The Impact of Glucose-Based or Lipid-Based Total Parenteral Nutrition on the Free Fatty Acids Profile in Critically Ill Patients
Language English Country Switzerland Media electronic
Document type Journal Article, Randomized Controlled Trial
Grant support
Long-term Organization Development Plan 1011
FVZ UO
Progress Q40/12
LF UK HK
PubMed
32403367
PubMed Central
PMC7284730
DOI
10.3390/nu12051373
PII: nu12051373
Knihovny.cz E-resources
- Keywords
- adiponectin, alpha-Tocopherol, critical illness, essential fatty acids deficiency, insulin resistance, nonesterified fatty acids, parenteral nutrition,
- MeSH
- alpha-Tocopherol blood MeSH
- Emulsions administration & dosage MeSH
- Fatty Acids, Essential blood deficiency MeSH
- Glucose administration & dosage MeSH
- Insulin Resistance physiology MeSH
- Intensive Care Units MeSH
- Critical Illness therapy MeSH
- Fatty Acids, Nonesterified blood MeSH
- Leptin blood MeSH
- Middle Aged MeSH
- Humans MeSH
- Lipids administration & dosage MeSH
- Parenteral Nutrition, Total methods MeSH
- Prospective Studies MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Randomized Controlled Trial MeSH
- Names of Substances
- alpha-Tocopherol MeSH
- Emulsions MeSH
- Fatty Acids, Essential MeSH
- Glucose MeSH
- Fatty Acids, Nonesterified MeSH
- Leptin MeSH
- Lipids MeSH
INTRODUCTION: Our study aim was to assess how the macronutrient intake during total parenteral nutrition (TPN) modulates plasma total free fatty acids (FFAs) levels and individual fatty acids in critically ill patients. METHOD: Adult patients aged 18-80, admitted to the intensive care unit (ICU), who were indicated for TPN, with an expected duration of more than three days, were included in the study. Isoenergetic and isonitrogenous TPN solutions were given with a major non-protein energy source, which was glucose (group G) or glucose and lipid emulsions (Smof lipid; group L). Blood samples were collected on days 0, 1, 3, 6, 9, 14, and 28. RESULTS: A significant decrease (p < 0.001) in total FFAs occurred in both groups with a bigger decrease in group G (p < 0.001) from day 0 (0.41 ± 0.19 mmol∙L-1) to day 28 (0.10 ± 0.07 mmol∙L-1). Increased palmitooleic acid and decreased linoleic and docosahexaenoic acids, with a trend of increased mead acid to arachidonic acid ratio, on day 28 were observed in group G in comparison with group L. Group G had an insignificant increase in leptin with no differences in the concentrations of vitamin E, triacylglycerides, and plasminogen activator inhibitor-1. CONCLUSION: Decreased plasma FFA in critically ill patients who receive TPN may result from increased insulin sensitivity with a better effect in group G, owing to higher insulin and glucose dosing and no lipid emulsions. It is advisable to include a lipid emulsion at the latest from three weeks of TPN to prevent essential fatty acid deficiency.
See more in PubMed
Singer P., Blaser A.R., Berger M.M., Alhazzani W., Calder P.C., Casaer M.P., Hiesmayr M., Mayer K., Montejo J.C., Pichard C., et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. 2019;38:48–79. doi: 10.1016/j.clnu.2018.08.037. PubMed DOI
Barazzoni R., Deutz N.E.P., Biolo G., Bischoff S., Boirie Y., Cederholm T., Cuerda C., Delzenne N., Leon Sanz M., Ljungqvist O., et al. Carbohydrates and insulin resistance in clinical nutrition: Recommendations from the ESPEN expert group. Clin. Nutr. 2017;36:355–363. doi: 10.1016/j.clnu.2016.09.010. PubMed DOI
Calder P.C., Adolph M., Deutz N.E., Grau T., Innes J.K., Klek S., Lev S., Mayer K., Michael-Titus A.T., Pradelli L., et al. Lipids in the intensive care unit: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2018;37:1–18. doi: 10.1016/j.clnu.2017.08.032. PubMed DOI
McClave S.A., Taylor B.E., Martindale R.G., Warren M.M., Johnson D.R., Braunschweig C., McCarthy M.S., Davanos E., Rice T.W., Cresci G.A., et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient. JPEN J. Parenter. Enteral Nutr. 2016;40:159–211. doi: 10.1177/0148607115621863. PubMed DOI
Soeters P., Bozzetti F., Cynober L., Elia M., Shenkin A., Sobotka L. Meta-analysis is not enough: The critical role of pathophysiology in determining optimal care in clinical nutrition. Clin. Nutr. 2016;35:748–757. doi: 10.1016/j.clnu.2015.08.008. PubMed DOI
Boden G. Obesity, insulin resistance and free fatty acids. Curr. Opin. Endocrinol. Diabetes Obes. 2011;18:139–143. doi: 10.1097/MED.0b013e3283444b09. PubMed DOI PMC
Arabi Y.M., Tamimi W., Jones G., Jawdat D., Tamim H., Al-Dorzi H.M., Sadat M., Afesh L., Sakhija M., Al-Dawood A. Free Fatty Acids’ Level and Nutrition in Critically Ill Patients and Association with Outcomes: A Prospective Sub-Study of PermiT Trial. Nutrients. 2019;11:384. doi: 10.3390/nu11020384. PubMed DOI PMC
Krogh-Madsen R., Plomgaard P., Akerstrom T., Moller K., Schmitz O., Pedersen B.K. Effect of short-term intralipid infusion on the immune response during low-dose endotoxemia in humans. Am. J. Physiol. Endocrinol. Metab. 2008;294:E371–E379. doi: 10.1152/ajpendo.00507.2007. PubMed DOI
Carvalho G., Pelletier P., Albacker T., Lachapelle K., Joanisse D.R., Hatzakorzian R., Lattermann R., Sato H., Marette A., Schricker T. Cardioprotective effects of glucose and insulin administration while maintaining normoglycemia (GIN therapy) in patients undergoing coronary artery bypass grafting. J. Clin. Endocrinol. Metab. 2011;96:1469–1477. doi: 10.1210/jc.2010-1934. PubMed DOI
Kalupahana N.S., Voy B.H., Saxton A.M., Moustaid-Moussa N. Energy-restricted high-fat diets only partially improve markers of systemic and adipose tissue inflammation. Obesity. 2011;19:245–254. doi: 10.1038/oby.2010.196. PubMed DOI
Langouche L., Perre S.V., Thiessen S., Gunst J., Hermans G., D’Hoore A., Kola B., Korbonits M., Van den Berghe G. Alterations in adipose tissue during critical illness: An adaptive and protective response? Am. J. Respir. Crit. Care Med. 2010;182:507–516. doi: 10.1164/rccm.200909-1395OC. PubMed DOI
Devine B.J. Gentamicin therapy. Drug Intell. Clin. Pharm. 1974;8:650–655. doi: 10.1177/106002807400801104. DOI
Saluk J., Hoppensteadt D., Syed D., Liles J., Abro S., Walborn A., Bansal V., Fareed J. Biomarker profiling of plasma samples utilizing RANDOX biochip array technology. Int. Angiol. 2017;36:499–504. doi: 10.23736/S0392-9590.17.03854-8. PubMed DOI PMC
Solichova D., Blaha M., Aufartova J., Krcmova L.K., Plisek J., Honegrova B., Kasalova E., Lanska M., Urbanek L., Sobotka L. The Effect of LDL-Apheresis and Rheohaemapheresis Treatment on Vitamin E. J. Nutr. Sci. Vitaminol. 2015;61:105–112. doi: 10.3177/jnsv.61.105. PubMed DOI
Noguchi K., Gel Y.R., Brunner E., Konietschke F. nparLD: An R Software Package for the Nonparametric Analysis of Longitudinal Data in Factorial Experiments. J. St. Softw. 2012;50:23. doi: 10.18637/jss.v050.i12. DOI
Holm S. A Simple Sequentially Rejective Multiple Test Procedure. Scand. J. Stat. 1979;6:65–70. doi: 10.2307/4615733. DOI
Team R.C. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2019. [(accessed on 2 April 2020)]. Available online: https://www.R-project.org/
Levinson M., Groeger J., Jeevanandam M., Brennan M.F. Free fatty acid turnover and lipolysis in septic mechanically ventilated cancer-bearing humans. Metabolism. 1988;37:618–625. doi: 10.1016/0026-0495(88)90078-9. PubMed DOI
Shaw J.H., Wolfe R.R. Response to glucose and lipid infusions in sepsis: A kinetic analysis. Metabolism. 1985;34:442–449. doi: 10.1016/0026-0495(85)90210-0. PubMed DOI
Wolfe R.R. Sepsis as a modulator of adaptation to low and high carbohydrate and low and high fat intakes. Eur. J. Clin. Nutr. 1999;53:S136–S142. doi: 10.1038/sj.ejcn.1600754. PubMed DOI
Wolfe R.R., Herndon D.N., Peters E.J., Jahoor F., Desai M.H., Holland O.B. Regulation of lipolysis in severely burned children. Ann. Surg. 1987;206:214–221. doi: 10.1097/00000658-198708000-00016. PubMed DOI PMC
Langin D. Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacol. Res. 2006;53:482–491. doi: 10.1016/j.phrs.2006.03.009. PubMed DOI
Marques M.B., Langouche L. Endocrine, metabolic, and morphologic alterations of adipose tissue during critical illness. Crit. Care Med. 2013;41:317–325. doi: 10.1097/CCM.0b013e318265f21c. PubMed DOI
Carpentier A.C., Frisch F., Cyr D., Genereux P., Patterson B.W., Giguere R., Baillargeon J.P. On the suppression of plasma nonesterified fatty acids by insulin during enhanced intravascular lipolysis in humans. Am. J. Physiol. Endocrinol. Metab. 2005;289:E849–E856. doi: 10.1152/ajpendo.00073.2005. PubMed DOI
Stegmayr B., Olivecrona T., Olivecrona G. Lipoprotein lipase disturbances induced by uremia and hemodialysis. Semin. Dial. 2009;22:442–444. doi: 10.1111/j.1525-139X.2009.00597.x. PubMed DOI
Gonzales A.M., Orlando R.A. Role of adipocyte-derived lipoprotein lipase in adipocyte hypertrophy. Nutr. Metab. 2007;4:22. doi: 10.1186/1743-7075-4-22. PubMed DOI PMC
Goodenough R.D., Wolfe R.R. Effect of total parenteral nutrition on free fatty acid metabolism in burned patients. JPEN J. Parenter. Enteral Nutr. 1984;8:357–360. doi: 10.1177/0148607184008004357. PubMed DOI
Shaw J.H., Wolfe R.R. An integrated analysis of glucose, fat, and protein metabolism in severely traumatized patients. Studies in the basal state and the response to total parenteral nutrition. Ann. Surg. 1989;209:63–72. doi: 10.1097/00000658-198901000-00010. PubMed DOI PMC
Langouche L., Vander Perre S., Wouters P.J., D’Hoore A., Hansen T.K., Van den Berghe G. Effect of intensive insulin therapy on insulin sensitivity in the critically ill. J. Clin. Endocrinol. Metab. 2007;92:3890–3897. doi: 10.1210/jc.2007-0813. PubMed DOI
Soeters M.R., Soeters P.B. The evolutionary benefit of insulin resistance. Clin. Nutr. 2012;31:1002–1007. doi: 10.1016/j.clnu.2012.05.011. PubMed DOI
Dai Y.J., Sun L.L., Li M.Y., Ding C.L., Su Y.C., Sun L.J., Xue S.H., Yan F., Zhao C.H., Wang W. Comparison of Formulas Based on Lipid Emulsions of Olive Oil, Soybean Oil, or Several Oils for Parenteral Nutrition: A Systematic Review and Meta-Analysis. Adv. Nutr. 2016;7:279–286. doi: 10.3945/an.114.007427. PubMed DOI PMC
Jia Z.Y., Yang J., Xia Y., Tong D.N., Zaloga G.P., Qin H.L. Safety and efficacy of an olive oil-based triple-chamber bag for parenteral nutrition: A prospective, randomized, multi-center clinical trial in China. Nutr. J. 2015;14:119. doi: 10.1186/s12937-015-0100-6. PubMed DOI PMC
Umpierrez G.E., Spiegelman R., Zhao V., Smiley D.D., Pinzon I., Griffith D.P., Peng L., Morris T., Luo M., Garcia H., et al. A double-blind, randomized clinical trial comparing soybean oil-based versus olive oil-based lipid emulsions in adult medical-surgical intensive care unit patients requiring parenteral nutrition. Crit. Care Med. 2012;40:1792–1798. doi: 10.1097/CCM.0b013e3182474bf9. PubMed DOI PMC
Ling P.-R., Andersson C., Strijbosch R., Lee S., Silvestri A., Gura K.M., Puder M., Bistrian B.R. Effects of glucose or fat calories in total parenteral nutrition on fat metabolism and systemic inflammation in rats. Metabolism. 2011;60:195–205. doi: 10.1016/j.metabol.2009.12.014. PubMed DOI
Wilson M.D., Blake W.L., Salati L.M., Clarke S.D. Potency of polyunsaturated and saturated fats as short-term inhibitors of hepatic lipogenesis in rats. J. Nutr. 1990;120:544–552. doi: 10.1093/jn/120.6.544. PubMed DOI
Teran-Garcia M., Adamson A.W., Yu G., Rufo C., Suchankova G., Dreesen T.D., Tekle M., Clarke S.D., Gettys T.W. Polyunsaturated fatty acid suppression of fatty acid synthase (FASN): Evidence for dietary modulation of NF-Y binding to the Fasn promoter by SREBP-1c. Biochem. J. 2007;402:591–600. doi: 10.1042/BJ20061722. PubMed DOI PMC
Mayer K., Gokorsch S., Fegbeutel C., Hattar K., Rosseau S., Walmrath D., Seeger W., Grimminger F. Parenteral nutrition with fish oil modulates cytokine response in patients with sepsis. Am. J. Respir. Crit. Care Med. 2003;167:1321–1328. doi: 10.1164/rccm.200207-674OC. PubMed DOI
Das U.N. n-3 fatty acids, γ-linolenic acid, and antioxidants in sepsis. Crit. Care. 2013;17:312. doi: 10.1186/cc12574. PubMed DOI PMC
Hajri T., Gharib M., Kaul S., Karpeh M.S., Jr. Association between adipokines and critical illness outcomes. J Trauma Acute Care Surg. 2017;83:507–519. doi: 10.1097/TA.0000000000001610. PubMed DOI
Paz-Filho G., Mastronardi C., Wong M.-L., Licinio J. Leptin therapy, insulin sensitivity, and glucose homeostasis. Indian J. Endocrinol. Metab. 2012;16:S549–S555. doi: 10.4103/2230-8210.105571. PubMed DOI PMC
Koch A., Gressner O.A., Sanson E., Tacke F., Trautwein C. Serum resistin levels in critically ill patients are associated with inflammation, organ dysfunction and metabolism and may predict survival of non-septic patients. Crit. Care. 2009;13:R95. doi: 10.1186/cc7925. PubMed DOI PMC
McCowen K.C., Ling P.R., Friel C., Sternberg J., Forse R.A., Burke P.A., Bistrian B.R. Patterns of plasma leptin and insulin concentrations in hospitalized patients after the initiation of total parenteral nutrition. Am. J. Clin. Nutr. 2002;75:931–935. doi: 10.1093/ajcn/75.5.931. PubMed DOI
Barr L.H., Dunn G.D., Brennan M.F. Essential fatty acid deficiency during total parenteral nutrition. Ann. Surg. 1981;193:304–311. doi: 10.1097/00000658-198103000-00009. PubMed DOI PMC
Gramlich L., Meddings L., Alberda C., Wichansawakun S., Robbins S., Driscoll D., Bistrian B. Essential Fatty Acid Deficiency in 2015: The Impact of Novel Intravenous Lipid Emulsions. JPEN J. Parenter. Enteral Nutr. 2015;39:61s–66s. doi: 10.1177/0148607115595977. PubMed DOI
Llop J., Sabin P., Garau M., Burgos R., Perez M., Masso J., Cardona D., Sanchez Segura J.M., Garriga R., Redondo S., et al. The importance of clinical factors in parenteral nutrition-associated hypertriglyceridemia. Clin. Nutr. 2003;22:577–583. doi: 10.1016/S0261-5614(03)00082-7. PubMed DOI
Altomare D.F., Semeraro N., Colucci M. Reduction of the plasma levels of tissue plasminogen activator after infusion of a lipid emulsion in humans. JPEN J. Parenter. Enteral Nutr. 1993;17:274–276. doi: 10.1177/0148607193017003274. PubMed DOI
Van der Poll T., Levi M., Braxton C.C., Coyle S.M., Roth M., ten Cate J.W., Lowry S.F. Parenteral Nutrition Facilitates Activation of Coagulation but Not of Fibrinolysis during Human Endotoxemia. Int. J. Infect. Dis. 1998;177:793–795. doi: 10.1086/517811. PubMed DOI
Biesalski H.K. Vitamin E requirements in parenteral nutrition. Gastroenterology. 2009;137:S92–S104. doi: 10.1053/j.gastro.2009.07.073. PubMed DOI
Steephen A.C., Traber M.G., Ito Y., Lewis L.H., Kayden H.J., Shike M. Vitamin E status of patients receiving long-term parenteral nutrition: Is vitamin E supplementation adequate? JPEN J. Parenter. Enteral Nutr. 1991;15:647–652. doi: 10.1177/0148607191015006647. PubMed DOI