Variation of Durability and Strength Parameters of Pumice Based Mixtures

. 2021 Jul 01 ; 14 (13) : . [epub] 20210701

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34279244

The numerical modelling of chloride penetration into concrete is very sensitive to the correct description of the input data. In the recent era, high-performance concrete (HPC), which combines Portland cement and other supplementary cementitious materials, has been gaining attraction due to their desirable material properties and durability. The presented results show the application of the modified approach for the evaluation of the suitability of the time-dependent model for the variation of the diffusion coefficient. The 26 various binary and ternary-based concrete mixtures blended with volcanic pumice pozzolan (VPP) as a major supplementary cementitious material (SCM) are compared with the reference Ordinary Portland Cement mixture. Other SCMs namely fly ash, slag, silica fume, and metakaolin were also utilized in ternary-based concrete mixtures. In-depth statistical analysis was carried out to show the variability and effects of the amount of the volcanic pumice as an SCM on the diffusion coefficient. The mean value and regression via linear approximation of the time-dependent coefficient of variation of the diffusion coefficients were used as well as the Root of Mean Squared Error approach. The presented results are suitable as the component of the input parameters for the durability-related probabilistic assessment of the reinforced concrete structures exposed to chlorides. In addition, the time-dependent ultimate limit state-related data was presented.

Zobrazit více v PubMed

Goodier C.I. Development of self-compacting concrete. Proc. Inst. Civ. Eng. Struct. Build. 2003;156:405–414. doi: 10.1680/stbu.2003.156.4.405. DOI

Hornakova M., Konecny P., Lehner P., Katzer J. Durability of structural lightweight waste aggregate concrete—Electrical resistivity. MATEC Web Conf. 2020;310:00015. doi: 10.1051/matecconf/202031000015. DOI

Sun Y., Wang Z., Gao Q., Liu C. A new mixture design methodology based on the Packing Density Theory for high performance concrete in bridge engineering. Constr. Build. Mater. 2018;182:80–93. doi: 10.1016/j.conbuildmat.2018.06.062. DOI

Lehner P., Ghosh P., Konečný P. Statistical analysis of time dependent variation of diffusion coefficient for various binary and ternary based concrete mixtures. Constr. Build. Mater. 2018;183:75–87. doi: 10.1016/j.conbuildmat.2018.06.048. DOI

Thomas M.D.A., Bamforth P.B. Modelling chloride diffusion in concrete effect of fly ash and slag. Cem. Concr. Res. 1999;29:487–495. doi: 10.1016/S0008-8846(98)00192-6. DOI

Seddik Meddah M. Durability performance and engineering properties of shale and volcanic ashes concretes. Constr. Build. Mater. 2015;79:73–82. doi: 10.1016/j.conbuildmat.2015.01.020. DOI

Hrabova K., Teply B., Vymazal T. Sustainability assessment of concrete mixes. IOP Conf. Ser. Earth Environ. Sci. 2020;444:012021. doi: 10.1088/1755-1315/444/1/012021. DOI

Novák D., Vořechovský M., Teplý B. FReET: Software for the statistical and reliability analysis of engineering problems and FReET-D: Degradation module. Adv. Eng. Softw. 2014 doi: 10.1016/j.advengsoft.2013.06.011. DOI

Nguyen N.L., Jang G.W., Choi S., Kim J., Kim Y.Y. Analysis of thin-walled beam-shell structures for concept modeling based on higher-order beam theory. Comput. Struct. 2018;195:16–33. doi: 10.1016/j.compstruc.2017.09.009. DOI

Bentz D.P., Garboczi E.J., Lu Y., Martys N., Sakulich A.R., Weiss W.J. Modeling of the influence of transverse cracking on chloride penetration into concrete. Cem. Concr. Compos. 2013;38:65–74. doi: 10.1016/j.cemconcomp.2013.03.003. DOI

Sykora M., Markova J., Holicky M. Assessment of deteriorating reinforced concrete road bridges. Reliab. Risk Saf. 2009 doi: 10.1201/9780203859759.ch190. DOI

Zhou Y., Gencturk B., Willam K., Attar A. Carbonation-induced and chloride-induced corrosion in reinforced concrete structures. J. Mater. Civ. Eng. 2015;27:04014245. doi: 10.1061/(ASCE)MT.1943-5533.0001209. DOI

Bertolini L., Elsener B., Pedeferri P., Polder R. Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair. Wiley; Hoboken, NJ, USA: 2005.

Costa A., Appleton J. Chloride penetration into concrete in marine environment-Part II: Prediction of long term chloride penetration. Mater. Struct. 1999;32:354–359. doi: 10.1007/BF02479627. DOI

Loreto G., di Benedetti M., de Luca A., Nanni A. Assessment of reinforced concrete structures in marine environment: A case study. Corros. Rev. 2019;37:57–69. doi: 10.1515/corrrev-2018-0046. DOI

Andrew R.M. Global CO2 emissions from cement production. Earth Syst. Sci. Data. 2018 doi: 10.5194/essd-10-195-2018. DOI

Latawiec R., Woyciechowski P., Kowalski K. Sustainable concrete performance—CO2-emission. Environments. 2018;5:27. doi: 10.3390/environments5020027. DOI

Tran Q., Ghosh P. Influence of pumice on mechanical properties and durability of high performance concrete. Constr. Build. Mater. 2020;249:118741. doi: 10.1016/j.conbuildmat.2020.118741. DOI

Hossain K.M.A., Lachemi M. Performance of volcanic ash and pumice based blended cement concrete in mixed sulfate environment. Cem. Concr. Res. 2006;36:1123–1133. doi: 10.1016/j.cemconres.2006.03.010. DOI

Anwar Hossain K.M. Properties of volcanic pumice based cement and lightweight concrete. Cem. Concr. Res. 2004;34:283–291. doi: 10.1016/j.cemconres.2003.08.004. DOI

Játiva A., Ruales E., Etxeberria M. Volcanic ash as a sustainable binder material: An extensive review. Materials. 2021;14:1302. doi: 10.3390/ma14051302. PubMed DOI PMC

Hrabová K., Lehner P., Ghosh P., Konečný P., Teplý B. Sustainability levels in compare with mechanical properties and durability of pumice high-performance concrete. Appl. Sci. 2021;11:4964. doi: 10.3390/app11114964. DOI

Mangat P.S., Molloy B.T. Prediction of long term chloride concentration in concrete. Mater. Struct. 1994;27:338–346. doi: 10.1007/BF02473426. DOI

Castaldo P., Palazzo B., Mariniello A. Effects of the axial force eccentricity on the time-variant structural reliability of aging r.c. cross-sections subjected to chloride-induced corrosion. Eng. Struct. 2017;130:261–274. doi: 10.1016/j.engstruct.2016.10.053. DOI

Stewart M.G., Rosowsky D.V. Time-dependent reliability of deteriorating reinforced concrete bridge decks. Struct. Saf. 1998;20:91–109. doi: 10.1016/S0167-4730(97)00021-0. DOI

Biondini F., Vergani M. Deteriorating beam finite element for nonlinear analysis of concrete structures under corrosion. Struct. Infrastruct. Eng. 2015;11:519–532. doi: 10.1080/15732479.2014.951863. DOI

Konečný P., Tikalsky P.J., Tepke D.G. Performance evaluation of concrete bridge deck affected by chloride ingress: Simulation-based reliability assessment and finite element modeling. Transp. Res. Rec. 2008;2028:3–8. doi: 10.3141/2028-01. DOI

Thomas H.R., Zhou Z. Minimum time-step size for diffusion problem in FEM analysis. Int. J. Numer. Methods Eng. 1997 doi: 10.1002/(SICI)1097-0207(19971030)40:20<3865::AID-NME246>3.0.CO;2-C. DOI

Teplý B., Vořechovská D. Reinforcement corrosion: Limit states, reliability and modelling. J. Adv. Concr. Technol. 2012;10:353–362. doi: 10.3151/jact.10.353. DOI

Tran Q. Durability Investigation of Ultrafine Volcanic Pumice Based HPC Mixtures. California State University; Fullerton, CA, USA: 2014.

Tikalsky P.J., Pustka D., Marek P. Statistical variations in chloride diffusion in concrete bridges. ACI Struct. J. 2005;102:481–486. doi: 10.14359/14420. DOI

Le T.D.T.D., Lehner P., Konečnỳ P., Konečný P. Probabilistic modeling of chloride penetration with respect to concrete heterogeneity and epoxy-coating on the reinforcement. Materials. 2019;12:4068. doi: 10.3390/ma12244068. PubMed DOI PMC

Marek P., Brozzetti J., Gustar M., Elishakoff I. Probabilistic assessment of structures using Monte Carlo simulations. Appl. Mech. Rev. 2002;55:B31–B32. doi: 10.1115/1.1451167. DOI

Janas P., Krejsa M., Krejsa V. Proceedings of the Twelfth International Conference on Civil, Structural and Environmental Engineering Computing. Civil-Comp Press; Stirlingshire, UK: 2009. Structural reliability assessment using a direct determined probabilistic calculation.

Lu X. Application of the Nernst-Einstein equation to concrete. Cem. Concr. Res. 1997;27:293–302. doi: 10.1016/S0008-8846(96)00200-1. DOI

Hooton R. Life-365 User Manual. Silica Fume Association; Lovettsville, VA, USA: 2012. Life-365 service life prediction model and computer program for predicting the service life and life-cycle cost of reinforced concrete exposed to chlorides; pp. 1–80.

Konečný P., Lehner P., Ghosh P., Morávková Z., Tran Q. Comparison of procedures for the evaluation of time dependent concrete diffusion coefficient model. Constr. Build. Mater. 2020;258:119535. doi: 10.1016/j.conbuildmat.2020.119535. DOI

Konečný P., Lehner P., Ghosh P., Tran Q. Variation of diffusion coefficient for selected binary and ternary concrete mixtures considering concrete aging effect. Key Eng. Mater. 2018;761:144–147. doi: 10.4028/www.scientific.net/KEM.761.144. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...