Towards Reliable and Quantitative Surface-Enhanced Raman Scattering (SERS): From Key Parameters to Good Analytical Practice
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
31588641
PubMed Central
PMC7154527
DOI
10.1002/anie.201908154
Knihovny.cz E-zdroje
- Klíčová slova
- Raman spectroscopy, SERS, enhancement factor, quantitative analysis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Experimental results obtained in different laboratories world-wide by researchers using surface-enhanced Raman scattering (SERS) can differ significantly. We, an international team of scientists with long-standing expertise in SERS, address this issue from our perspective by presenting considerations on reliable and quantitative SERS. The central idea of this joint effort is to highlight key parameters and pitfalls that are often encountered in the literature. To that end, we provide here a series of recommendations on: a) the characterization of solid and colloidal SERS substrates by correlative electron and optical microscopy and spectroscopy, b) on the determination of the SERS enhancement factor (EF), including suitable Raman reporter/probe molecules, and finally on c) good analytical practice. We hope that both newcomers and specialists will benefit from these recommendations to increase the inter-laboratory comparability of experimental SERS results and further establish SERS as an analytical tool.
CIC biomaGUNE and CIBER BBN Paseo de Miramón 182 20014 Donostia San Sebastian Spain
Department of Chemistry and CENIDE University of Duisburg Essen 45141 Essen Germany
Department of Chemistry Humboldt Universität zu Berlin 12489 Berlin Germany
IMMM UMR 6283 CNRS Le Mans Université Avenue Olivier Messiaen 72085 Le Mans Cedex 9 France
Laboratoire MSC Université Paris Diderot 75013 Paris France
School of Chemistry and Chemical Engineering Queen's University Belfast BT9 5AG UK
Zobrazit více v PubMed
Le Ru E. C., Etchegoin P. G., Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects, Elsevier, Amsterdam, Boston, 2009.
Schlücker S., Angew. Chem. Int. Ed. 2014, 53, 4756; PubMed
Angew. Chem. 2014, 126, 4852;
Procházka M., Surface-enhanced Raman Spectroscopy. Bioanalytical, biomolecular and medical applications, Springer, Cham, 2016;
Zhan C., Chen X.-J., Yi J., Li J.-F., Wu D.-Y., Tian Z.-Q., Nat. Rev. Chem. 2018, 2, 216;
Langer J., Liz-Marzán L., et al., ACS Nano 2020, 14, 28. PubMed
Hayashi S., Koh R., Ichiyama Y., Yamamoto K., Phys. Rev. Lett. 1988, 60, 1085; PubMed
Caldarola M., Albella P., Cortés E., Rahmani M., Roschuk T., Grinblat G., Oulton R. F., Bragas A. V., Maier S. A., Nat. Commun. 2015, 6, 7915. PubMed PMC
Le Ru E. C., Blackie E., Meyer M., Etchegoin P. G., J. Phys. Chem. C 2007, 111, 13794.
Topics in Applied Physics, vol. 54 (Eds:. M. Cardona, G. Güntherodt), Springer, Berlin, 2014.
Otto A., Phys. Status Solidi A 2001, 188, 1455.
Darby B. L., Auguié B., Meyer M., Pantoja A. E., Le Ru E. C., Nat. Photonics 2016, 10, 40.
Li J. F., Huang Y. F., Ding Y., Yang Z. L., Li S. B., Zhou X. S., Fan F. R., Zhang W., Zhou Z. Y., Wu D. Y., et al., Nature 2010, 464, 392. PubMed
Leyton P., Sanchez-Cortes S., Campos-Vallette M., Domingo C., Garcia-Ramos J. V., Saitz C., Appl. Spectrosc. 2005, 59, 1009. PubMed
Lorén A., Engelbrektsson J., Eliasson C., Josefson M., Abrahamsson J., Johansson M., Abrahamsson K., Anal. Chem. 2004, 76, 7391; PubMed
Péron O., Rinnert E., Toury T., Lamy de Chapelle M. L., Compère C., Analyst 2011, 136, 1018. PubMed
Stosch R., Henrion A., Schiel D., Güttler B., Anal. Chem. 2005, 77, 7386; PubMed
Zakel S., Rienitz O., Güttler B., Stosch R., Analyst 2011, 136, 3956. PubMed
Fan M., Andrade G. F. S., Brolo A. G., Anal. Chim. Acta 2011, 693, 7. PubMed
Guillot N., de La Chapelle M. L., J. Nanophotonics 2012, 6, 064506-1.
Alessandri I., Lombardi J. R., Chem. Rev. 2016, 116, 14921; PubMed
Cambiasso J., König M., Cortés E., Schlücker S., Maier S. A., ACS Photonics 2018, 5, 1546.
Karthick Kannan P., Shankar P., Blackman C., Chung C.-H., Adv. Mater. 2019, 31, 1803432. PubMed
Van Duyne R. P., Hulteen J. C., Treichel D. A., J. Chem. Phys. 1993, 99, 2101;
Haynes C. L., Van Duyne R. P., J. Phys. Chem. B 2001, 105, 5599;
Hulteen J. C., Van Duyne R. P., J. Vac. Sci. Technol. 1995, 13, 1553;
Fredriksson H., Alaverdyan Y., Dmitriev A., Langhammer C., Sutherland D. S., Zäch M., Kasemo B., Adv. Mater. 2007, 19, 4297.
Turkevich J., Stevenson P. C., Hillier J., Discuss. Faraday Soc. 1951, 11, 55;
Leopold N., Lendl B., J. Phys. Chem. B 2003, 107, 5723.
Guillot N., de La Chapelle M. L., J. Quant. Spectrosc. Radiat. Transfer 2012, 113, 2321.
Kadkhodazadeh S., de Lasson J. R., Beleggia M., Kneipp H., Wagner J. B., Kneipp K., J. Phys. Chem. C 2014, 118, 5478.
Baumberg J. J., Aizpurua J., Mikkelsen M. H., Smith D. R., Nat. Mater. 2019, 18, 668. PubMed
Le Ru E. C., Etchegoin P. G., Annu. Rev. Phys. Chem. 2012, 63, 65. PubMed
Fang Y., Seong N.-H., Dlott D. D., Science 2008, 321, 388. PubMed
Rodríguez-Lorenzo L., Alvarez-Puebla R. A., Pastoriza-Santos I., Mazzucco S., Stéphan O., Kociak M., Liz-Marzán L. M., García de Abajo J., J. Am. Chem. Soc. 2009, 131, 4616; PubMed
Wustholz K. L., Henry A.-I., McMahon J. M., Freeman R. G., Valley N., Piotti M. E., Natan M. J., Schatz G. C., Van Duyne R. P., J. Am. Chem. Soc. 2010, 132, 10903; PubMed
Gellner M., Steinigeweg D., Ichilmann S., Salehi M., Schütz M., Kömpe K., Haase M., Schlücker S., Small 2011, 7, 3445; PubMed
Steinigeweg D., Schütz M., Schlücker S., Nanoscale 2013, 5, 110. PubMed
Practical guide to chemometrics (Ed.: P. Gemperline), CRC/Taylor & Francis, Boca Raton, 2006.
Otto M., Chemometrics. Statistics and Computer Application in Analytical Chemistry, Wiley-VCH, Weinheim, 2017.
Mabbott S., Xu Y., Goodacre R., Anal. Methods 2017, 9, 4783.
Subaihi A., Almanqur L., Muhamadali H., AlMasoud N., Ellis D. I., Trivedi D. K., Hollywood K. A., Xu Y., Goodacre R., Anal. Chem. 2016, 88, 10884. PubMed
Stewart A., Murray S., Bell S. E. J., Analyst 2015, 140, 2988. PubMed
Peksa V., Lebrušková P., Šípová H., Štěpánek J., Bok J., Homola J., Procházka M., Phys. Chem. Chem. Phys. 2016, 18, 19613. PubMed
Goodacre R., Graham D., Faulds K., Trends Anal. Chem. 2018, 102, 359.
Dieringer J. A., Lettan R. B., Scheidt K. A., Van Duyne R. P., J. Am. Chem. Soc. 2007, 129, 16249; PubMed
Kubryk P., Kölschbach J. S., Marozava S., Lueders T., Meckenstock R. U., Niessner R., Ivleva N. P., Anal. Chem. 2015, 87, 6622; PubMed
Subaihi A., Xu Y., Muhamadali H., Mutter S. T., Blanch E. W., Ellis D. I., Goodacre R., Anal. Methods 2017, 9, 6636.
Bell S. E. J., Sirimuthu N. M. S., Analyst 2004, 129, 1032. PubMed
Kämmer E., Olschewski K., Stöckel S., Rösch P., Weber K., Cialla-May D., Bocklitz T., Popp J., Anal. Bioanal. Chem. 2015, 407, 8925; PubMed
Westley C., Xu Y., Thilaganathan B., Carnell A. J., Turner N. J., Goodacre R., Anal. Chem. 2017, 89, 2472. PubMed
Shen W., Lin X., Jiang C., Li C., Lin H., Huang J., Wang S., Liu G., Yan X., Zhong Q., et al., Angew. Chem. Int. Ed. 2015, 54, 7308; PubMed
Angew. Chem. 2015, 127, 7416.