Variation of Durability and Strength Parameters of Pumice Based Mixtures
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34279244
PubMed Central
PMC8269912
DOI
10.3390/ma14133674
PII: ma14133674
Knihovny.cz E-zdroje
- Klíčová slova
- chloride, coefficient of variation, concrete, diffusion coefficient, pumice, trend line,
- Publikační typ
- časopisecké články MeSH
The numerical modelling of chloride penetration into concrete is very sensitive to the correct description of the input data. In the recent era, high-performance concrete (HPC), which combines Portland cement and other supplementary cementitious materials, has been gaining attraction due to their desirable material properties and durability. The presented results show the application of the modified approach for the evaluation of the suitability of the time-dependent model for the variation of the diffusion coefficient. The 26 various binary and ternary-based concrete mixtures blended with volcanic pumice pozzolan (VPP) as a major supplementary cementitious material (SCM) are compared with the reference Ordinary Portland Cement mixture. Other SCMs namely fly ash, slag, silica fume, and metakaolin were also utilized in ternary-based concrete mixtures. In-depth statistical analysis was carried out to show the variability and effects of the amount of the volcanic pumice as an SCM on the diffusion coefficient. The mean value and regression via linear approximation of the time-dependent coefficient of variation of the diffusion coefficients were used as well as the Root of Mean Squared Error approach. The presented results are suitable as the component of the input parameters for the durability-related probabilistic assessment of the reinforced concrete structures exposed to chlorides. In addition, the time-dependent ultimate limit state-related data was presented.
Zobrazit více v PubMed
Goodier C.I. Development of self-compacting concrete. Proc. Inst. Civ. Eng. Struct. Build. 2003;156:405–414. doi: 10.1680/stbu.2003.156.4.405. DOI
Hornakova M., Konecny P., Lehner P., Katzer J. Durability of structural lightweight waste aggregate concrete—Electrical resistivity. MATEC Web Conf. 2020;310:00015. doi: 10.1051/matecconf/202031000015. DOI
Sun Y., Wang Z., Gao Q., Liu C. A new mixture design methodology based on the Packing Density Theory for high performance concrete in bridge engineering. Constr. Build. Mater. 2018;182:80–93. doi: 10.1016/j.conbuildmat.2018.06.062. DOI
Lehner P., Ghosh P., Konečný P. Statistical analysis of time dependent variation of diffusion coefficient for various binary and ternary based concrete mixtures. Constr. Build. Mater. 2018;183:75–87. doi: 10.1016/j.conbuildmat.2018.06.048. DOI
Thomas M.D.A., Bamforth P.B. Modelling chloride diffusion in concrete effect of fly ash and slag. Cem. Concr. Res. 1999;29:487–495. doi: 10.1016/S0008-8846(98)00192-6. DOI
Seddik Meddah M. Durability performance and engineering properties of shale and volcanic ashes concretes. Constr. Build. Mater. 2015;79:73–82. doi: 10.1016/j.conbuildmat.2015.01.020. DOI
Hrabova K., Teply B., Vymazal T. Sustainability assessment of concrete mixes. IOP Conf. Ser. Earth Environ. Sci. 2020;444:012021. doi: 10.1088/1755-1315/444/1/012021. DOI
Novák D., Vořechovský M., Teplý B. FReET: Software for the statistical and reliability analysis of engineering problems and FReET-D: Degradation module. Adv. Eng. Softw. 2014 doi: 10.1016/j.advengsoft.2013.06.011. DOI
Nguyen N.L., Jang G.W., Choi S., Kim J., Kim Y.Y. Analysis of thin-walled beam-shell structures for concept modeling based on higher-order beam theory. Comput. Struct. 2018;195:16–33. doi: 10.1016/j.compstruc.2017.09.009. DOI
Bentz D.P., Garboczi E.J., Lu Y., Martys N., Sakulich A.R., Weiss W.J. Modeling of the influence of transverse cracking on chloride penetration into concrete. Cem. Concr. Compos. 2013;38:65–74. doi: 10.1016/j.cemconcomp.2013.03.003. DOI
Sykora M., Markova J., Holicky M. Assessment of deteriorating reinforced concrete road bridges. Reliab. Risk Saf. 2009 doi: 10.1201/9780203859759.ch190. DOI
Zhou Y., Gencturk B., Willam K., Attar A. Carbonation-induced and chloride-induced corrosion in reinforced concrete structures. J. Mater. Civ. Eng. 2015;27:04014245. doi: 10.1061/(ASCE)MT.1943-5533.0001209. DOI
Bertolini L., Elsener B., Pedeferri P., Polder R. Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair. Wiley; Hoboken, NJ, USA: 2005.
Costa A., Appleton J. Chloride penetration into concrete in marine environment-Part II: Prediction of long term chloride penetration. Mater. Struct. 1999;32:354–359. doi: 10.1007/BF02479627. DOI
Loreto G., di Benedetti M., de Luca A., Nanni A. Assessment of reinforced concrete structures in marine environment: A case study. Corros. Rev. 2019;37:57–69. doi: 10.1515/corrrev-2018-0046. DOI
Andrew R.M. Global CO2 emissions from cement production. Earth Syst. Sci. Data. 2018 doi: 10.5194/essd-10-195-2018. DOI
Latawiec R., Woyciechowski P., Kowalski K. Sustainable concrete performance—CO2-emission. Environments. 2018;5:27. doi: 10.3390/environments5020027. DOI
Tran Q., Ghosh P. Influence of pumice on mechanical properties and durability of high performance concrete. Constr. Build. Mater. 2020;249:118741. doi: 10.1016/j.conbuildmat.2020.118741. DOI
Hossain K.M.A., Lachemi M. Performance of volcanic ash and pumice based blended cement concrete in mixed sulfate environment. Cem. Concr. Res. 2006;36:1123–1133. doi: 10.1016/j.cemconres.2006.03.010. DOI
Anwar Hossain K.M. Properties of volcanic pumice based cement and lightweight concrete. Cem. Concr. Res. 2004;34:283–291. doi: 10.1016/j.cemconres.2003.08.004. DOI
Játiva A., Ruales E., Etxeberria M. Volcanic ash as a sustainable binder material: An extensive review. Materials. 2021;14:1302. doi: 10.3390/ma14051302. PubMed DOI PMC
Hrabová K., Lehner P., Ghosh P., Konečný P., Teplý B. Sustainability levels in compare with mechanical properties and durability of pumice high-performance concrete. Appl. Sci. 2021;11:4964. doi: 10.3390/app11114964. DOI
Mangat P.S., Molloy B.T. Prediction of long term chloride concentration in concrete. Mater. Struct. 1994;27:338–346. doi: 10.1007/BF02473426. DOI
Castaldo P., Palazzo B., Mariniello A. Effects of the axial force eccentricity on the time-variant structural reliability of aging r.c. cross-sections subjected to chloride-induced corrosion. Eng. Struct. 2017;130:261–274. doi: 10.1016/j.engstruct.2016.10.053. DOI
Stewart M.G., Rosowsky D.V. Time-dependent reliability of deteriorating reinforced concrete bridge decks. Struct. Saf. 1998;20:91–109. doi: 10.1016/S0167-4730(97)00021-0. DOI
Biondini F., Vergani M. Deteriorating beam finite element for nonlinear analysis of concrete structures under corrosion. Struct. Infrastruct. Eng. 2015;11:519–532. doi: 10.1080/15732479.2014.951863. DOI
Konečný P., Tikalsky P.J., Tepke D.G. Performance evaluation of concrete bridge deck affected by chloride ingress: Simulation-based reliability assessment and finite element modeling. Transp. Res. Rec. 2008;2028:3–8. doi: 10.3141/2028-01. DOI
Thomas H.R., Zhou Z. Minimum time-step size for diffusion problem in FEM analysis. Int. J. Numer. Methods Eng. 1997 doi: 10.1002/(SICI)1097-0207(19971030)40:20<3865::AID-NME246>3.0.CO;2-C. DOI
Teplý B., Vořechovská D. Reinforcement corrosion: Limit states, reliability and modelling. J. Adv. Concr. Technol. 2012;10:353–362. doi: 10.3151/jact.10.353. DOI
Tran Q. Durability Investigation of Ultrafine Volcanic Pumice Based HPC Mixtures. California State University; Fullerton, CA, USA: 2014.
Tikalsky P.J., Pustka D., Marek P. Statistical variations in chloride diffusion in concrete bridges. ACI Struct. J. 2005;102:481–486. doi: 10.14359/14420. DOI
Le T.D.T.D., Lehner P., Konečnỳ P., Konečný P. Probabilistic modeling of chloride penetration with respect to concrete heterogeneity and epoxy-coating on the reinforcement. Materials. 2019;12:4068. doi: 10.3390/ma12244068. PubMed DOI PMC
Marek P., Brozzetti J., Gustar M., Elishakoff I. Probabilistic assessment of structures using Monte Carlo simulations. Appl. Mech. Rev. 2002;55:B31–B32. doi: 10.1115/1.1451167. DOI
Janas P., Krejsa M., Krejsa V. Proceedings of the Twelfth International Conference on Civil, Structural and Environmental Engineering Computing. Civil-Comp Press; Stirlingshire, UK: 2009. Structural reliability assessment using a direct determined probabilistic calculation.
Lu X. Application of the Nernst-Einstein equation to concrete. Cem. Concr. Res. 1997;27:293–302. doi: 10.1016/S0008-8846(96)00200-1. DOI
Hooton R. Life-365 User Manual. Silica Fume Association; Lovettsville, VA, USA: 2012. Life-365 service life prediction model and computer program for predicting the service life and life-cycle cost of reinforced concrete exposed to chlorides; pp. 1–80.
Konečný P., Lehner P., Ghosh P., Morávková Z., Tran Q. Comparison of procedures for the evaluation of time dependent concrete diffusion coefficient model. Constr. Build. Mater. 2020;258:119535. doi: 10.1016/j.conbuildmat.2020.119535. DOI
Konečný P., Lehner P., Ghosh P., Tran Q. Variation of diffusion coefficient for selected binary and ternary concrete mixtures considering concrete aging effect. Key Eng. Mater. 2018;761:144–147. doi: 10.4028/www.scientific.net/KEM.761.144. DOI