Different timescales during ultrafast stilbene isomerization in the gas and liquid phases revealed using time-resolved photoelectron spectroscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
11627807
National Natural Science Foundation of China (National Science Foundation of China)
172946
Swiss National Science Foundation - Switzerland
11774130
National Natural Science Foundation of China (National Science Foundation of China)
200021_172946
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
11534004
National Natural Science Foundation of China (National Science Foundation of China)
PubMed
35953643
PubMed Central
PMC7613649
DOI
10.1038/s41557-022-01012-0
PII: 10.1038/s41557-022-01012-0
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Directly contrasting ultrafast excited-state dynamics in the gas and liquid phases is crucial to understanding the influence of complex environments. Previous studies have often relied on different spectroscopic observables, rendering direct comparisons challenging. Here, we apply extreme-ultraviolet time-resolved photoelectron spectroscopy to both gaseous and liquid cis-stilbene, revealing the coupled electronic and nuclear dynamics that underlie its isomerization. Our measurements track the excited-state wave packets from excitation along the complete reaction path to the final products. We observe coherent excited-state vibrational dynamics in both phases of matter that persist to the final products, enabling the characterization of the branching space of the S1-S0 conical intersection. We observe a systematic lengthening of the relaxation timescales in the liquid phase and a red shift of the measured excited-state frequencies that is most pronounced for the complex reaction coordinate. These results characterize in detail the influence of the liquid environment on both electronic and structural dynamics during a complete photochemical transformation.
Department of Physical Chemistry University of Chemistry and Technology Prague Prague Czech Republic
Department of Physics The University of Hong Kong SAR Hong Kong People's Republic of China
Institute of Atomic and Molecular Physics Jilin University Changchun People's Republic of China
Laboratory for Physical Chemistry ETH Zürich Zürich Switzerland
Zobrazit více v PubMed
Polli D, et al. Conical intersection dynamics of the primary photoisomerization event in vision. Nature. 2010;467:440–443. doi: 10.1038/nature09346. PubMed DOI
Engel GS, et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature. 2007;446:782–786. doi: 10.1038/nature05678. PubMed DOI
Cyr DR, Hayden CC. Femtosecond time-resolved photoionization and photoelectron spectroscopy studies of ultrafast internal conversion in 1, 3, 5-hexatriene. J chemical physics. 1996;104:771–774. doi: 10.1063/1.470802. DOI
Neumark DM. Time-resolved photoelectron spectroscopy of molecules and clusters. Annu Rev Phys Chem. 2001;52:255. doi: 10.1146/annurev.physchem.52.1.255. PubMed DOI
von Conta A, et al. Conical-intersection dynamics and ground-state chemistry probed by extreme-ultraviolet time-resolved photoelectron spectroscopy. Nat Commun. 2018;9:3162. doi: 10.1038/s41467-018-05292-4. PubMed DOI PMC
Smith AD, et al. Mapping the complete reaction path of a complex photochemical reaction. Phys Rev letters. 2018;120:183003. doi: 10.1103/PhysRevLett.120.183003. PubMed DOI
Squibb RJ, et al. Acetylacetone photodynamics at a seeded free-electron laser. Nat Commun. 2018;9:63. doi: 10.1038/s41467-017-02478-0. PubMed DOI PMC
Faubel M, Steiner B, Toennies JP. Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets. The J chemical physics. 1997;106:9013–9031. doi: 10.1063/1.474034. DOI
Suzuki Y-I, et al. Isotope effect on ultrafast charge-transfer-to-solvent reaction from i-to water in aqueous nai solution. Chem Sci. 2011;2:1094–1102. doi: 10.1039/C0SC00650E. DOI
Elkins MH, Williams HL, Shreve AT, Neumark DM. Relaxation mechanism of the hydrated electron. Science. 2013;342:1496–1499. doi: 10.1126/science.1246291. PubMed DOI
Thürmer S, et al. Photoelectron angular distributions from liquid water: Effects of electron scattering. Phys Rev Lett. 2013;111:173005. doi: 10.1103/PhysRevLett.111.173005. PubMed DOI
Ojeda J, Arrell CA, Longetti L, Chergui M, Helbing J. Charge-transfer and impulsive electronic-to-vibrational energy conversion in ferricyanide: ultrafast photoelectron and transient infrared studies. Phys Chem Chem Phys. 2017;71:17052. doi: 10.1039/C7CP03337K. PubMed DOI
Riley JW, et al. Unravelling the role of an aqueous environment on the electronic structure and ionization of phenol using photoelectron spectroscopy. The journal physical chemistry letters. 2018;9:678–682. doi: 10.1021/acs.jpclett.7b03310. PubMed DOI
Nishitani J, Yamamoto Y-i, West CW, Karashima S, Suzuki T. Binding energy of solvated electrons and retrieval of true uv photoelectron spectra of liquids. Sci advances. 2019;5:eaaw6896. doi: 10.1126/sciadv.aaw6896. PubMed DOI PMC
Jordan I, Huppert M, Brown MA, van Bokhoven JA, Wörner HJ. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases. Rev Sci Instruments. 2015;86:123905. doi: 10.1063/1.4938175. PubMed DOI
Jordan I, et al. Attosecond spectroscopy of liquid water. Science. 2020;369:974–979. doi: 10.1126/science.abb0979. PubMed DOI
Crim FF. Molecular reaction dynamics across the phases: similarities and differences. Faraday discussions. 2012;157:9–26. doi: 10.1039/C2FD20123B. PubMed DOI
Harris SJ, et al. Comparing molecular photofragmentation dynamics in the gas and liquid phases. Phys Chem Chem Phys. 2013;15:6567–6582. doi: 10.1039/c3cp50756d. PubMed DOI
Syage J, Lambert WR, Felker P, Zewail A, Hochstrasser R. Picosecond excitation and trans-cis isomerization of stilbene in a supersonic jet: Dynamics and spectra. Chem Phys Lett. 1982;88:266–270. doi: 10.1016/0009-2614(82)87085-1. DOI
Troe J, Weitzel K-M. Mndo calculations of stilbene potential energy properties relevant for the photoisomerization dynamics. The J chemical physics. 1988;88:7030–7039. doi: 10.1063/1.454402. DOI
Sension R, Repinec S, Hochstrasser R. Femtosecond laser study of energy disposal in the solution phase isomerization of stilbene. J chemical physics. 1990;93:9185–9188. doi: 10.1063/1.459707. DOI
Waldeck DH. Photoisomerization dynamics of stilbenes in polar solvents. J Mol Liq. 1993;57:127–148. doi: 10.1016/0167-7322(93)80051-V. DOI
Nikowa L, Schwarzer D, Troe J, Schroeder J. Viscosity and solvent dependence of low-barrier processes: Photoisomerization of cis-stilbene in compressed liquid solvents. The J chemical physics. 1992;97:4827–4835. doi: 10.1063/1.463837. DOI
Rodier JM, Myers AB. cis-stilbene photochemistry: solvent dependence of the initial dynamics and quantum yields. J Am Chem Soc. 1993;115:10791–10795. doi: 10.1021/ja00076a041. DOI
Takeuchi S, et al. Spectroscopic tracking of structural evolution in ultrafast stilbene photoisomerization. Science. 2008;322:1073–1077. doi: 10.1126/science.1160902. PubMed DOI
Quenneville J, Martínez TJ. Ab initio study of cis-trans photoisomerization in stilbene and ethylene. J Phys Chem A. 2003;107:829–837. doi: 10.1021/jp021210w. DOI
Schoenlein R, Peteanu L, Mathies R, Shank C. The first step in vision: femtosecond isomerization of rhodopsin. Science. 1991;254:412–415. doi: 10.1126/science.1925597. PubMed DOI
Willner I, Rubin S. Control of the structure and functions of biomaterials by light. Angewandte Chemie Int Ed Engl. 1996;35:367–385. doi: 10.1002/anie.199603671. DOI
Weir H, Williams M, Parrish RM, Hohenstein EG, Martínez TJ. Nonadiabatic dynamics of photoexcited cis-stilbene using ab initio multiple spawning. J Phys Chem B. 2020;124:5476–5487. doi: 10.1021/acs.jpcb.0c03344. PubMed DOI
Williams M, et al. Unmasking the cis-stilbene phantom state via vacuum ultraviolet time-resolved photoelectron spectroscopy and ab initio multiple spawning. The J Phys Chem Lett. 2021;12:6363–6369. doi: 10.1126/science.1925597. PubMed DOI
Fuß W, Kosmidis C, Schmid W, Trushin S. The lifetime of the perpendicular minimum of cis-stilbene observed by dissociative intense-laser field ionization. Chem Phys Lett. 2004;385:423–430. doi: 10.1016/j.cplett.2003.12.114. DOI
Chiang W-Y, Laane J. Fluorescence spectra and torsional potential functions for trans-stilbene in its S0 and S1 (π, π*) electronic states. J Chem Phys. 1994;100:8755–8767. doi: 10.1063/1.466730. DOI
Kwok WM, et al. Time-resolved resonance raman study of s1 cis-stilbene and its deuterated isotopomers. J Raman Spectrosc. 2003;34:886–891. doi: 10.1002/jrs.1070. DOI
Kukura P. Structural observation of the primary isomerization in vision with femtosecond-stimulated raman. Science. 2005;310:1006–1009. doi: 10.1126/science.1118379. PubMed DOI
Schapiro I, et al. The ultrafast photoisomerizations of rhodopsin and bathorhodopsin are modulated by bond length alternation and HOOP driven electronic effects. J Am Chem Soc. 2011;133:3354–3364. doi: 10.1021/ja1056196. PubMed DOI
Fdez Galván I, Delcey MG, Pedersen TB, Aquilante F, Lindh R. Analytical state-average complete-activespace self-consistent field nonadiabatic coupling vectors: Implementation with density-fitted two-electron integrals and application to conical intersections. J Chem Theory Comput. 2016;12:3636–3653. doi: 10.1021/acs.jctc.6b00384. PubMed DOI
Pollak E. Transition state theory for photoisomerization rates of trans-stilbene in the gas and liquid phases. The J Chem Phys. 1987;86:3944–3949. doi: 10.1063/1.451903. DOI
Chudoba C, Riedle E, Pfeiffer M, Elsaesser T. Vibrational coherence in ultrafast excited state proton transfer. Chem Phys Lett. 1996;263:622–628. doi: 10.1016/s0009-2614(96)01268-7. DOI
Takeuchi S, Tahara T. Femtosecond absorption study of photodissociation of diphenylcyclopropenone in solution: reaction dynamics and coherent nuclear motion. J Chem Phys. 2004;120:4768–4776. doi: 10.1063/1.1645778. PubMed DOI
Takeuchi S, Tahara T. Coherent nuclear wavepacket motions in ultrafast excited-state intramolecular proton transfer: sub-30-fs resolved pump-probe absorption spectroscopy of 10-hydroxybenzo[h]quinoline in solution. J Phys Chem A. 2005;109:10199–10207. doi: 10.1021/jp0519013. PubMed DOI
Monni R, et al. Vibrational coherence transfer in the ultrafast intersystem crossing of a diplatinum complex in solution. Proc Natl Acad Sci. 2018;115:E6396–E6403. doi: 10.1073/pnas.1719899115. PubMed DOI PMC
Banin U, Waldman A, Ruhman S. Ultrafast photodissociation of I3-in solution: Direct observation of coherent product vibrations. J Chem Phys. 1992;96:2416–2419. doi: 10.1063/1.462041. DOI
von Conta A, Huppert M, Wörner HJ. A table-top monochromator for tunable femtosecond xuv pulses generated in a semi-infinite gas cell: Experiment and simulations. Rev Sci Instruments. 2016;87 doi: 10.1063/1.4955263. PubMed DOI
Perry CF, et al. Ionization energy of liquid water revisited. J Phys Chem Lett. 2020;11:1789–1794. doi: 10.1021/acs.jpclett.9b03391. PubMed DOI
Walt SG, et al. Role of multi-electron effects in the asymmetry of strong-field ionization and fragmentation of polar molecules: The methyl halide series. J Phys Chem A. 2015;119:11772–11782. doi: 10.1021/acs.jpca.5b07331. PubMed DOI
Walt SG, et al. Dynamics of valence-shell electrons and nuclei probed by strong-field holography and rescattering. Nat Comm. 2017;8:15651. doi: 10.1038/ncomms15651. PubMed DOI PMC
Svoboda V, Ram NB, Rajeev R, Wörner HJ. Time-resolved photoelectron imaging with a femtosecond vacuumultraviolet light source: Dynamics in the Ã/B̃-and F̃-bands of SO2. J Chem Phys. 2017;146:084301. doi: 10.1063/1.4976552. PubMed DOI
Belyaev AK, Lasser C, Trigila G. Landau–Zener type surface hopping algorithms. The J Chem Phys. 2014;140:224108. doi: 10.1063/1.4882073. PubMed DOI
Suchan J, Janoš J, Slavíček P. Pragmatic Approach to Photodynamics: Mixed Landau–Zener Surface Hopping with Intersystem Crossing. J Chem Theory Comput. 2020;16:5809–5820. doi: 10.1021/acs.jctc.0c00512. PubMed DOI
Ceriotti M, Bussi G, Parrinello M. Colored-noise thermostats àla Carte. J Chem Theory Comput. 2010;6:1170–1180.:arXiv:1204.0822v1 doi: 10.1021/ct900563s. DOI
Hollas D, Muchová E, Slavíček P. Modeling Liquid Photoemission Spectra: Path-Integral Molecular Dynamics Combined with Tuned Range-Separated Hybrid Functionals. J Chem Theory Comput. 2016;12:5009–5017. doi: 10.1021/acs.jctc.6b00630. PubMed DOI
Hollas D, Suchan J, Ončák M, Slavícek P. PHOTOX/ABIN v11. 2018.
GLE4MD input library
Dral PO, et al. Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Theory, Implementation, and Parameters. J Chem Theory Comput. 2016;12:1082–1096. doi: 10.1021/acs.jctc.5b01046. PubMed DOI PMC
Silva-Junior MR, Thiel W. Benchmark of Electronically Excited States for Semiempirical Methods: MNDO, AM1, PM3, OM1, OM2, OM3, INDO/S, and INDO/S2. J Chem Theory Comput. 2010;6:1546–1564. doi: 10.1021/ct100030j. PubMed DOI
Janoš J, et al. Conformational control of the photodynamics of a bilirubin dipyrrinone subunit: Femtosecond spectroscopy combined with nonadiabatic simulations. The J Phys Chem A. 2020;124:10457–10471. doi: 10.1021/acs.jpca.0c08945. PubMed DOI
Dewar MJ, Thiel W. Ground states of molecules. 38. the mndo method. approximations and parameters. J Am Chem Soc. 1977;99:4899–4907. doi: 10.1002/chin.197744060. DOI
Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M. Molpro: a general-purpose quantum chemistry program package. Wiley Interdiscip Rev Comput Mol Sci. 2012;2:242–253. doi: 10.1002/wcms.82. DOI
Plasser F, et al. Efficient and flexible computation of many-electron wave function overlaps. J Chem Theory Comput. 2016;12:1207–1219. doi: 10.1021/acs.jctc.5b01148. PubMed DOI PMC