Should Carbohydrate Intake Be More Liberal during Oral and Enteral Nutrition in Type 2 Diabetic Patients?
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
No. 8404413
the Charles University grant - Cooperatio
PubMed
36678311
PubMed Central
PMC9863670
DOI
10.3390/nu15020439
PII: nu15020439
Knihovny.cz E-zdroje
- Klíčová slova
- carbohydrate intake, diabetes mellitus, enteral nutrition, glucose, glucose metabolism, insulin resistance,
- MeSH
- diabetes mellitus 2. typu * MeSH
- dietní sacharidy MeSH
- enterální výživa škodlivé účinky MeSH
- hyperglykemie * MeSH
- inzulin MeSH
- krevní glukóza MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dietní sacharidy MeSH
- inzulin MeSH
- krevní glukóza MeSH
Carbohydrate (CHO) intake in oral and enteral nutrition is regularly reduced in nutritional support of older patients due to the high prevalence of diabetes (usually type 2-T2DM) in this age group. However, CHO shortage can lead to the lack of building blocks necessary for tissue regeneration and other anabolic processes. Moreover, low CHO intake decreases CHO oxidation and can increase insulin resistance. The aim of our current study was to determine the extent to which an increased intake of a rapidly digestible carbohydrate-maltodextrin-affects blood glucose levels monitored continuously for one week in patients with and without T2DM. Twenty-one patients (14 T2DM and seven without diabetes) were studied for two weeks. During the first week, patients with T2DM received standard diabetic nutrition (250 g CHO per day) and patients without diabetes received a standard diet (350 g of CHO per day). During the second week, the daily CHO intake was increased to 400 in T2DM and 500 g in nondiabetic patients by addition of 150 g maltodextrin divided into three equal doses of 50 g and given immediately after the main meal. Plasma glucose level was monitored continually with the help of a subcutaneous sensor during both weeks. The increased CHO intake led to transient postprandial increase of glucose levels in T2DM patients. This rise was more manifest during the first three days of CHO intake, and then the postprandial peak hyperglycemia was blunted. During the night's fasting period, the glucose levels were not influenced by maltodextrin. Supplementation of additional CHO did not influence the percentual range of high glucose level and decreased a risk of hypoglycaemia. No change in T2DM treatment was indicated. The results confirm our assumption that increased CHO intake as an alternative to CHO restriction in type 2 diabetic patients during oral and enteral nutritional support is safe.
Zobrazit více v PubMed
Bano G., Trevisan C., Carraro S., Solmi M., Luchini C., Stubbs B., Manzato E., Sergi G., Veronese N. Inflammation and sarcopenia: A systematic review and meta-analysis. Maturitas. 2017;96:10–15. doi: 10.1016/j.maturitas.2016.11.006. PubMed DOI
Coletti C., Acosta G.F., Keslacy S., Coletti D. Exercise-mediated reinnervation of skeletal muscle in elderly people: An update. Eur. J. Transl. Myol. 2022;32:10416. doi: 10.4081/ejtm.2022.10416. PubMed DOI PMC
Hegerova P., Dedkova Z., Sobotka L. Early nutritional support and physiotherapy improved long-term self-sufficiency in acutely ill older patients. Nutrition. 2015;31:166–170. doi: 10.1016/j.nut.2014.07.010. PubMed DOI
Rondanelli M., Cereda E., Klersy C., Faliva M.A., Peroni G., Nichetti M., Gasparri C., Iannello G., Spadaccini D., Infantino V., et al. Improving rehabilitation in sarcopenia: A randomized-controlled trial utilizing a muscle-targeted food for special medical purposes. J. Cachexia Sarcopenia Muscle. 2020;11:1535–1547. doi: 10.1002/jcsm.12532. PubMed DOI PMC
Rogeri P.S., Zanella R., Jr., Martins G.L., Garcia M.D., Leite G., Lugaresi R., Gasparini S.O., Sperandio G.A., Ferreira L.H.B., Souza-Junior T.P. Strategies to Prevent Sarcopenia in the Aging Process: Role of Protein Intake and Exercise. Nutrients. 2021;14:52. doi: 10.3390/nu14010052. PubMed DOI PMC
Bischoff S.C., Austin P., Boeykens K., Chourdakis M., Cuerda C., Jonkers-Schuitema C., Lichota M., Nyulasi I., Schneider S.M., Stanga Z., et al. ESPEN guideline on home enteral nutrition. Clin. Nutr. 2020;39:5–22. doi: 10.1016/j.clnu.2019.04.022. PubMed DOI
Pohl M., Mayr P., Mertl-Roetzer M., Lauster F., Lerch M., Eriksen J., Haslbeck M., Rahlfs V.W. Glycaemic control in type II diabetic tube-fed patients with a new enteral formula low in carbohydrates and high in monounsaturated fatty acids: A randomised controlled trial. Eur. J. Clin. Nutr. 2005;59:1221–1232. doi: 10.1038/sj.ejcn.1602232. PubMed DOI
Huhmann M.B., Yamamoto S., Neutel J.M., Cohen S.S., Ochoa Gautier J.B. Very high-protein and low-carbohydrate enteral nutrition formula and plasma glucose control in adults with type 2 diabetes mellitus: A randomized crossover trial. Nutr. Diabetes. 2018;8:45. doi: 10.1038/s41387-018-0053-x. PubMed DOI PMC
Sobotka L., Sobotka O. The predominant role of glucose as a building block and precursor of reducing equivalents. Curr. Opin. Clin. Nutr. Metab. Care. 2021;24:555–562. doi: 10.1097/MCO.0000000000000786. PubMed DOI
Soeters P.B., Shenkin A., Sobotka L., Soeters M.R., de Leeuw P.W., Wolfe R.R. The anabolic role of the Warburg, Cori-cycle and Crabtree effects in health and disease. Clin. Nutr. 2021;40:2988–2998. doi: 10.1016/j.clnu.2021.02.012. PubMed DOI
Forouhi N.G., Misra A., Mohan V., Taylor R., Yancy W. Dietary and nutritional approaches for prevention and management of type 2 diabetes. BMJ. 2018;361:k2234. doi: 10.1136/bmj.k2234. PubMed DOI PMC
Mendonca N., Hill T.R., Granic A., Davies K., Collerton J., Mathers J.C., Siervo M., Wrieden W.L., Seal C.J., Kirkwood T.B. Macronutrient intake and food sources in the very old: Analysis of the Newcastle 85+ Study. Br. J. Nutr. 2016;115:2170–2180. doi: 10.1017/S0007114516001379. PubMed DOI
Brazdova Z., Fiala J., Bauerova J., Hruba D. Dietary guidelines in the Czech Republic. I.: Theoretical background and development. Cent. Eur. J. Public Health. 2000;8:186–190. PubMed
Hanks A.S., Wansink B., Just D.R. Reliability and accuracy of real-time visualization techniques for measuring school cafeteria tray waste: Validating the quarter-waste method. J. Acad. Nutr. Diet. 2014;114:470–474. doi: 10.1016/j.jand.2013.08.013. PubMed DOI
Casale J., Crane J.S. Biochemistry, Glycosaminoglycans. StatPearls; Treasure Island, FL, USA: 2021. PubMed
Sprovieri P., Martino G. The role of the carbohydrates in plasmatic membrane. Physiol. Res. 2018;67:1–11. doi: 10.33549/physiolres.933593. PubMed DOI
Du J., Yarema K.J. Carbohydrate engineered cells for regenerative medicine. Adv. Drug Deliv. Rev. 2010;62:671–682. doi: 10.1016/j.addr.2010.01.003. PubMed DOI PMC
Cherkas A., Holota S., Mdzinarashvili T., Gabbianelli R., Zarkovic N. Glucose as a Major Antioxidant: When, What for and Why It Fails? Antioxidants. 2020;9:140. doi: 10.3390/antiox9020140. PubMed DOI PMC
Kuehne A., Emmert H., Soehle J., Winnefeld M., Fischer F., Wenck H., Gallinat S., Terstegen L., Lucius R., Hildebrand J., et al. Acute Activation of Oxidative Pentose Phosphate Pathway as First-Line Response to Oxidative Stress in Human Skin Cells. Mol. Cell. 2015;59:359–371. doi: 10.1016/j.molcel.2015.06.017. PubMed DOI
Panday A., Sahoo M.K., Osorio D., Batra S. NADPH oxidases: An overview from structure to innate immunity-associated pathologies. Cell. Mol. Immunol. 2015;12:5–23. doi: 10.1038/cmi.2014.89. PubMed DOI PMC
Herb M., Schramm M. Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants. 2021;10:313. doi: 10.3390/antiox10020313. PubMed DOI PMC
Mullen L., Mengozzi M., Hanschmann E.M., Alberts B., Ghezzi P. How the redox state regulates immunity. Free. Radic. Biol. Med. 2020;157:3–14. doi: 10.1016/j.freeradbiomed.2019.12.022. PubMed DOI
Lemus M.R., Roussarie E., Hammad N., Mougeolle A., Ransac S., Issa R., Mazat J.P., Uribe-Carvajal S., Rigoulet M., Devin A. The role of glycolysis-derived hexose phosphates in the induction of the Crabtree effect. J. Biol. Chem. 2018;293:12843–12854. doi: 10.1074/jbc.RA118.003672. PubMed DOI PMC
Noba L., Wakefield A. Are carbohydrate drinks more effective than preoperative fasting: A systematic review of randomised controlled trials. J. Clin. Nurs. 2019;28:3096–3116. doi: 10.1111/jocn.14919. PubMed DOI
Nygren J., Thorell A., Ljungqvist O. Preoperative oral carbohydrate therapy. Curr. Opin. Anaesthesiol. 2015;28:364–369. doi: 10.1097/ACO.0000000000000192. PubMed DOI
Lidder P., Thomas S., Fleming S., Hosie K., Shaw S., Lewis S. A randomized placebo controlled trial of preoperative carbohydrate drinks and early postoperative nutritional supplement drinks in colorectal surgery. Color. Dis. 2013;15:737–745. doi: 10.1111/codi.12130. PubMed DOI
Kotfis K., Jamiol-Milc D., Skonieczna-Zydecka K., Folwarski M., Stachowska E. The Effect of Preoperative Carbohydrate Loading on Clinical and Biochemical Outcomes after Cardiac Surgery: A Systematic Review and Meta-Analysis of Randomized Trials. Nutrients. 2020;12:3105. doi: 10.3390/nu12103105. PubMed DOI PMC
Feguri G.R., Lima P.R.L., Franco A.C., Cruz F.R.H.D.L., Borges D.C., Toledo L.R., Segri N.J., Aguilar-Nascimento J.E.D. Benefits of Fasting Abbreviation with Carbohydrates and Omega-3 Infusion During CABG: A Double-Blind Controlled Randomized Trial. Braz. J. Cardiovasc. Surg. 2019;34:125–135. doi: 10.21470/1678-9741-2018-0336. PubMed DOI PMC
Ljungqvist O. Modulating postoperative insulin resistance by preoperative carbohydrate loading. Best Pract. Res. Clin. Anaesthesiol. 2009;23:401–409. doi: 10.1016/j.bpa.2009.08.004. PubMed DOI
Rothman D.L., Magnusson I., Katz L.D., Shulman R.G., Shulman G.I. Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR. Science. 1991;254:573–576. doi: 10.1126/science.1948033. PubMed DOI
Soeters M.R., Soeters P.B. The evolutionary benefit of insulin resistance. Clin. Nutr. 2012;31:1002–1007. doi: 10.1016/j.clnu.2012.05.011. PubMed DOI
Soeters M.R., Soeters P.B., Schooneman M.G., Houten S.M., Romijn J.A. Adaptive reciprocity of lipid and glucose metabolism in human short-term starvation. Am. J. Physiol.-Endocrinol. Metab. 2012;303:E1397–E1407. doi: 10.1152/ajpendo.00397.2012. PubMed DOI
Petersen K.F., Price T.B., Bergeron R. Regulation of net hepatic glycogenolysis and gluconeogenesis during exercise: Impact of type 1 diabetes. J. Clin. Endocrinol. Metab. 2004;89:4656–4664. doi: 10.1210/jc.2004-0408. PubMed DOI PMC
Petersen M.C., Shulman G.I. Mechanisms of Insulin Action and Insulin Resistance. Physiol. Rev. 2018;98:2133–2223. doi: 10.1152/physrev.00063.2017. PubMed DOI PMC
Skorepa P., Sobotka O., Vanek J., Ticha A., Fortunato J., Manak J., Blaha V., Horacek J.M., Sobotka L. The Impact of Glucose-Based or Lipid-Based Total Parenteral Nutrition on the Free Fatty Acids Profile in Critically Ill Patients. Nutrients. 2020;12:1373. doi: 10.3390/nu12051373. PubMed DOI PMC
Campbell G.J., Senior A.M., Bell-Anderson K.S. Metabolic Effects of High Glycaemic Index Diets: A Systematic Review and Meta-Analysis of Feeding Studies in Mice and Rats. Nutrients. 2017;9:646. doi: 10.3390/nu9070646. PubMed DOI PMC