Modification of a SERS-active Ag surface to promote adsorption of charged analytes: effect of Cu2+ ions

. 2021 ; 12 () : 902-912. [epub] 20210816

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34497738

This work studies the impact of the electrostatic interaction between analyte molecules and silver nanoparticles (Ag NPs) on the intensity of surface-enhanced Raman scattering (SERS). For this, we fabricated nanostructured plasmonic films by immobilization of Ag NPs on glass plates and functionalized them by a set of differently charged hydrophilic thiols (sodium 2-mercaptoethyl sulfonate, mercaptopropionic acid, 2-mercaptoethanol, 2-(dimethylamino)ethanethiol hydrochloride, and thiocholine) to vary the surface charge of the SERS substrate. We used two oppositely charged porphyrins, cationic copper(II) tetrakis(4-N-methylpyridyl) porphine (CuTMpyP4) and anionic copper(II) 5,10,15,20-tetrakis(4-sulfonatophenyl)porphine (CuTSPP4), with equal charge value and similar structure as model analytes to probe the SERS signal. Our results indicate that the SERS spectrum intensity strongly, up to complete signal disappearance, correlates with the surface charge of the substrate, which tends to be negative. Using the data obtained and our model SERS system, we analyzed the modification of the Ag surface by different reagents (lithium chloride, polyethylenimine, polyhexamethylene guanidine, and multicharged metal ions). Finally, all those surface modifications were tested using a negatively charged oligonucleotide labeled with Black Hole Quencher dye. Only the addition of copper ions into the analyte solution yielded a good SERS signal. Considering the strong interaction of copper ions with the oligonucleotide molecules, we suppose that inversion of the analyte charge played a key role in this case, instead of a change of charge of the substrate surface. Changing the charge of analytes could be a promising way to get clear SERS spectra of negatively charged molecules on Ag SERS-active supports.

Zobrazit více v PubMed

Mosier-Boss P A. Nanomaterials. 2017;7:142. doi: 10.3390/nano7060142. PubMed DOI PMC

Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla R A, Auguié B, Baumberg J J, Bazan G C, Bell S E J, Boisen A, Brolo A G, et al. ACS Nano. 2020;14(1):28–117. doi: 10.1021/acsnano.9b04224. PubMed DOI PMC

Lee H K, Lee Y H, Koh C S L, Phan-Quang G C, Han X, Lay C L, Sim H Y F, Kao Y-C, An Q, Ling X Y. Chem Soc Rev. 2019;48(3):731–756. doi: 10.1039/c7cs00786h. PubMed DOI

Bell S E J, Charron G, Cortés E, Kneipp J, Chapelle M L, Langer J, Procházka M, Tran V, Schlücker S. Angew Chem, Int Ed. 2020;59(14):5454–5462. doi: 10.1002/anie.201908154. PubMed DOI PMC

Xu Y, Konrad M P, Lee W W Y, Ye Z, Bell S E J. Nano Lett. 2016;16(8):5255–5260. doi: 10.1021/acs.nanolett.6b02418. PubMed DOI

Hakonen A, Wang F C, Andersson P O, Wingfors H, Rindzevicius T, Schmidt M S, Soma V R, Xu S, Li Y Q, Boisen A, et al. ACS Sens. 2017;2:198–202. doi: 10.1021/acssensors.6b00749. PubMed DOI

Tepanov A A, Nechaeva N L, Prokopkina T A, Kudrinskiy A A, Kurochkin I N, Lisichkin G V. IOP Conf Ser: Mater Sci Eng. 2015;98:012002. doi: 10.1088/1757-899x/98/1/012002. DOI

Xu W, Ling X, Xiao J, Dresselhaus M S, Kong J, Xu H, Liu Z, Zhang J. Proc Natl Acad Sci U S A. 2012;109(24):9281–9286. doi: 10.1073/pnas.1205478109. PubMed DOI PMC

Fan M, Brolo A G. Phys Chem Chem Phys. 2009;11:7381–7389. doi: 10.1039/b904744a. PubMed DOI

Freeman R G, Grabar K C, Allison K J, Bright R M, Davis J A, Guthrie A P, Hommer M B, Jackson M A, Smith P C, Walter D G, et al. Science. 1995;267:1629–1632. doi: 10.1126/science.267.5204.1629. PubMed DOI

Grabar K C, Freeman R G, Hommer M B, Natan M J. Anal Chem (Washington, DC, U S) 1995;67(4):735–743. doi: 10.1021/ac00100a008. DOI

Bright R M, Musick M D, Natan M J. Langmuir. 1998;14(20):5695–5701. doi: 10.1021/la980138j. DOI

Li W, Zhao X, Yi Z, Glushenkov A M, Kong L. Anal Chim Acta. 2017;984:19–41. doi: 10.1016/j.aca.2017.06.002. PubMed DOI

Le Ru E C, Etchegoin P G. Principles of Surface-Enhanced Raman Spectroscopy. Amsterdam, Netherlands: Elsevier; 2009. DOI

Ding S-Y, You E-M, Tian Z-Q, Moskovits M. Chem Soc Rev. 2017;46(13):4042–4076. doi: 10.1039/c7cs00238f. PubMed DOI

Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P. Nat Mater. 2008;7(6):442–453. doi: 10.1038/nmat2162. PubMed DOI

Kneipp K, Kneipp H, Itzkan I, Dasari R R, Feld M S. Chem Rev. 1999;99:2957–2976. doi: 10.1021/cr980133r. PubMed DOI

Stewart A, Murray S, Bell S E J. Analyst. 2015;140:2988–2994. doi: 10.1039/c4an02305f. PubMed DOI

van Lierop D, Krpetić Ž, Guerrini L, Larmour I A, Dougan J A, Faulds K, Graham D. Chem Commun. 2012;48:8192–8194. doi: 10.1039/c2cc31731a. PubMed DOI

Iancu S D, Stefancu A, Moisoiu V, Leopold L F, Leopold N. Beilstein J Nanotechnol. 2019;10:2338–2345. doi: 10.3762/bjnano.10.224. PubMed DOI PMC

Wetzel H, Gerischer H. Chem Phys Lett. 1980;76(3):460–464. doi: 10.1016/0009-2614(80)80647-6. DOI

Leopold N, Stefancu A, Herman K, Tódor I S, Iancu S D, Moisoiu V, Leopold L F. Beilstein J Nanotechnol. 2018;9:2236–2247. doi: 10.3762/bjnano.9.208. PubMed DOI PMC

Koo T-W, Chan S, Sun L, Su X, Zhang J, Berlin A A. Appl Spectrosc. 2004;58(12):1401–1407. doi: 10.1366/0003702042641227. PubMed DOI

Doering W E, Nie S. J Phys Chem B. 2002;106:311–317. doi: 10.1021/jp011730b. DOI

Anastasopoulos J A, Soto Beobide A, Manikas A C, Voyiatzis G A. J Raman Spectrosc. 2017;48(12):1762–1770. doi: 10.1002/jrs.5233. DOI

Dong F, Valsami-Jones E, Kreft J-U. J Nanopart Res. 2016;18(9):259. doi: 10.1007/s11051-016-3565-0. PubMed DOI PMC

Pfeiffer C, Rehbock C, Hühn D, Carrillo-Carrion C, Jimenez de Aberasturi D, Merk V, Barcikowski S, Parak W J. J R Soc, Interface. 2014;11:20130931. doi: 10.1098/rsif.2013.0931. PubMed DOI PMC

Torres-Nuñez A, Faulds K, Graham D, Alvarez-Puebla R A, Guerrini L. Analyst. 2016;141(17):5170–5180. doi: 10.1039/c6an00911e. PubMed DOI

Ranishenka B V, Isic G, Mojzes P, Terekhov S N, Panarin A Yu. Surface Modification of Plasmonic Nanostructures for SERS Spectroscopy of Biomolecules; Interaction of radiation with solids Proceedings of 13 International conference; 2019. pp. 485–488.

Paramelle D, Sadovoy A, Gorelik S, Free P, Hobley J, Fernig D G. Analyst. 2014;139:4855–4861. doi: 10.1039/c4an00978a. PubMed DOI

Huang Y, Fang Y, Zhang Z, Zhu L, Sun M. Light: Sci Appl. 2014;3:e199. doi: 10.1038/lsa.2014.80. DOI

Makarik A Y, Tepanov A A, Kolesov D V, Kudrinskii A A, Lisichkin G V. Nanotechnol Russ. 2015;10:549–557. doi: 10.1134/s1995078015040126. DOI

Harriman A, Richoux M C, Neta P. J Phys Chem. 1983;87:4957–4965. doi: 10.1021/j150642a038. DOI

Ranishenka B, Ulashchik E, Radchanka A, Shmanai V, Artemyev M. ChemNanoMat. 2020;6:292–297. doi: 10.1002/cnma.201900609. DOI

Eichhorn G L, Shin Y A. J Am Chem Soc. 1968;90:7323–7328. doi: 10.1021/ja01028a024. PubMed DOI

Ranishenka B, Ulashchik E, Tatulchenkov M, Sharko O, Panarin A, Dremova N, Shmanai V. FlatChem. 2021;27:100235. doi: 10.1016/j.flatc.2021.100235. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...