Analysis of the Fire Properties of Blown Insulation from Crushed Straw in the Buildings
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34361529
PubMed Central
PMC8347506
DOI
10.3390/ma14154336
PII: ma14154336
Knihovny.cz E-zdroje
- Klíčová slova
- blown insulation, civil engineering, crushed straw, fire reaction class, fire test, sustainability,
- Publikační typ
- časopisecké články MeSH
Sustainable development in civil engineering is the clear and necessary goal of the current generation. There are many possibilities for reducing the use of depletable resources. One of them is to use renewable and recyclable materials on a larger scale in the construction industry. One possibility is the application of natural thermal insulators. A typical example is a crushed straw, which is generated as agricultural waste in the Czech Republic. Due to its small dimensions and good thermal insulation parameters, this material can also be used as blown thermal insulation. The research aims to examine the fire resistance of crushed straw as blown insulation. The single-flame source fire test results, thermal attack by a single burning item (SBI) test and large-scale test of a perimeter wall segment are shown. The results show that blown insulation made of crushed straw meets the requirements of fire protection. In addition, crushed straw can be also used to protect load-bearing structures due to its behaviour. This article also shows the production process of crushed straw used as blown insulation in brief.
Zobrazit více v PubMed
Global Alliance for Buildings and Construction, International Energy Agency and the United Nations. [(accessed on 1 June 2021)]; Available online: https://www.iea.org/areas-of-work/promoting-energy-efficiency/global-alliance-for-building-and-construction.
Stevulova N., Vaclavik V., Hospodarova V., Dvorský T. Recycled Cellulose Fiber Reinforced Plaster. Materials. 2021;14:2986. doi: 10.3390/ma14112986. PubMed DOI PMC
Bouali G. Straw Bales and Straw-Bale Wall Systems. University of Arizona; Tucson, AZ, USA: 1993.
Mutani G., Azzolino C., Macrì M., Mancuso S. Straw Buildings: A Good Compromise between Environmental Sustainability and Energy-Economic Savings. Appl. Sci. 2020;10:2858. doi: 10.3390/app10082858. DOI
Vanova R., Vlcko M., Stefko J. Life Cycle Impact Assessment of Load-Bearing Straw Bale Residential Building. Materials. 2021;14:3064. doi: 10.3390/ma14113064. PubMed DOI PMC
MPO National Energy and Climate Plan of the Czech Republic. [(accessed on 21 March 2021)];Eur. Comm. 2019 :437. Available online: https://www.mpo.cz/en/energy/strategic-and-conceptual-documents/the-national-energy-and-climate-plan-of-the-czech-republic-public-consultation--250519/
Montero G., Coronado M.A., García C., Campbell H.E., Montes D.G., Torres R., Pérez L., León J.A., Ayala J.R. Global Wheat Production. IntechOpen; London, UK: 2018. Wheat Straw Open Burning: Emissions and Impact on Climate Change.
Geng X. Straw incineration odor hazard & disposal mechanism in economic perspective. Chem. Eng. Trans. 2018;68:73–78.
The Global Risks Report 2020. [(accessed on 21 March 2021)]; Available online: https://www.weforum.org/reports/the-global-risks-report-2020.
Corbett J. Massive “Climate Clock” Urging Governments to #ActInTime Unveiled on Metronome in New York City. [(accessed on 20 January 2021)]; Available online: https://www.commondreams.org/news/2020/09/19/massive-climate-clock-urging-govern-256ments-actintime-unveiled-metronome-new-york-city.
Del Pero C., Bellini O., Martire M., di Summa D. Sustainable Solutions for Mass-Housing Design in Africa: Energy and Cost Assessment for the Somali Context. Sustainability. 2021;13:4787. doi: 10.3390/su13094787. DOI
Fuentes C.X.D., Rojas M.C.P., Mancilla J.J. Physical-thermal straw properties advantages in the design of a sustainable panel-type construction system to be used as an architectural dividing element. J. Phys. Conf. Ser. 2020;1587:012032. doi: 10.1088/1742-6596/1587/1/012032. DOI
González A.D. Energy and carbon embodied in straw and clay wall blocks produced locally in the Andean Patagonia. Energy Build. 2014;70:15–22. doi: 10.1016/j.enbuild.2013.11.003. DOI
Dostál D. Postavili Téměř Soběstačný Dům ze Slámy. [(accessed on 21 March 2021)]; Available online: https://www.businessinfo.cz/clanky/postavili-temer-sobestacny-dum-ze-slamy-material-odola-i-ohni/
Kang J., Jin Y., Shao T., Jin H. A study on the construction technics of strawbale walls in severe cold rural areas of northeast China. Sci. Sin. Technol. 2016;46:1079–1085. doi: 10.1360/N092014-00429. DOI
Fan M., Fu F. Advanced High Strength Natural Fibre Composites in Construction. Elsevier; Amsterdam, The Netherlands: 2016.
Chen J., Elbashiry E.M.A., Yu T., Ren Y., Guo Z., Liu S. Research progress of wheat straw and rice straw cement-based building materials in China. Mag. Concr. Res. 2018;70:84–95. doi: 10.1680/jmacr.17.00064. DOI
Teslík J., Labudek J., Valová B., Vodičková M. Settlement of Crushed Straw. Adv. Mater. Res. 2014;1041:55–58. doi: 10.4028/www.scientific.net/AMR.1041.55. DOI
Petkova-Slipets R., Zlateva P. Thermal Insulating Properties of Straw-Filled Environmentally Friendly Building Materials. Civ. Environ. Eng. 2017;13:52–57. doi: 10.1515/cee-2017-0006. DOI
Vėjelienė J., Gailius A., Vėjelis S., Vaitkus S., Balčiūnas G. Evaluation of Structure Influence on Thermal Conductivity of Thermal Insulating Materials from Renewable Resources. Mater. Sci. 2011;17:208–212. doi: 10.5755/j01.ms.17.2.494. DOI
Sabapathy K., Gedupudi S. Straw bale based constructions: Measurement of effective thermal transport properties. Constr. Build. Mater. 2019;198:182–194. doi: 10.1016/j.conbuildmat.2018.11.256. DOI
Berardi U., Iannace G. Predicting the sound absorption of natural materials: Best-fit inverse laws for the acoustic impedance and the propagation constant. Appl. Acoust. 2017;115:131–138. doi: 10.1016/j.apacoust.2016.08.012. DOI
Lawrence M., Heath A., Walker P. Determining moisture levels in straw bale construction. Constr. Build. Mater. 2009;23:2763–2768. doi: 10.1016/j.conbuildmat.2009.03.011. DOI
Johansson P., Ekstrand-Tobin A., Svensson T., Bok G. Laboratory study to determine the critical moisture level for mould growth on building materials. Int. Biodeterior. Biodegradation. 2012;73:23–32. doi: 10.1016/j.ibiod.2012.05.014. DOI
Goodhew S., Griffiths R. Analysis of thermal-probe measurements using an iterative method to give sample conductivity and diffusivity data. Appl. Energy. 2004;77:205–223. doi: 10.1016/S0306-2619(03)00122-3. DOI
Lataille J.I. Fire Protection Engineering in Building Design. Fire Prot. Eng. Build. Des. 2003:1–133. doi: 10.1016/b978-0-7506-7497-3.x5000-0. DOI
Delegou E.T., Apostolopoulou M., Ntoutsi I., Thoma M., Keramidas V., Papatrechas C., Economou G., Moropoulou A. The Effect of Fire on Building Materials: The Case-Study of the Varnakova Monastery Cells in Central Greece. Heritage. 2019;2:80. doi: 10.3390/heritage2020080. DOI
Flodr J., Krejsa M., Lehner P. Temperature and Structural Analysis of Omega Clip. Int. J. Steel Struct. 2019;19:1295–1301. doi: 10.1007/s13296-019-00210-w. DOI
Fletcher I.A., Welch S., Torero J., Carvel R.O., Usmani A. Behaviour of concrete structures in fire. Therm. Sci. 2007;11:37–52. doi: 10.2298/TSCI0702037F. DOI
Allam M.E., Garas G.L., El Kady H.G. Recycled Chopped Rice Straw-Cement Bricks: Mechanical, Fire Resistance & Economical Assessment. Aust. J. Basic Appl. Sci. 2017;5:27–33.
Walker P., Thomson A., Maskell D. Straw bale construction. Nonconv. Vernac. Constr. Mater. 2020:189–216. doi: 10.1016/b978-0-08-102704-2.00009-3. DOI
Apte V., Griffin G.J., Paroz B.W., Bicknell A.D. The fire behaviour of rendered straw bales. Fire Mater. 2008;32:259–279. doi: 10.1002/fam.963. DOI
Teslík J., Hošťálková M., Vavřínová N. Ignitability small attack flame fire test of gypsum composite reinforced with natural fibres. Int. Rev. Appl. Sci. Eng. 2019;10:57–61. doi: 10.1556/1848.2019.0009. DOI
Teslík J., Vodičková M., Kutilová K. The Assessment of Reaction to Fire of Crushed Straw. Appl. Mech. Mater. 2016;824:148–155. doi: 10.4028/www.scientific.net/AMM.824.148. DOI
Sietske Boschma D., Kees I., Kwant W. Rice straw and Wheat straw Potential feedstocks for the Biobased Economy Colofon. NL Agency Minist. Econ. Aff. 2013:1–31.
Himel S.R.O. [(accessed on 30 April 2021)]; Available online: www.himel.cz.
ČSN 73 0810 Fire protection of buildings—General requirements, Part 1-1: General—Common Rules and Rules for Buildings. 2004.
EN 1995-1-2 Design of Timber Structures, Part 1–2: General—Structural Fire Design. Eurocode. 2010;5:7.
ISO 11925-3 Reaction to Fire Tests—Ignitability of Building Products Subjected to Direct Impingement of Flame—Part 3: Multi-source Test. 1997.
EN 13823 Reaction to Fire Tests for Building Products—Building Products Excluding Floorings Exposed to the Thermal Attack by a Single Burning Item. 2010. pp. 1–104.
EN13641 Fire Resistance Tests for Non-Loadbearing Elements—Part 1: Walls. 2015.
Agel P., Labudek J. Czech: Víceúčelový Dřevěný Nosný Prvek pro Stavby Zateplené Foukanou Izolací. 2011. LAG Frame-Multi-purpose wooden load-bearing element for building with blown insulation. Utility Model No. 22209; Registration Czech Republic.
Kymäläinen H.-R., Sjöberg A.-M. Flax and hemp fibres as raw materials for thermal insulations. Build. Environ. 2008;43:1261–1269. doi: 10.1016/j.buildenv.2007.03.006. DOI
Xiao Y., Ma J. Fire simulation test and analysis of laminated bamboo frame building. Constr. Build. Mater. 2012;34:257–266. doi: 10.1016/j.conbuildmat.2012.02.077. DOI
Breum N.O., Schneider T., Jørgensen O., Rasmussen T.V., Eriksen S.S. Cellulosic Building Insulation versus Mineral Wool, Fiberglass or Perlite: Installer’s Exposure by Inhalation of Fibers, Dust, Endotoxin and Fire-retardant Additives. Ann. Occup. Hyg. 2003;47:653–669. doi: 10.1093/annhyg/meg090. PubMed DOI