Probabilistic Modeling of Chloride Penetration with Respect to Concrete Heterogeneity and Epoxy-Coating on the Reinforcement

. 2019 Dec 06 ; 12 (24) : . [epub] 20191206

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31817567

The presented article demonstrates the probabilistic method based modeling of the 2D chloride ingress into reinforced concrete structures with respect to concrete heterogeneity and epoxy-coated steel reinforcement. Spatial change of concrete diffusion is assessed through the investigation of random variation of the ability of concrete to resist chloride ingress. Time-dependent chloride concentration at the reinforcement level in both homogeneous and heterogeneous models is comparatively considered taking into account of the influence of reinforcement protection as well as the defects and holidays of the coating. Expansion optimal linear estimation method is exploited to generate a random field for the structure at the mesoscale and correlation length is employed to simplify the modeling process. Preliminary analyses of the built model are conducted in both deterministic and probabilistic solutions under the scheme of the finite element method. Thus, possibility of such analyses is exploited.

Zobrazit více v PubMed

Hooton R.D., Thomas M.D.A., Standish K. Prediction of Chloride Penetration in Concrete. The National Academies of Sciences, Engineering, and Medicine; Washington, DC, USA: 2001. p. 412.

Marsavina L., Audenaert K., De Schutter G., Faur N., Marsavina D. Experimental and numerical determination of the chloride penetration in cracked concrete. Constr. Build. Mater. 2009;23:264–274. doi: 10.1016/j.conbuildmat.2007.12.015. DOI

Vořechovská D., Podroužek J., Chromá M., Rovnaníková P., Teplý B. Modeling of chloride concentration effect on reinforcement corrosion. Comput. Civ. Infrastruct. Eng. 2009;24:446–458. doi: 10.1111/j.1467-8667.2009.00602.x. DOI

Konečný P., Brožovský J., Ghosh P. Evaluation of Chloride Influence on the Cracking in Reinforced Concrete Using Korozeeneck Software. Trans. VŠB Tech. Univ. Ostrava Civ. Eng. Ser. 2011;11:1–7. doi: 10.2478/v10160-011-0006-y. DOI

Szweda Z., Zybura A. Theoretical model and experimental tests on chloride diffusion and migration processes in concrete. Procedia Eng. 2013;57:1121–1130.

Stewart M.G., Rosowsky D.V. Time-dependent reliability of deteriorating reinforced concrete bridge decks. Struct. Saf. 1998;20:91–109. doi: 10.1016/S0167-4730(97)00021-0. DOI

Tikalsky P.J., Pustka D., Marek P. Statistical variations in chloride diffusion in concrete bridges. ACI Struct. J. 2005;102:481–486.

Teplý B., Vořechovská D. Reinforcement corrosion: Limit states, reliability and modelling. J. Adv. Concr. Technol. 2012;10:353–362.

Ghosh P., Konečný P., Lehner P., Tikalsky P.J.P.J. Probabilistic time-dependent sensitivity analysis of HPC bridge deck exposed to chlorides. Comput. Concr. 2017;19:305–313. doi: 10.12989/cac.2017.19.3.305. DOI

Lehner P., Konečný P., Ghosh P., Tran Q. Numerical analysis of chloride diffusion considering time-dependent diffusion coefficient. Int. J. Math. Comput. Simul. 2014;8:103–106.

Konečný P., Lehner P. Durability assessment of concrete bridge deck considering waterproof membrane and epoxy-coated reinforcement. Perspect. Sci. 2016;7:222–227. doi: 10.1016/j.pisc.2015.11.036. DOI

Herrmann H.J., Hansen A., Roux S. Fracture of disordered, elastic lattices in two dimensions. Phys. Rev. B. 1989;39:637–648. doi: 10.1103/PhysRevB.39.637. PubMed DOI

Cusatis G., Bažant Z., Cedolin L. Confinement-Shear Lattice Model for Concrete Damage in Tension and Compression: I. Theory. J. Eng. Mech. 2003;129:1449–1458. doi: 10.1061/(ASCE)0733-9399(2003)129:12(1449). DOI

Cusatis G., Cedolin L. Two-scale study of concrete fracturing behavior. Eng. Fract. Mech. 2007;74:3–17. doi: 10.1016/j.engfracmech.2006.01.021. DOI

Cusatis G., Pelessone D., Mencarelli A. Lattice Discrete Particle Model (LDPM) for failure behavior of concrete. I: Theory. Cem. Concr. Compos. 2011;33:881–890. doi: 10.1016/j.cemconcomp.2011.02.011. DOI

Grassl P., Bažant Z.P. Random Lattice-Particle Simulation of Statistical Size Effect in Quasi-Brittle Structures Failing at Crack Initiation. J. Eng. Mech. 2009;135:85–92. doi: 10.1061/(ASCE)0733-9399(2009)135:2(85). DOI

Eliáš J., Vořechovský M., Skoček J., Bažant Z.P. Stochastic discrete meso-scale simulations of concrete fracture: Comparison to experimental data. Eng. Fract. Mech. 2015;135:1–16. doi: 10.1016/j.engfracmech.2015.01.004. DOI

Stanish K.D., Hooton R.D., Thomas M.D.A. Testing the Chloride Penetration Resistance of Concrete: A Literature Review. Volume 2 American Association of State Highway and Transportation Officials; Washington, DC, USA: 2012. AASHTO T259 Standard method of test for resistance of concrete to chloride ion penetration.

Beckhoff B., Kanngießer B., Langhoff N., Wedell R., Wolff H. Handbook of Practical X-Ray Fluorescence Analysis. Springer; Berlin/Heidelberg, Germany: 2006.

Khanzadeh Moradllo M., Sudbrink B., Hu Q., Aboustait M., Tabb B., Ley M.T., Davis J.M. Using micro X-ray fluorescence to image chloride profiles in concrete. Cem. Concr. Res. 2017;92:128–141. doi: 10.1016/j.cemconres.2016.11.014. DOI

Gottlieb C., Millar S., Günther T., Wilsch G. Revealing hidden spectral information of chlorine and sulfur in data of a mobile Laser-induced Breakdown Spectroscopy system using chemometrics. Spectrochim. Acta Part B At. Spectrosc. 2017;132:43–49. doi: 10.1016/j.sab.2017.04.001. DOI

Millar S., Wilsch G., Eichler T., Gottlieb C., Wiggenhauser H. Laser Induced Breakdown Spectroscopy (LIBS) in civil engineering — Innovative analysis of building materials. Beton Stahlbetonbau. 2015;110:501–510. doi: 10.1002/best.201500030. DOI

Jiang W., Shen X., Xia J., Mao L., Yang J., Liu Q. A numerical study on chloride diffusion in freeze-thaw affected concrete. Constr. Build. Mater. 2018;179:553–565. doi: 10.1016/j.conbuildmat.2018.05.209. DOI

Li C., Der Kiureghian A. Optimal Discretization of Random Fields. J. Eng. Mech. 1993;119:1136–1154. doi: 10.1061/(ASCE)0733-9399(1993)119:6(1136). DOI

Bažant Z.P., Vořechovský M., Novák D. Asymptotic Prediction of Energetic-Statistical Size Effect from Deterministic Finite-Element Solutions. J. Eng. Mech. 2007;133:153–162. doi: 10.1061/(ASCE)0733-9399(2007)133:2(153). DOI

Roubin E., Colliat J.B., Benkemoun N. Meso-scale modeling of concrete: A morphological description based on excursion sets of Random Fields. Comput. Mater. Sci. 2015;102:183–195. doi: 10.1016/j.commatsci.2015.02.039. DOI

Vořechovský M., Sadílek V. Computational modeling of size effects in concrete specimens under uniaxial tension. Int. J. Fract. 2008;154:27–49. doi: 10.1007/s10704-009-9316-9. DOI

Grassl P., Grégoire D., Rojas Solano L., Pijaudier-Cabot G. Meso-scale modelling of the size effect on the fracture process zone of concrete. Int. J. Solids Struct. 2012;49:1818–1827. doi: 10.1016/j.ijsolstr.2012.03.023. DOI

Syroka-Korol E., Tejchman J., Mróz Z. FE investigations of the effect of fluctuating local tensile strength on coupled energetic-statistical size effect in concrete beams. Eng. Struct. 2015;103:239–259. doi: 10.1016/j.engstruct.2015.09.011. DOI

Vořechovský M. Interplay of size effects in concrete specimens under tension studied via computational stochastic fracture mechanics. Int. J. Solids Struct. 2007;44:2715–2731. doi: 10.1016/j.ijsolstr.2006.08.019. DOI

Weyers R.E., Pyc W., Sprinkel M.M. Estimating the service life of epoxy-coated reinforcing steel. ACI Mater. J. 1998;95:546–557.

Konecny P., Lehner P. Effect of cracking and randomness of inputs on corrosion initiation of reinforced concrete bridge decks exposed to chlorides. Frat. Integrita Strutt. 2017;39:29–37. doi: 10.3221/IGF-ESIS.39.04. DOI

Le T.D., Lehner P., Konečný P. Advanced Model of Chloride Penetration Considering Concrete Heterogeneity. Procedia Struct. Integr. 2018;13:1702–1707. doi: 10.1016/j.prostr.2018.12.354. DOI

Pack S.W., Jung M.S., Song H.W., Kim S.H., Ann K.Y. Prediction of time dependent chloride transport in concrete structures exposed to a marine environment. Cem. Concr. Res. 2010;40:302–312. doi: 10.1016/j.cemconres.2009.09.023. DOI

Thomas M.D.A., Bamforth P.B. Modelling chloride diffusion in concrete effect of fly ash and slag. Cem. Concr. Res. 1999;29:487–495. doi: 10.1016/S0008-8846(98)00192-6. DOI

Roubin E. Ph.D. Thesis. École Normale Supérieure Paris-Saclay; Cachan, France: Oct, 2013. Meso-Scale {FE} and Morphological Modeling of Heterogeneous Media: Application to Cementitious Materials.

Ghosh P., Tran Q. Correlation Between Bulk and Surface Resistivity of Concrete. Int. J. Concr. Struct. Mater. 2015;9:119–132. doi: 10.1007/s40069-014-0094-z. DOI

Kaděrová J. Ph.D. Thesis. Brno University of Technology; Brno, Czech Republic: 2018. Probabilistic Discrete Model of Concrete Fracturing.

Scannell W.T., Sohanghpurwala A.A. Verification of Effectiveness of Epoxy-Coated Rebars. Concorr Inc.; Sterling, VA, USA: 1998. pp. 5–96.

Darwin D., Browning J., O’Reilly M., Xing L., Ji J. Critical chloride corrosion threshold of galvanized reinforcing bars. ACI Mater. J. 2009;106:176–183.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Sensitivity Analysis of Stochastic Calculation of SCC Regarding Aggressive Environment

. 2021 Nov 12 ; 14 (22) : . [epub] 20211112

Variation of Durability and Strength Parameters of Pumice Based Mixtures

. 2021 Jul 01 ; 14 (13) : . [epub] 20210701

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...