• This record comes from PubMed

The Impact of Glucose-Based or Lipid-Based Total Parenteral Nutrition on the Free Fatty Acids Profile in Critically Ill Patients

. 2020 May 11 ; 12 (5) : . [epub] 20200511

Language English Country Switzerland Media electronic

Document type Journal Article, Randomized Controlled Trial

Grant support
Long-term Organization Development Plan 1011 FVZ UO
Progress Q40/12 LF UK HK

INTRODUCTION: Our study aim was to assess how the macronutrient intake during total parenteral nutrition (TPN) modulates plasma total free fatty acids (FFAs) levels and individual fatty acids in critically ill patients. METHOD: Adult patients aged 18-80, admitted to the intensive care unit (ICU), who were indicated for TPN, with an expected duration of more than three days, were included in the study. Isoenergetic and isonitrogenous TPN solutions were given with a major non-protein energy source, which was glucose (group G) or glucose and lipid emulsions (Smof lipid; group L). Blood samples were collected on days 0, 1, 3, 6, 9, 14, and 28. RESULTS: A significant decrease (p < 0.001) in total FFAs occurred in both groups with a bigger decrease in group G (p < 0.001) from day 0 (0.41 ± 0.19 mmol∙L-1) to day 28 (0.10 ± 0.07 mmol∙L-1). Increased palmitooleic acid and decreased linoleic and docosahexaenoic acids, with a trend of increased mead acid to arachidonic acid ratio, on day 28 were observed in group G in comparison with group L. Group G had an insignificant increase in leptin with no differences in the concentrations of vitamin E, triacylglycerides, and plasminogen activator inhibitor-1. CONCLUSION: Decreased plasma FFA in critically ill patients who receive TPN may result from increased insulin sensitivity with a better effect in group G, owing to higher insulin and glucose dosing and no lipid emulsions. It is advisable to include a lipid emulsion at the latest from three weeks of TPN to prevent essential fatty acid deficiency.

See more in PubMed

Singer P., Blaser A.R., Berger M.M., Alhazzani W., Calder P.C., Casaer M.P., Hiesmayr M., Mayer K., Montejo J.C., Pichard C., et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. 2019;38:48–79. doi: 10.1016/j.clnu.2018.08.037. PubMed DOI

Barazzoni R., Deutz N.E.P., Biolo G., Bischoff S., Boirie Y., Cederholm T., Cuerda C., Delzenne N., Leon Sanz M., Ljungqvist O., et al. Carbohydrates and insulin resistance in clinical nutrition: Recommendations from the ESPEN expert group. Clin. Nutr. 2017;36:355–363. doi: 10.1016/j.clnu.2016.09.010. PubMed DOI

Calder P.C., Adolph M., Deutz N.E., Grau T., Innes J.K., Klek S., Lev S., Mayer K., Michael-Titus A.T., Pradelli L., et al. Lipids in the intensive care unit: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2018;37:1–18. doi: 10.1016/j.clnu.2017.08.032. PubMed DOI

McClave S.A., Taylor B.E., Martindale R.G., Warren M.M., Johnson D.R., Braunschweig C., McCarthy M.S., Davanos E., Rice T.W., Cresci G.A., et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient. JPEN J. Parenter. Enteral Nutr. 2016;40:159–211. doi: 10.1177/0148607115621863. PubMed DOI

Soeters P., Bozzetti F., Cynober L., Elia M., Shenkin A., Sobotka L. Meta-analysis is not enough: The critical role of pathophysiology in determining optimal care in clinical nutrition. Clin. Nutr. 2016;35:748–757. doi: 10.1016/j.clnu.2015.08.008. PubMed DOI

Boden G. Obesity, insulin resistance and free fatty acids. Curr. Opin. Endocrinol. Diabetes Obes. 2011;18:139–143. doi: 10.1097/MED.0b013e3283444b09. PubMed DOI PMC

Arabi Y.M., Tamimi W., Jones G., Jawdat D., Tamim H., Al-Dorzi H.M., Sadat M., Afesh L., Sakhija M., Al-Dawood A. Free Fatty Acids’ Level and Nutrition in Critically Ill Patients and Association with Outcomes: A Prospective Sub-Study of PermiT Trial. Nutrients. 2019;11:384. doi: 10.3390/nu11020384. PubMed DOI PMC

Krogh-Madsen R., Plomgaard P., Akerstrom T., Moller K., Schmitz O., Pedersen B.K. Effect of short-term intralipid infusion on the immune response during low-dose endotoxemia in humans. Am. J. Physiol. Endocrinol. Metab. 2008;294:E371–E379. doi: 10.1152/ajpendo.00507.2007. PubMed DOI

Carvalho G., Pelletier P., Albacker T., Lachapelle K., Joanisse D.R., Hatzakorzian R., Lattermann R., Sato H., Marette A., Schricker T. Cardioprotective effects of glucose and insulin administration while maintaining normoglycemia (GIN therapy) in patients undergoing coronary artery bypass grafting. J. Clin. Endocrinol. Metab. 2011;96:1469–1477. doi: 10.1210/jc.2010-1934. PubMed DOI

Kalupahana N.S., Voy B.H., Saxton A.M., Moustaid-Moussa N. Energy-restricted high-fat diets only partially improve markers of systemic and adipose tissue inflammation. Obesity. 2011;19:245–254. doi: 10.1038/oby.2010.196. PubMed DOI

Langouche L., Perre S.V., Thiessen S., Gunst J., Hermans G., D’Hoore A., Kola B., Korbonits M., Van den Berghe G. Alterations in adipose tissue during critical illness: An adaptive and protective response? Am. J. Respir. Crit. Care Med. 2010;182:507–516. doi: 10.1164/rccm.200909-1395OC. PubMed DOI

Devine B.J. Gentamicin therapy. Drug Intell. Clin. Pharm. 1974;8:650–655. doi: 10.1177/106002807400801104. DOI

Saluk J., Hoppensteadt D., Syed D., Liles J., Abro S., Walborn A., Bansal V., Fareed J. Biomarker profiling of plasma samples utilizing RANDOX biochip array technology. Int. Angiol. 2017;36:499–504. doi: 10.23736/S0392-9590.17.03854-8. PubMed DOI PMC

Solichova D., Blaha M., Aufartova J., Krcmova L.K., Plisek J., Honegrova B., Kasalova E., Lanska M., Urbanek L., Sobotka L. The Effect of LDL-Apheresis and Rheohaemapheresis Treatment on Vitamin E. J. Nutr. Sci. Vitaminol. 2015;61:105–112. doi: 10.3177/jnsv.61.105. PubMed DOI

Noguchi K., Gel Y.R., Brunner E., Konietschke F. nparLD: An R Software Package for the Nonparametric Analysis of Longitudinal Data in Factorial Experiments. J. St. Softw. 2012;50:23. doi: 10.18637/jss.v050.i12. DOI

Holm S. A Simple Sequentially Rejective Multiple Test Procedure. Scand. J. Stat. 1979;6:65–70. doi: 10.2307/4615733. DOI

Team R.C. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2019. [(accessed on 2 April 2020)]. Available online: https://www.R-project.org/

Levinson M., Groeger J., Jeevanandam M., Brennan M.F. Free fatty acid turnover and lipolysis in septic mechanically ventilated cancer-bearing humans. Metabolism. 1988;37:618–625. doi: 10.1016/0026-0495(88)90078-9. PubMed DOI

Shaw J.H., Wolfe R.R. Response to glucose and lipid infusions in sepsis: A kinetic analysis. Metabolism. 1985;34:442–449. doi: 10.1016/0026-0495(85)90210-0. PubMed DOI

Wolfe R.R. Sepsis as a modulator of adaptation to low and high carbohydrate and low and high fat intakes. Eur. J. Clin. Nutr. 1999;53:S136–S142. doi: 10.1038/sj.ejcn.1600754. PubMed DOI

Wolfe R.R., Herndon D.N., Peters E.J., Jahoor F., Desai M.H., Holland O.B. Regulation of lipolysis in severely burned children. Ann. Surg. 1987;206:214–221. doi: 10.1097/00000658-198708000-00016. PubMed DOI PMC

Langin D. Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacol. Res. 2006;53:482–491. doi: 10.1016/j.phrs.2006.03.009. PubMed DOI

Marques M.B., Langouche L. Endocrine, metabolic, and morphologic alterations of adipose tissue during critical illness. Crit. Care Med. 2013;41:317–325. doi: 10.1097/CCM.0b013e318265f21c. PubMed DOI

Carpentier A.C., Frisch F., Cyr D., Genereux P., Patterson B.W., Giguere R., Baillargeon J.P. On the suppression of plasma nonesterified fatty acids by insulin during enhanced intravascular lipolysis in humans. Am. J. Physiol. Endocrinol. Metab. 2005;289:E849–E856. doi: 10.1152/ajpendo.00073.2005. PubMed DOI

Stegmayr B., Olivecrona T., Olivecrona G. Lipoprotein lipase disturbances induced by uremia and hemodialysis. Semin. Dial. 2009;22:442–444. doi: 10.1111/j.1525-139X.2009.00597.x. PubMed DOI

Gonzales A.M., Orlando R.A. Role of adipocyte-derived lipoprotein lipase in adipocyte hypertrophy. Nutr. Metab. 2007;4:22. doi: 10.1186/1743-7075-4-22. PubMed DOI PMC

Goodenough R.D., Wolfe R.R. Effect of total parenteral nutrition on free fatty acid metabolism in burned patients. JPEN J. Parenter. Enteral Nutr. 1984;8:357–360. doi: 10.1177/0148607184008004357. PubMed DOI

Shaw J.H., Wolfe R.R. An integrated analysis of glucose, fat, and protein metabolism in severely traumatized patients. Studies in the basal state and the response to total parenteral nutrition. Ann. Surg. 1989;209:63–72. doi: 10.1097/00000658-198901000-00010. PubMed DOI PMC

Langouche L., Vander Perre S., Wouters P.J., D’Hoore A., Hansen T.K., Van den Berghe G. Effect of intensive insulin therapy on insulin sensitivity in the critically ill. J. Clin. Endocrinol. Metab. 2007;92:3890–3897. doi: 10.1210/jc.2007-0813. PubMed DOI

Soeters M.R., Soeters P.B. The evolutionary benefit of insulin resistance. Clin. Nutr. 2012;31:1002–1007. doi: 10.1016/j.clnu.2012.05.011. PubMed DOI

Dai Y.J., Sun L.L., Li M.Y., Ding C.L., Su Y.C., Sun L.J., Xue S.H., Yan F., Zhao C.H., Wang W. Comparison of Formulas Based on Lipid Emulsions of Olive Oil, Soybean Oil, or Several Oils for Parenteral Nutrition: A Systematic Review and Meta-Analysis. Adv. Nutr. 2016;7:279–286. doi: 10.3945/an.114.007427. PubMed DOI PMC

Jia Z.Y., Yang J., Xia Y., Tong D.N., Zaloga G.P., Qin H.L. Safety and efficacy of an olive oil-based triple-chamber bag for parenteral nutrition: A prospective, randomized, multi-center clinical trial in China. Nutr. J. 2015;14:119. doi: 10.1186/s12937-015-0100-6. PubMed DOI PMC

Umpierrez G.E., Spiegelman R., Zhao V., Smiley D.D., Pinzon I., Griffith D.P., Peng L., Morris T., Luo M., Garcia H., et al. A double-blind, randomized clinical trial comparing soybean oil-based versus olive oil-based lipid emulsions in adult medical-surgical intensive care unit patients requiring parenteral nutrition. Crit. Care Med. 2012;40:1792–1798. doi: 10.1097/CCM.0b013e3182474bf9. PubMed DOI PMC

Ling P.-R., Andersson C., Strijbosch R., Lee S., Silvestri A., Gura K.M., Puder M., Bistrian B.R. Effects of glucose or fat calories in total parenteral nutrition on fat metabolism and systemic inflammation in rats. Metabolism. 2011;60:195–205. doi: 10.1016/j.metabol.2009.12.014. PubMed DOI

Wilson M.D., Blake W.L., Salati L.M., Clarke S.D. Potency of polyunsaturated and saturated fats as short-term inhibitors of hepatic lipogenesis in rats. J. Nutr. 1990;120:544–552. doi: 10.1093/jn/120.6.544. PubMed DOI

Teran-Garcia M., Adamson A.W., Yu G., Rufo C., Suchankova G., Dreesen T.D., Tekle M., Clarke S.D., Gettys T.W. Polyunsaturated fatty acid suppression of fatty acid synthase (FASN): Evidence for dietary modulation of NF-Y binding to the Fasn promoter by SREBP-1c. Biochem. J. 2007;402:591–600. doi: 10.1042/BJ20061722. PubMed DOI PMC

Mayer K., Gokorsch S., Fegbeutel C., Hattar K., Rosseau S., Walmrath D., Seeger W., Grimminger F. Parenteral nutrition with fish oil modulates cytokine response in patients with sepsis. Am. J. Respir. Crit. Care Med. 2003;167:1321–1328. doi: 10.1164/rccm.200207-674OC. PubMed DOI

Das U.N. n-3 fatty acids, γ-linolenic acid, and antioxidants in sepsis. Crit. Care. 2013;17:312. doi: 10.1186/cc12574. PubMed DOI PMC

Hajri T., Gharib M., Kaul S., Karpeh M.S., Jr. Association between adipokines and critical illness outcomes. J Trauma Acute Care Surg. 2017;83:507–519. doi: 10.1097/TA.0000000000001610. PubMed DOI

Paz-Filho G., Mastronardi C., Wong M.-L., Licinio J. Leptin therapy, insulin sensitivity, and glucose homeostasis. Indian J. Endocrinol. Metab. 2012;16:S549–S555. doi: 10.4103/2230-8210.105571. PubMed DOI PMC

Koch A., Gressner O.A., Sanson E., Tacke F., Trautwein C. Serum resistin levels in critically ill patients are associated with inflammation, organ dysfunction and metabolism and may predict survival of non-septic patients. Crit. Care. 2009;13:R95. doi: 10.1186/cc7925. PubMed DOI PMC

McCowen K.C., Ling P.R., Friel C., Sternberg J., Forse R.A., Burke P.A., Bistrian B.R. Patterns of plasma leptin and insulin concentrations in hospitalized patients after the initiation of total parenteral nutrition. Am. J. Clin. Nutr. 2002;75:931–935. doi: 10.1093/ajcn/75.5.931. PubMed DOI

Barr L.H., Dunn G.D., Brennan M.F. Essential fatty acid deficiency during total parenteral nutrition. Ann. Surg. 1981;193:304–311. doi: 10.1097/00000658-198103000-00009. PubMed DOI PMC

Gramlich L., Meddings L., Alberda C., Wichansawakun S., Robbins S., Driscoll D., Bistrian B. Essential Fatty Acid Deficiency in 2015: The Impact of Novel Intravenous Lipid Emulsions. JPEN J. Parenter. Enteral Nutr. 2015;39:61s–66s. doi: 10.1177/0148607115595977. PubMed DOI

Llop J., Sabin P., Garau M., Burgos R., Perez M., Masso J., Cardona D., Sanchez Segura J.M., Garriga R., Redondo S., et al. The importance of clinical factors in parenteral nutrition-associated hypertriglyceridemia. Clin. Nutr. 2003;22:577–583. doi: 10.1016/S0261-5614(03)00082-7. PubMed DOI

Altomare D.F., Semeraro N., Colucci M. Reduction of the plasma levels of tissue plasminogen activator after infusion of a lipid emulsion in humans. JPEN J. Parenter. Enteral Nutr. 1993;17:274–276. doi: 10.1177/0148607193017003274. PubMed DOI

Van der Poll T., Levi M., Braxton C.C., Coyle S.M., Roth M., ten Cate J.W., Lowry S.F. Parenteral Nutrition Facilitates Activation of Coagulation but Not of Fibrinolysis during Human Endotoxemia. Int. J. Infect. Dis. 1998;177:793–795. doi: 10.1086/517811. PubMed DOI

Biesalski H.K. Vitamin E requirements in parenteral nutrition. Gastroenterology. 2009;137:S92–S104. doi: 10.1053/j.gastro.2009.07.073. PubMed DOI

Steephen A.C., Traber M.G., Ito Y., Lewis L.H., Kayden H.J., Shike M. Vitamin E status of patients receiving long-term parenteral nutrition: Is vitamin E supplementation adequate? JPEN J. Parenter. Enteral Nutr. 1991;15:647–652. doi: 10.1177/0148607191015006647. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...