Modification of a SERS-active Ag surface to promote adsorption of charged analytes: effect of Cu2+ ions
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34497738
PubMed Central
PMC8381809
DOI
10.3762/bjnano.12.67
Knihovny.cz E-zdroje
- Klíčová slova
- electrostatic interaction, oligonucleotides, porphyrin, silver nanoparticles, substrate modification, surface-enhanced Raman spectroscopy (SERS),
- Publikační typ
- časopisecké články MeSH
This work studies the impact of the electrostatic interaction between analyte molecules and silver nanoparticles (Ag NPs) on the intensity of surface-enhanced Raman scattering (SERS). For this, we fabricated nanostructured plasmonic films by immobilization of Ag NPs on glass plates and functionalized them by a set of differently charged hydrophilic thiols (sodium 2-mercaptoethyl sulfonate, mercaptopropionic acid, 2-mercaptoethanol, 2-(dimethylamino)ethanethiol hydrochloride, and thiocholine) to vary the surface charge of the SERS substrate. We used two oppositely charged porphyrins, cationic copper(II) tetrakis(4-N-methylpyridyl) porphine (CuTMpyP4) and anionic copper(II) 5,10,15,20-tetrakis(4-sulfonatophenyl)porphine (CuTSPP4), with equal charge value and similar structure as model analytes to probe the SERS signal. Our results indicate that the SERS spectrum intensity strongly, up to complete signal disappearance, correlates with the surface charge of the substrate, which tends to be negative. Using the data obtained and our model SERS system, we analyzed the modification of the Ag surface by different reagents (lithium chloride, polyethylenimine, polyhexamethylene guanidine, and multicharged metal ions). Finally, all those surface modifications were tested using a negatively charged oligonucleotide labeled with Black Hole Quencher dye. Only the addition of copper ions into the analyte solution yielded a good SERS signal. Considering the strong interaction of copper ions with the oligonucleotide molecules, we suppose that inversion of the analyte charge played a key role in this case, instead of a change of charge of the substrate surface. Changing the charge of analytes could be a promising way to get clear SERS spectra of negatively charged molecules on Ag SERS-active supports.
Institute of Physics Charles University Ke Karlovu 5 CZ 121 16 Prague 2 Czech Republic
Institute of Radiobiology of NAS of Belarus Feduninskogo st 4 246007 Gomel Belarus
Zobrazit více v PubMed
Mosier-Boss P A. Nanomaterials. 2017;7:142. doi: 10.3390/nano7060142. PubMed DOI PMC
Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla R A, Auguié B, Baumberg J J, Bazan G C, Bell S E J, Boisen A, Brolo A G, et al. ACS Nano. 2020;14(1):28–117. doi: 10.1021/acsnano.9b04224. PubMed DOI PMC
Lee H K, Lee Y H, Koh C S L, Phan-Quang G C, Han X, Lay C L, Sim H Y F, Kao Y-C, An Q, Ling X Y. Chem Soc Rev. 2019;48(3):731–756. doi: 10.1039/c7cs00786h. PubMed DOI
Bell S E J, Charron G, Cortés E, Kneipp J, Chapelle M L, Langer J, Procházka M, Tran V, Schlücker S. Angew Chem, Int Ed. 2020;59(14):5454–5462. doi: 10.1002/anie.201908154. PubMed DOI PMC
Xu Y, Konrad M P, Lee W W Y, Ye Z, Bell S E J. Nano Lett. 2016;16(8):5255–5260. doi: 10.1021/acs.nanolett.6b02418. PubMed DOI
Hakonen A, Wang F C, Andersson P O, Wingfors H, Rindzevicius T, Schmidt M S, Soma V R, Xu S, Li Y Q, Boisen A, et al. ACS Sens. 2017;2:198–202. doi: 10.1021/acssensors.6b00749. PubMed DOI
Tepanov A A, Nechaeva N L, Prokopkina T A, Kudrinskiy A A, Kurochkin I N, Lisichkin G V. IOP Conf Ser: Mater Sci Eng. 2015;98:012002. doi: 10.1088/1757-899x/98/1/012002. DOI
Xu W, Ling X, Xiao J, Dresselhaus M S, Kong J, Xu H, Liu Z, Zhang J. Proc Natl Acad Sci U S A. 2012;109(24):9281–9286. doi: 10.1073/pnas.1205478109. PubMed DOI PMC
Fan M, Brolo A G. Phys Chem Chem Phys. 2009;11:7381–7389. doi: 10.1039/b904744a. PubMed DOI
Freeman R G, Grabar K C, Allison K J, Bright R M, Davis J A, Guthrie A P, Hommer M B, Jackson M A, Smith P C, Walter D G, et al. Science. 1995;267:1629–1632. doi: 10.1126/science.267.5204.1629. PubMed DOI
Grabar K C, Freeman R G, Hommer M B, Natan M J. Anal Chem (Washington, DC, U S) 1995;67(4):735–743. doi: 10.1021/ac00100a008. DOI
Bright R M, Musick M D, Natan M J. Langmuir. 1998;14(20):5695–5701. doi: 10.1021/la980138j. DOI
Li W, Zhao X, Yi Z, Glushenkov A M, Kong L. Anal Chim Acta. 2017;984:19–41. doi: 10.1016/j.aca.2017.06.002. PubMed DOI
Le Ru E C, Etchegoin P G. Principles of Surface-Enhanced Raman Spectroscopy. Amsterdam, Netherlands: Elsevier; 2009. DOI
Ding S-Y, You E-M, Tian Z-Q, Moskovits M. Chem Soc Rev. 2017;46(13):4042–4076. doi: 10.1039/c7cs00238f. PubMed DOI
Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P. Nat Mater. 2008;7(6):442–453. doi: 10.1038/nmat2162. PubMed DOI
Kneipp K, Kneipp H, Itzkan I, Dasari R R, Feld M S. Chem Rev. 1999;99:2957–2976. doi: 10.1021/cr980133r. PubMed DOI
Stewart A, Murray S, Bell S E J. Analyst. 2015;140:2988–2994. doi: 10.1039/c4an02305f. PubMed DOI
van Lierop D, Krpetić Ž, Guerrini L, Larmour I A, Dougan J A, Faulds K, Graham D. Chem Commun. 2012;48:8192–8194. doi: 10.1039/c2cc31731a. PubMed DOI
Iancu S D, Stefancu A, Moisoiu V, Leopold L F, Leopold N. Beilstein J Nanotechnol. 2019;10:2338–2345. doi: 10.3762/bjnano.10.224. PubMed DOI PMC
Wetzel H, Gerischer H. Chem Phys Lett. 1980;76(3):460–464. doi: 10.1016/0009-2614(80)80647-6. DOI
Leopold N, Stefancu A, Herman K, Tódor I S, Iancu S D, Moisoiu V, Leopold L F. Beilstein J Nanotechnol. 2018;9:2236–2247. doi: 10.3762/bjnano.9.208. PubMed DOI PMC
Koo T-W, Chan S, Sun L, Su X, Zhang J, Berlin A A. Appl Spectrosc. 2004;58(12):1401–1407. doi: 10.1366/0003702042641227. PubMed DOI
Doering W E, Nie S. J Phys Chem B. 2002;106:311–317. doi: 10.1021/jp011730b. DOI
Anastasopoulos J A, Soto Beobide A, Manikas A C, Voyiatzis G A. J Raman Spectrosc. 2017;48(12):1762–1770. doi: 10.1002/jrs.5233. DOI
Dong F, Valsami-Jones E, Kreft J-U. J Nanopart Res. 2016;18(9):259. doi: 10.1007/s11051-016-3565-0. PubMed DOI PMC
Pfeiffer C, Rehbock C, Hühn D, Carrillo-Carrion C, Jimenez de Aberasturi D, Merk V, Barcikowski S, Parak W J. J R Soc, Interface. 2014;11:20130931. doi: 10.1098/rsif.2013.0931. PubMed DOI PMC
Torres-Nuñez A, Faulds K, Graham D, Alvarez-Puebla R A, Guerrini L. Analyst. 2016;141(17):5170–5180. doi: 10.1039/c6an00911e. PubMed DOI
Ranishenka B V, Isic G, Mojzes P, Terekhov S N, Panarin A Yu. Surface Modification of Plasmonic Nanostructures for SERS Spectroscopy of Biomolecules; Interaction of radiation with solids Proceedings of 13 International conference; 2019. pp. 485–488.
Paramelle D, Sadovoy A, Gorelik S, Free P, Hobley J, Fernig D G. Analyst. 2014;139:4855–4861. doi: 10.1039/c4an00978a. PubMed DOI
Huang Y, Fang Y, Zhang Z, Zhu L, Sun M. Light: Sci Appl. 2014;3:e199. doi: 10.1038/lsa.2014.80. DOI
Makarik A Y, Tepanov A A, Kolesov D V, Kudrinskii A A, Lisichkin G V. Nanotechnol Russ. 2015;10:549–557. doi: 10.1134/s1995078015040126. DOI
Harriman A, Richoux M C, Neta P. J Phys Chem. 1983;87:4957–4965. doi: 10.1021/j150642a038. DOI
Ranishenka B, Ulashchik E, Radchanka A, Shmanai V, Artemyev M. ChemNanoMat. 2020;6:292–297. doi: 10.1002/cnma.201900609. DOI
Eichhorn G L, Shin Y A. J Am Chem Soc. 1968;90:7323–7328. doi: 10.1021/ja01028a024. PubMed DOI
Ranishenka B, Ulashchik E, Tatulchenkov M, Sharko O, Panarin A, Dremova N, Shmanai V. FlatChem. 2021;27:100235. doi: 10.1016/j.flatc.2021.100235. DOI