develop recycled fiber reinforced cement plaster mortar with a good workability of fresh mixture, and insulation, mechanical and adhesive properties of the final hardened product for indoor application. The effect of the incorporation of different portions of three types of cellulose fibers from waste paper recycling into cement mortar (cement/sand ratio of 1:3) on its properties of workability, as well as other physical and mechanical parameters, was studied. The waste paper fiber (WPF) samples were characterized by their different cellulose contents, degree of polymerization, and residues from paper-making. The cement to waste paper fiber mass ratios (C/WPF) ranged from 500:1 to 3:1, and significantly influenced the consistency, bulk density, thermal conductivity, water absorption behavior, and compressive and flexural strength of the fiber-cement mortars. The workability tests of the fiber-cement mortars containing less than 2% WPF achieved optimal properties corresponding to plastic mortars (140-200 mm). The development of dry bulk density and thermal conductivity values of 28-day hardened fiber-cement mortars was favorable with a declining C/WPF ratio, while increasing the fiber content in cement mortars led to a worsening of the water absorption behavior and a lower mechanical performance of the mortars. These key findings were related to a higher porosity and weaker adhesion of fibers and cement particles at the matrix-fiber interface. The adhesion ability of fiber-cement plastering mortar based on WPF samples with the highest cellulose content as a fine filler and two types of mixed hydraulic binder (cement with finely ground granulated blast furnace slag and natural limestone) on commonly used substrates, such as brick and aerated concrete blocks, was also investigated. The adhesive strength testing of these hardened fiber-cement plaster mortars on both substrates revealed lime-cement mortar to be more suitable for fine plaster. The different behavior of fiber-cement containing finely ground slag manifested in a greater depth of the plaster layer failure, crack formation, and in greater damage to the cohesion between the substrate and mortar for the observed time.

Zobrazit více v PubMed

Ellen MacArthur Foundation Towards the Circular Economy. Economic and Business Rationale for an Accelerated Transition. [(accessed on 3 May 2021)];2013 Available online: https://www.ellenmacarthurfoundation.org/assets/downloads/publications/Ellen-MacArthur-Foundation-Towards-the-Circular-Economy-vol.1.pdf.

Shiny Brintha G., Sakthieswaran N. Improving the performance of concrete by adding industrial by products as partial replacement for binder and fine aggregate. Int. J. Adv. Eng. 2016;7:932–936.

Gholampour A., Ozbakkaloglu T. A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. J. Mater. Sci. 2020;55:829–892. doi: 10.1007/s10853-019-03990-y. DOI

Madurwar M.V., Ralegaonkar R.V., Mandavgane S.A. Application of agro-waste for sustainable construction materials: A review. Constr. Build. Mater. 2013;38:872–878. doi: 10.1016/j.conbuildmat.2012.09.011. DOI

Yan L., Kasal B., Huang L. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos. B Eng. 2016;92:94–132. doi: 10.1016/j.compositesb.2016.02.002. DOI

Dalmay P., Smith A., Chotard T., Sahay-Turner P., Gloaguen V., Krausz P. Properties of cellulosic fibre reinforced plaster: Influence of hemp or flax fibres on the properties of set gypsum. J. Mater. Sci. 2010;45:793–803. doi: 10.1007/s10853-009-4002-x. DOI

Onuaguluchi O., Banthia N. Plant-based natural fibre reinforced cement composites: A review. Cem. Concr. Res. 2016;68:96–108. doi: 10.1016/j.cemconcomp.2016.02.014. DOI

Xie X., Zhou Z., Jiang M., Xu X., Wang Z., Hui D. Cellulosic fibers from rice straw and bamboo used as reinforcement of cement-based composites for remarkably improving mechanical properties. Compos. B Eng. 2015;78:153–161. doi: 10.1016/j.compositesb.2015.03.086. DOI

Faruk O., Bledzki A.K., Fink H.P., Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012;37:1552–1596. doi: 10.1016/j.progpolymsci.2012.04.003. DOI

Anandamurthy A., Guna V., Ilangovan M., Reddy N. A review of fibrous reinforcements of concrete. J. Reinf. Plast. Compos. 2017;36:519–552. doi: 10.1177/0731684416685168. DOI

Fu T., Moon R.J., Zavattieri P., Youngblood J., Weiss W.J. Cellulose Nanomaterials as Additives for Cementitious Materials. In: Jawaid M., Boufi S., Abdul Khalil H.P.S., editors. Cellulose-Reinforced Nanofiber Composites: Production, Properties and Applications. 1st ed. Elsevier; Amsterdam, The Netherlands: 2017. pp. 455–482. DOI

Galan-Marin C., Rivera-Gomez C., Garcia-Martinez A. Use of natural-fiber biocomposites in construction versus traditional solutions: Operational and embodied energy assessment. Materials. 2016;9:465. doi: 10.3390/ma9060465. PubMed DOI PMC

Cabeza L.F., Rincón L., Vilariño V., Pérez G., Castell A. Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renew. Sustain. Energy Rev. 2014;29:394–416. doi: 10.1016/j.rser.2013.08.037. DOI

D’Alessandro A., Pisello A.L., Fabiani C., Ubertini F., Cabeza L.F., Cotana F. Multifunctional smart concretes with novel phase change materials: Mechanical and thermo-energy investigation. Appl. Energy. 2018;212:1448–1461. doi: 10.1016/j.apenergy.2018.01.014. DOI

Filho A.S., Parveen S., Rana S., Vanderlei R., Fangueiro R. Micro-structure and mechanical properties of microcrystalline cellulose-sisal fiber reinforced cementitious composites developed using cetyltrimethylammonium bromide as the dispersing agent. Cellulose. 2021;28:1663–1686. doi: 10.1007/s10570-020-03641-5. DOI

Fujiyama R., Darwish F., Pereira M.V. Mechanical characterization of sisal reinforced cement mortar. Theor. Appl. Mech. Lett. 2014;4:061002. doi: 10.1063/2.1406102. DOI

Chakraborty S., Kundu S.P., Roy A., Basak R.K., Adhikari B., Majumder S.B. Improvement of the mechanical properties of jute fibre reinforced cement mortar: A statistical approach. Constr. Build. Mater. 2013;38:776–784. doi: 10.1016/j.conbuildmat.2012.09.067. DOI

Fan M., Fu F. A Perspective—Natural Fibre Composites in Construction. In: Fan M., Fu F., editors. Advanced High Strength Natural Fibre Composites in Construction. 1st ed. Elsevier; Amsterdam, The Netherlands: 2017. pp. 1–20. DOI

Mohammadkazemi F., Doosthoseini K., Ganjian E., Azin M. Manufacturing of bacterial nano-cellulose reinforced fiber−cement composites. Constr. Build. Mater. 2015;101:958–964. doi: 10.1016/j.conbuildmat.2015.10.093. DOI

Balea A., Fuente E., Blanco A., Negro C. Nanocelluloses: Natural-based materials for fiber-reinforced cement composites. A critical review. Polymers. 2019;11:518. doi: 10.3390/polym11030518. PubMed DOI PMC

De Pellegrin M.Z., Acordi J., Montedo O.R.K. Influence of the lenght and the content of cellulose fibres obtained from sugarcane bagasse on the mechanical properties of fiber-reinforced mortar composites. J. Nat. Fibers. 2021;18:111–121. doi: 10.1080/15440478.2019.1612311. DOI

Benaniba S., Driss Z., Djendel M., Raouache E., Boubaaya R. Thermo-mechanical characterization of a bio-composite mortar reinforced with date palm fiber. J. Eng. Fibers Fabr. 2020;15:1–9. doi: 10.1177/1558925020948234. DOI

Dylewski R., Adamczyk J. The comparison of thermal insulation types of plaster with cement plaster. J. Clean. Prod. 2014;83:256–262. doi: 10.1016/j.jclepro.2014.07.042. DOI

Ashori A., Tabarsa T., Valizadeh I. Fiber reinforced cement boards made from recycled newsprint paper. Mater. Sci. Eng. A. 2011;528:7801–7804. doi: 10.1016/j.msea.2011.07.005. DOI

Wang Z., Li H., Jiang Z., Chen Q. Effect of waste paper fiber on properties of cement based mortar and relative mechanism. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2018;33:419–426. doi: 10.1007/s11595-018-1839-2. DOI

Di Bella G., Fiore V., Galtieri G., Borsellino C., Valenza A. Effects of natural fibres reinforcement in lime plasters (kenaf and sisal vs. polypropylene) Constr. Build. Mater. 2014;58:159–165. doi: 10.1016/j.conbuildmat.2014.02.026. DOI

Sakthieswaran N., Sophia M. Prosopis juliflora fibre reinforced green building plaster materials—An eco friendly weed control technique by effective utilization. Environ. Technol. Innov. 2020;20:101158. doi: 10.1016/j.eti.2020.101158. DOI

Jia R., Wang Q., Feng P. A comprehensive overview of fibre-reinforced gypsum-based composites (FRGCs) in the construction field. Compos. Part B Eng. 2021;205:108540. doi: 10.1016/j.compositesb.2020.108540. DOI

D’Alessandro F., Asdrubali F., Mencarelli N. Experimental evaluation and modelling of the sound absorption properties of plants for indoor acoustic applications. Build. Environ. 2015;94:913–923. doi: 10.1016/j.buildenv.2015.06.004. DOI

Qamar F., Thomas T., Ali M. Use of natural fibrous plaster for improving the out of plane lateral resistance of mortarless interlocked masonry walling. Constr. Build. Mater. 2018;174:320–329. doi: 10.1016/j.conbuildmat.2018.04.064. DOI

Menna C., Asprone D., Durante M., Zinno A., Balsamo A., Prota A. Structural behaviour of masonry panels strengthened with an innovative hemp fibre composite grid. Constr. Build. Mater. 2015;100:111–121. doi: 10.1016/j.conbuildmat.2015.09.051. DOI

Sair S., Mandili B., Taqi M., El Bouari A. Development of a new eco-friendly composite material based on gypsum reinforced with a mixture of cork fibre and cardboard waste for building thermal insulation. Compos. Commun. 2019;16:20–24. doi: 10.1016/j.coco.2019.08.010. DOI

Gil L., Berant-Masó E., Caňavate F.J. Changes in properties of cement and lime mortars when incorporating fibers from end-of-life tires. Fibers. 2016;4:7. doi: 10.3390/fib4010007. DOI

Yousefieh N., Joshaghani A., Hajibandeh E., Shekarchi M. Influence of fibres on drying shrinkage in restrained concrete. Constr. Build. Mater. 2017;148:833–845. doi: 10.1016/j.conbuildmat.2017.05.093. DOI

Fu T., Moon R.J., Zavattieri P., Youngblood J., Weiss W.J. Cellulose Nanomaterials as Additives for Cementitious Materials. In: Jawaid M., Boufi S., Abdul Khalil H.P.S., editors. Composites Science and Engineering, Cellulose-Reinforced Nanofibre Composites. Woodhead Publishing; Sawston/Cambridge, UK: 2017. pp. 455–482. (Woodhead Publishing Series). DOI

Iucolano F., Caputo D., Leboffe F., Liguori B. Mechanical behavior of plaster reinforced with abaca fibers. Constr. Build. Mater. 2015;99:184–191. doi: 10.1016/j.conbuildmat.2015.09.020. DOI

Andic-Cakir O., Sarikanat M., Tufekci H.B., Demirci C., Erdogan U.H. Physical and mechanical properties of randomly oriented coir fiber-cementitious composites. Compos. Part B Eng. 2014;61:49–54. doi: 10.1016/j.compositesb.2014.01.029. DOI

Ouedraogo M., Dao K., Millogo Y., Aubert J.-E., Messan A., Seynou M., Zerbo L., Gomina M.M. Physical, thermal and mechanical properties of adobes stabilized with fonio (Digitaria exilis) straw. J. Build. Eng. 2019;23:250–258. doi: 10.1016/j.jobe.2019.02.005. DOI

Iucolano F., Boccarusso L., Langella A. Hemp as eco-friendly substitute of glass fibres for gypsum reinforcement: Impact and flexural behaviour. Compos. Part B Eng. 2019;175:107073. doi: 10.1016/j.compositesb.2019.107073. DOI

Boccarusso L., Durante M., Iucolano F., Mocerino D., Langella A. Production of hemp-gypsum composites with enhanced flexural and impact resistance. Constr. Build. Mater. 2020;260:120476. doi: 10.1016/j.conbuildmat.2020.120476. DOI

Gregoire M., de Luycker E., Bar M., Musio S., Amaducci S., Ouagne P. Study of solutions to optimize the extraction of hemp fibers for composite materials. SN Appl. Sci. 2019;1:1293. doi: 10.1007/s42452-019-1332-4. DOI

Iucolano F., Liguori B., Aprea P., Caputo D. Evaluation of bio-degummed hemp fibers as reinforcement in gypsum plaster. Compos. Part B Eng. 2018;138:149–156. doi: 10.1016/j.compositesb.2017.11.037. DOI

Charai M., Sghiouri H., Mezrhab A., Karkri M. Thermal insulation potential of non-industrial hemp (Moroccan cannabis sativa L.) fibers for green plaster-based building materials. J. Clean. Prod. 2021;292:126064. doi: 10.1016/j.jclepro.2021.126064. DOI

Senff L., Ascensão G., Ferreira V.M., Seabra M.P., Labrincha J.A. Development of multifunctional plaster using nano-TiO2 and distinct particle size cellulose fibers. Energy Build. 2018;158:721–735. doi: 10.1016/j.enbuild.2017.10.060. DOI

Fan M., Ndikontar M.K., Zhou X., Ngamveng J.N. Cement-bonded composites made from tropical woods: Compatibility of wood and cement. Constr. Build. Mater. 2012;36:135–140. doi: 10.1016/j.conbuildmat.2012.04.089. DOI

Kochova K., Schollbach K., Gauvin F., Brouwers H.J.H. Effect of saccharides on the hydration of ordinary Portland cement. Constr. Build. Mater. 2017;150:268–275. doi: 10.1016/j.conbuildmat.2017.05.149. DOI

Le Troëdec M., Dalmay P., Patapy C., Peyratout C., Smith A., Cotard T. Mechanical properties of hemp-lime reinforced mortars: Influence of the chemical treatment of fibers. J. Compos. Mater. 2011;45:2347–2357. doi: 10.1177/0021998311401088. DOI

Sawsen C., Fouzia K., Mohamed B., Moussa G. Effect of flax fibers treatments on the rheological and the mechanical behavior of a cement composite. Constr. Build. Mater. 2015;79:229–235. doi: 10.1016/j.conbuildmat.2014.12.091. DOI

Tonoli G.H.D., Belgacem M.N., Siqueira G., Bras J., Savastano H., Rocco Lahr F.A. Processing and dimensional changes of cement based composites reinforced with surface-treated cellulose fibres. Cem. Concr. Compos. 2013;37:68–75. doi: 10.1016/j.cemconcomp.2012.12.004. DOI

Aigbomian E.P., Fan M. Development of wood-crete materials from sawdust and waste paper. Constr. Build. Mater. 2013;40:361–366. doi: 10.1016/j.conbuildmat.2012.11.018. DOI

Merli R., Preziosi M., Acampora A., Lucchetti M.C., Petrucci E. Recycled fibers in reinforced concrete: A systematic literature review. J. Clean. Prod. 2020;248:119207. doi: 10.1016/j.jclepro.2019.119207. DOI

Mikhailidi A., Kotelnikova N. Chemical recycling of wastepaper to valuable products. Bull. Polytech. Inst. Jassy. 2021;67:1–8.

Sangrutsamee V., Srichandr P., Poolthong N. Re-pulped waste paper-based composite building materials with low thermal conductivity. J. Asian Archit. Build. Eng. 2012;11:147–151. doi: 10.3130/jaabe.11.147. DOI

Mármol G., Santos S.F., Savastano H., Borrachero M.V., Monzó J., Payá J. Mechanical and physical performance of low alkalinity cementitious composites reinforced with recycled cellulosic fibres pulp from cement kraft bags. Ind. Crops Prod. 2013;49:422–427. doi: 10.1016/j.indcrop.2013.04.051. DOI

Stevulova N., Hospodarova V., Junak J. Potential utilization of recycled waste paper fibres in cement composites. Chem. Technol. 2016;67:30–34. doi: 10.5755/j01.ct.67.1.15001. DOI

Hospodarova V., Stevulova N., Vaclavik V., Dvorsky T. Implementation of recycled cellulosic fibres into cement based composites and testing their influence on resulting properties. IOP Conf. Ser. Earth Environ. Sci. 2017;92:012019. doi: 10.1088/1755-1315/92/1/012019. DOI

Andrés F.N., Beltramini L.B., Guilarducci A.G., Romano M.S., Ulibarrie N.O. Lightweight concrete: An alternative for recycling cellulose pulp. Procedia Mater. Sci. 2015;8:831–838. doi: 10.1016/j.mspro.2015.04.142. DOI

Jiang Z., Guo X., Li W., Chen Q. Self-shrinkage behaviours of waste paper fiber reinforced cement paste considering its self-curing effect at early-ages. Int. J. Polym. Sci. 2016:8690967. doi: 10.1155/2016/8690967. DOI

Bentchikou M., Guidom A., Scrivener K., Silhadi K., Hanini S. Effect of recycled cellulose fibres on the properties of lightweight cement composite matrix. Constr. Build. Mater. 2012;34:451–456. doi: 10.1016/j.conbuildmat.2012.02.097. DOI

Aciu C., Ilu¸tiu–Varvara D.A., Cobirzan N., Balog A. Recycling of paper waste in the composition of plastering mortars. Procedia Technol. 2014;12:295–300. doi: 10.1016/j.protcy.2013.12.489. DOI

Ardanuy M., Claramunt J., Toledo Filho R.D. Cellulosic fiber reinforced cement-based composites: A review of recent research. Constr. Build. Mater. 2015;79:115–128. doi: 10.1016/j.conbuildmat.2015.01.035. DOI

Mohr B.J., Biernacki J.J., Kurtis K.E. Supplementary cementitious materials for mitigating degradation of kraft pulp fiber-cement composites. Cem. Concr. Res. 2007;37:1531–1543. doi: 10.1016/j.cemconres.2007.08.001. DOI

Hospodarova V., Singovszka E., Stevulova N. Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation to building materials. Am. J. Analyt. Chem. 2018;9:303–310. doi: 10.4236/ajac.2018.96023. DOI

Stevulova N., Hospodarova V., Estokova A., Singovszka E., Holub M., Demcak S., Briancin J., Geffert A., Kacik F., Vaclavik V., et al. Characterization of manmade and recycled cellulosic fibers for their application in building materials. J. Renew. Mater. 2019;7:1121–1145. doi: 10.32604/jrm.2019.07556. DOI

Hospodarova V., Stevulova N., Vaclavik V., Dvorsky T., Briancin J. Cellulose fibres as a reinforcing element in building materials; Proceedings of the Environmental Engineering 10th International Conference; Vilnus, Lithuania. 27–28 April 2017; pp. 1–8.

Sicakova A., Hospodarova V., Stevulova N., Vaclavik V., Dvorsky T. Effect of selected cellulosic fibers on the properties of cement based composites. Adv. Mater. Lett. 2018;9:606–609. doi: 10.5185/amlett.2018.2032. DOI

Hospodarova V., Stevulova N., Briancin J., Kostelanska K. Investigation of waste paper cellulosic fibers utilization into cement based building materials. Buildings. 2018;8:43. doi: 10.3390/buildings8030043. DOI

Stevulova N., Hospodarova V., Vaclavik V., Dvorsky T., Danek T. Characterization of cement composites based on recycled cellulosic waste paper fibres. Open Eng. 2018;8:363–367. doi: 10.1515/eng-2018-0046. DOI

Stevulova N., Hospodarova V., Vaclavik V., Dvorsky T. Use of Cellulosic Fibers from Wood Pulp and Waste Paper for Sustainable Cement Based Mortars. In: Kongoli F., Marquis F., Chikhradze N., Prikhna T., editors. Sustainable Industrial Processing Summit and Exhibition (SIPS 2019): New and Advanced Materials, Technologies, and Manufacturing. Volume 11. Flogen Stars Outreach; Quebec, QC, Canada: 2019. pp. 133–142.

Stevulova N., Hospodarova V., Vaclavik V., Dvorsky T. Physico-mechanical properties of cellulose fiber-cement mortars. Key Eng. Mater. 2020;838:31–38. doi: 10.4028/www.scientific.net/KEM.838.31. DOI

European Committee for Standardization . Methods of Testing Cement, Part 1: Determination of Strength. Slovak Office of Standards, Metrology and Testing; Bratislava, Slovakia: 2016. STN EN 196-1.

European Committee for Standardization . Mixing Water Concrete: Specification for Sampling, Testing and Assessing the Suitability of Water, Including Water Recovered from Processes in the Concrete Industry, as Mixing Water for Concrete. Slovak Office of Standards, Metrology and Testing; Bratislava, Slovakia: 2003. STN EN 1008.

European Committee for Standardization . Cement, Part 1: Composition, Specifications and Conformity Criteria for Common Cements. Slovak Office of Standards, Metrology and Testing; Bratislava, Slovakia: 2012. STN EN 197-1.

European Committee for Standardization . Limestone, Dolomite: Quality. Slovak Office of Standards, Metrology and Testing; Bratislava, Slovakia: 1992. STN 72 1217.

European Committee for Standardization . Methods of Test for Mortar for Masonry, Part 3: Determination of Consistence of Fresh Mortar (by Flow Table) Slovak Office of Standards, Metrology and Testing; Bratislava, Slovakia: 2004. STN EN 1015-3.

European Committee for Standardization . Methods of Test for Mortar for Masonry, Part 10: Determination of Dry bulk Density of Hardened Mortar. Slovak Office of Standards, Metrology and Testing; Bratislava, Slovakia: 2007. STN EN 1015-10/A1.

European Committee for Standardization . Determination of Moisture, Absorbency and Capillarity of Concrete. Slovak Office of Standards, Metrology and Testing; Bratislava, Slovakia: 1989. STN 73 1316.

European Committee for Standardization . Methods of Test for Mortar for Masonry, Part 18: Determination of Water Absorption Due to Capillary Action of Hardened Mortar. Slovak Office of Standards, Metrology and Testing; Bratislava, Slovakia: 2003. STN EN 1015-18.

European Committee for Standardization . Methods of Test for Mortar for Masonry, Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. Slovak Office of Standards, Metrology and Testing; Bratislava, Slovakia: 2020. STN EN 1015-11.

European Committee for Standardization . Methods of Test for Mortar for Masonry, Part 12: Determination of Adhesive Strength of Hardened Rendering and Plastering Mortars on Substrates. Slovak Office of Standards, Metrology and Testing; Bratislava, Slovakia: 2016. STN EN 1015-12.

Pimentel M.G., das Chagas Borges J.P., de Souza Picanço M., Ghavami K. Bending answer and toughness analysis of mortar reinforced with Curauá fibers. Revista Matéria. 2016;21:18–26. doi: 10.1590/S1517-707620160001.0003. DOI

European Committee for Standardization . Specification for Mortar for Masonry, Part 1: Rendering and Plastering Mortar. Slovak Office of Standards, Metrology and Testing; Bratislava, Slovakia: 2019. STN EN 998-1.

Shafigh P., Asadi I., Akhiani A.R., Mahyuddin N.B., Hashemi M. Thermal properties of cement mortar with different mix proportions. Materiales De Construcción. 2020;70:e224. doi: 10.3989/mc.2020.09219. DOI

Mostefai N., Hamzaoui R., Guessasma S., Aw A., Nouri H. Microstructure and mechanical performance of modified hemp fibre and shiv mortars: Discovering the optimal formulation. Mater. Des. 2015;84:359–371. doi: 10.1016/j.matdes.2015.06.102. DOI

Garbalińska H., Wygocka A. Microstructure modification of cement mortars: Effect on capillarity and frost-resistance. Constr. Build. Mater. 2014;51:258–266. doi: 10.1016/j.conbuildmat.2013.10.091. DOI

Stokke D.D., Wu Q., Han G. Introduction to Wood and Natural Fiber Composites. John Wiley & Sons; West Sussex, UK: 2014.

Svoboda L., Bažantová Z., Myška M., Novák J., Tobolka Z., Vávra R., Vimmrová A., Výborný J. Building Materials. 4th ed. Czech Technical University in Prague; Prague, Czech Republic: 2018. [(accessed on 3 May 2021)]. Available online: http://people.fsv.cvut.cz/~svobodal/sh/SH4v1.pdf.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...