Probabilistic Modeling of Chloride Penetration with Respect to Concrete Heterogeneity and Epoxy-Coating on the Reinforcement
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
31817567
PubMed Central
PMC6947588
DOI
10.3390/ma12244068
PII: ma12244068
Knihovny.cz E-resources
- Keywords
- 2D diffusion model, chloride penetration, coatings, concrete heterogeneity, random fields, reinforcement protection,
- Publication type
- Journal Article MeSH
The presented article demonstrates the probabilistic method based modeling of the 2D chloride ingress into reinforced concrete structures with respect to concrete heterogeneity and epoxy-coated steel reinforcement. Spatial change of concrete diffusion is assessed through the investigation of random variation of the ability of concrete to resist chloride ingress. Time-dependent chloride concentration at the reinforcement level in both homogeneous and heterogeneous models is comparatively considered taking into account of the influence of reinforcement protection as well as the defects and holidays of the coating. Expansion optimal linear estimation method is exploited to generate a random field for the structure at the mesoscale and correlation length is employed to simplify the modeling process. Preliminary analyses of the built model are conducted in both deterministic and probabilistic solutions under the scheme of the finite element method. Thus, possibility of such analyses is exploited.
See more in PubMed
Hooton R.D., Thomas M.D.A., Standish K. Prediction of Chloride Penetration in Concrete. The National Academies of Sciences, Engineering, and Medicine; Washington, DC, USA: 2001. p. 412.
Marsavina L., Audenaert K., De Schutter G., Faur N., Marsavina D. Experimental and numerical determination of the chloride penetration in cracked concrete. Constr. Build. Mater. 2009;23:264–274. doi: 10.1016/j.conbuildmat.2007.12.015. DOI
Vořechovská D., Podroužek J., Chromá M., Rovnaníková P., Teplý B. Modeling of chloride concentration effect on reinforcement corrosion. Comput. Civ. Infrastruct. Eng. 2009;24:446–458. doi: 10.1111/j.1467-8667.2009.00602.x. DOI
Konečný P., Brožovský J., Ghosh P. Evaluation of Chloride Influence on the Cracking in Reinforced Concrete Using Korozeeneck Software. Trans. VŠB Tech. Univ. Ostrava Civ. Eng. Ser. 2011;11:1–7. doi: 10.2478/v10160-011-0006-y. DOI
Szweda Z., Zybura A. Theoretical model and experimental tests on chloride diffusion and migration processes in concrete. Procedia Eng. 2013;57:1121–1130.
Stewart M.G., Rosowsky D.V. Time-dependent reliability of deteriorating reinforced concrete bridge decks. Struct. Saf. 1998;20:91–109. doi: 10.1016/S0167-4730(97)00021-0. DOI
Tikalsky P.J., Pustka D., Marek P. Statistical variations in chloride diffusion in concrete bridges. ACI Struct. J. 2005;102:481–486.
Teplý B., Vořechovská D. Reinforcement corrosion: Limit states, reliability and modelling. J. Adv. Concr. Technol. 2012;10:353–362.
Ghosh P., Konečný P., Lehner P., Tikalsky P.J.P.J. Probabilistic time-dependent sensitivity analysis of HPC bridge deck exposed to chlorides. Comput. Concr. 2017;19:305–313. doi: 10.12989/cac.2017.19.3.305. DOI
Lehner P., Konečný P., Ghosh P., Tran Q. Numerical analysis of chloride diffusion considering time-dependent diffusion coefficient. Int. J. Math. Comput. Simul. 2014;8:103–106.
Konečný P., Lehner P. Durability assessment of concrete bridge deck considering waterproof membrane and epoxy-coated reinforcement. Perspect. Sci. 2016;7:222–227. doi: 10.1016/j.pisc.2015.11.036. DOI
Herrmann H.J., Hansen A., Roux S. Fracture of disordered, elastic lattices in two dimensions. Phys. Rev. B. 1989;39:637–648. doi: 10.1103/PhysRevB.39.637. PubMed DOI
Cusatis G., Bažant Z., Cedolin L. Confinement-Shear Lattice Model for Concrete Damage in Tension and Compression: I. Theory. J. Eng. Mech. 2003;129:1449–1458. doi: 10.1061/(ASCE)0733-9399(2003)129:12(1449). DOI
Cusatis G., Cedolin L. Two-scale study of concrete fracturing behavior. Eng. Fract. Mech. 2007;74:3–17. doi: 10.1016/j.engfracmech.2006.01.021. DOI
Cusatis G., Pelessone D., Mencarelli A. Lattice Discrete Particle Model (LDPM) for failure behavior of concrete. I: Theory. Cem. Concr. Compos. 2011;33:881–890. doi: 10.1016/j.cemconcomp.2011.02.011. DOI
Grassl P., Bažant Z.P. Random Lattice-Particle Simulation of Statistical Size Effect in Quasi-Brittle Structures Failing at Crack Initiation. J. Eng. Mech. 2009;135:85–92. doi: 10.1061/(ASCE)0733-9399(2009)135:2(85). DOI
Eliáš J., Vořechovský M., Skoček J., Bažant Z.P. Stochastic discrete meso-scale simulations of concrete fracture: Comparison to experimental data. Eng. Fract. Mech. 2015;135:1–16. doi: 10.1016/j.engfracmech.2015.01.004. DOI
Stanish K.D., Hooton R.D., Thomas M.D.A. Testing the Chloride Penetration Resistance of Concrete: A Literature Review. Volume 2 American Association of State Highway and Transportation Officials; Washington, DC, USA: 2012. AASHTO T259 Standard method of test for resistance of concrete to chloride ion penetration.
Beckhoff B., Kanngießer B., Langhoff N., Wedell R., Wolff H. Handbook of Practical X-Ray Fluorescence Analysis. Springer; Berlin/Heidelberg, Germany: 2006.
Khanzadeh Moradllo M., Sudbrink B., Hu Q., Aboustait M., Tabb B., Ley M.T., Davis J.M. Using micro X-ray fluorescence to image chloride profiles in concrete. Cem. Concr. Res. 2017;92:128–141. doi: 10.1016/j.cemconres.2016.11.014. DOI
Gottlieb C., Millar S., Günther T., Wilsch G. Revealing hidden spectral information of chlorine and sulfur in data of a mobile Laser-induced Breakdown Spectroscopy system using chemometrics. Spectrochim. Acta Part B At. Spectrosc. 2017;132:43–49. doi: 10.1016/j.sab.2017.04.001. DOI
Millar S., Wilsch G., Eichler T., Gottlieb C., Wiggenhauser H. Laser Induced Breakdown Spectroscopy (LIBS) in civil engineering — Innovative analysis of building materials. Beton Stahlbetonbau. 2015;110:501–510. doi: 10.1002/best.201500030. DOI
Jiang W., Shen X., Xia J., Mao L., Yang J., Liu Q. A numerical study on chloride diffusion in freeze-thaw affected concrete. Constr. Build. Mater. 2018;179:553–565. doi: 10.1016/j.conbuildmat.2018.05.209. DOI
Li C., Der Kiureghian A. Optimal Discretization of Random Fields. J. Eng. Mech. 1993;119:1136–1154. doi: 10.1061/(ASCE)0733-9399(1993)119:6(1136). DOI
Bažant Z.P., Vořechovský M., Novák D. Asymptotic Prediction of Energetic-Statistical Size Effect from Deterministic Finite-Element Solutions. J. Eng. Mech. 2007;133:153–162. doi: 10.1061/(ASCE)0733-9399(2007)133:2(153). DOI
Roubin E., Colliat J.B., Benkemoun N. Meso-scale modeling of concrete: A morphological description based on excursion sets of Random Fields. Comput. Mater. Sci. 2015;102:183–195. doi: 10.1016/j.commatsci.2015.02.039. DOI
Vořechovský M., Sadílek V. Computational modeling of size effects in concrete specimens under uniaxial tension. Int. J. Fract. 2008;154:27–49. doi: 10.1007/s10704-009-9316-9. DOI
Grassl P., Grégoire D., Rojas Solano L., Pijaudier-Cabot G. Meso-scale modelling of the size effect on the fracture process zone of concrete. Int. J. Solids Struct. 2012;49:1818–1827. doi: 10.1016/j.ijsolstr.2012.03.023. DOI
Syroka-Korol E., Tejchman J., Mróz Z. FE investigations of the effect of fluctuating local tensile strength on coupled energetic-statistical size effect in concrete beams. Eng. Struct. 2015;103:239–259. doi: 10.1016/j.engstruct.2015.09.011. DOI
Vořechovský M. Interplay of size effects in concrete specimens under tension studied via computational stochastic fracture mechanics. Int. J. Solids Struct. 2007;44:2715–2731. doi: 10.1016/j.ijsolstr.2006.08.019. DOI
Weyers R.E., Pyc W., Sprinkel M.M. Estimating the service life of epoxy-coated reinforcing steel. ACI Mater. J. 1998;95:546–557.
Konecny P., Lehner P. Effect of cracking and randomness of inputs on corrosion initiation of reinforced concrete bridge decks exposed to chlorides. Frat. Integrita Strutt. 2017;39:29–37. doi: 10.3221/IGF-ESIS.39.04. DOI
Le T.D., Lehner P., Konečný P. Advanced Model of Chloride Penetration Considering Concrete Heterogeneity. Procedia Struct. Integr. 2018;13:1702–1707. doi: 10.1016/j.prostr.2018.12.354. DOI
Pack S.W., Jung M.S., Song H.W., Kim S.H., Ann K.Y. Prediction of time dependent chloride transport in concrete structures exposed to a marine environment. Cem. Concr. Res. 2010;40:302–312. doi: 10.1016/j.cemconres.2009.09.023. DOI
Thomas M.D.A., Bamforth P.B. Modelling chloride diffusion in concrete effect of fly ash and slag. Cem. Concr. Res. 1999;29:487–495. doi: 10.1016/S0008-8846(98)00192-6. DOI
Roubin E. Ph.D. Thesis. École Normale Supérieure Paris-Saclay; Cachan, France: Oct, 2013. Meso-Scale {FE} and Morphological Modeling of Heterogeneous Media: Application to Cementitious Materials.
Ghosh P., Tran Q. Correlation Between Bulk and Surface Resistivity of Concrete. Int. J. Concr. Struct. Mater. 2015;9:119–132. doi: 10.1007/s40069-014-0094-z. DOI
Kaděrová J. Ph.D. Thesis. Brno University of Technology; Brno, Czech Republic: 2018. Probabilistic Discrete Model of Concrete Fracturing.
Scannell W.T., Sohanghpurwala A.A. Verification of Effectiveness of Epoxy-Coated Rebars. Concorr Inc.; Sterling, VA, USA: 1998. pp. 5–96.
Darwin D., Browning J., O’Reilly M., Xing L., Ji J. Critical chloride corrosion threshold of galvanized reinforcing bars. ACI Mater. J. 2009;106:176–183.
Sensitivity Analysis of Stochastic Calculation of SCC Regarding Aggressive Environment
Variation of Durability and Strength Parameters of Pumice Based Mixtures