Different timescales during ultrafast stilbene isomerization in the gas and liquid phases revealed using time-resolved photoelectron spectroscopy

. 2022 Oct ; 14 (10) : 1126-1132. [epub] 20220811

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35953643

Grantová podpora
11627807 National Natural Science Foundation of China (National Science Foundation of China)
172946 Swiss National Science Foundation - Switzerland
11774130 National Natural Science Foundation of China (National Science Foundation of China)
200021_172946 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
11534004 National Natural Science Foundation of China (National Science Foundation of China)

Odkazy

PubMed 35953643
PubMed Central PMC7613649
DOI 10.1038/s41557-022-01012-0
PII: 10.1038/s41557-022-01012-0
Knihovny.cz E-zdroje

Directly contrasting ultrafast excited-state dynamics in the gas and liquid phases is crucial to understanding the influence of complex environments. Previous studies have often relied on different spectroscopic observables, rendering direct comparisons challenging. Here, we apply extreme-ultraviolet time-resolved photoelectron spectroscopy to both gaseous and liquid cis-stilbene, revealing the coupled electronic and nuclear dynamics that underlie its isomerization. Our measurements track the excited-state wave packets from excitation along the complete reaction path to the final products. We observe coherent excited-state vibrational dynamics in both phases of matter that persist to the final products, enabling the characterization of the branching space of the S1-S0 conical intersection. We observe a systematic lengthening of the relaxation timescales in the liquid phase and a red shift of the measured excited-state frequencies that is most pronounced for the complex reaction coordinate. These results characterize in detail the influence of the liquid environment on both electronic and structural dynamics during a complete photochemical transformation.

Zobrazit více v PubMed

Polli D, et al. Conical intersection dynamics of the primary photoisomerization event in vision. Nature. 2010;467:440–443. doi: 10.1038/nature09346. PubMed DOI

Engel GS, et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature. 2007;446:782–786. doi: 10.1038/nature05678. PubMed DOI

Cyr DR, Hayden CC. Femtosecond time-resolved photoionization and photoelectron spectroscopy studies of ultrafast internal conversion in 1, 3, 5-hexatriene. J chemical physics. 1996;104:771–774. doi: 10.1063/1.470802. DOI

Neumark DM. Time-resolved photoelectron spectroscopy of molecules and clusters. Annu Rev Phys Chem. 2001;52:255. doi: 10.1146/annurev.physchem.52.1.255. PubMed DOI

von Conta A, et al. Conical-intersection dynamics and ground-state chemistry probed by extreme-ultraviolet time-resolved photoelectron spectroscopy. Nat Commun. 2018;9:3162. doi: 10.1038/s41467-018-05292-4. PubMed DOI PMC

Smith AD, et al. Mapping the complete reaction path of a complex photochemical reaction. Phys Rev letters. 2018;120:183003. doi: 10.1103/PhysRevLett.120.183003. PubMed DOI

Squibb RJ, et al. Acetylacetone photodynamics at a seeded free-electron laser. Nat Commun. 2018;9:63. doi: 10.1038/s41467-017-02478-0. PubMed DOI PMC

Faubel M, Steiner B, Toennies JP. Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets. The J chemical physics. 1997;106:9013–9031. doi: 10.1063/1.474034. DOI

Suzuki Y-I, et al. Isotope effect on ultrafast charge-transfer-to-solvent reaction from i-to water in aqueous nai solution. Chem Sci. 2011;2:1094–1102. doi: 10.1039/C0SC00650E. DOI

Elkins MH, Williams HL, Shreve AT, Neumark DM. Relaxation mechanism of the hydrated electron. Science. 2013;342:1496–1499. doi: 10.1126/science.1246291. PubMed DOI

Thürmer S, et al. Photoelectron angular distributions from liquid water: Effects of electron scattering. Phys Rev Lett. 2013;111:173005. doi: 10.1103/PhysRevLett.111.173005. PubMed DOI

Ojeda J, Arrell CA, Longetti L, Chergui M, Helbing J. Charge-transfer and impulsive electronic-to-vibrational energy conversion in ferricyanide: ultrafast photoelectron and transient infrared studies. Phys Chem Chem Phys. 2017;71:17052. doi: 10.1039/C7CP03337K. PubMed DOI

Riley JW, et al. Unravelling the role of an aqueous environment on the electronic structure and ionization of phenol using photoelectron spectroscopy. The journal physical chemistry letters. 2018;9:678–682. doi: 10.1021/acs.jpclett.7b03310. PubMed DOI

Nishitani J, Yamamoto Y-i, West CW, Karashima S, Suzuki T. Binding energy of solvated electrons and retrieval of true uv photoelectron spectra of liquids. Sci advances. 2019;5:eaaw6896. doi: 10.1126/sciadv.aaw6896. PubMed DOI PMC

Jordan I, Huppert M, Brown MA, van Bokhoven JA, Wörner HJ. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases. Rev Sci Instruments. 2015;86:123905. doi: 10.1063/1.4938175. PubMed DOI

Jordan I, et al. Attosecond spectroscopy of liquid water. Science. 2020;369:974–979. doi: 10.1126/science.abb0979. PubMed DOI

Crim FF. Molecular reaction dynamics across the phases: similarities and differences. Faraday discussions. 2012;157:9–26. doi: 10.1039/C2FD20123B. PubMed DOI

Harris SJ, et al. Comparing molecular photofragmentation dynamics in the gas and liquid phases. Phys Chem Chem Phys. 2013;15:6567–6582. doi: 10.1039/c3cp50756d. PubMed DOI

Syage J, Lambert WR, Felker P, Zewail A, Hochstrasser R. Picosecond excitation and trans-cis isomerization of stilbene in a supersonic jet: Dynamics and spectra. Chem Phys Lett. 1982;88:266–270. doi: 10.1016/0009-2614(82)87085-1. DOI

Troe J, Weitzel K-M. Mndo calculations of stilbene potential energy properties relevant for the photoisomerization dynamics. The J chemical physics. 1988;88:7030–7039. doi: 10.1063/1.454402. DOI

Sension R, Repinec S, Hochstrasser R. Femtosecond laser study of energy disposal in the solution phase isomerization of stilbene. J chemical physics. 1990;93:9185–9188. doi: 10.1063/1.459707. DOI

Waldeck DH. Photoisomerization dynamics of stilbenes in polar solvents. J Mol Liq. 1993;57:127–148. doi: 10.1016/0167-7322(93)80051-V. DOI

Nikowa L, Schwarzer D, Troe J, Schroeder J. Viscosity and solvent dependence of low-barrier processes: Photoisomerization of cis-stilbene in compressed liquid solvents. The J chemical physics. 1992;97:4827–4835. doi: 10.1063/1.463837. DOI

Rodier JM, Myers AB. cis-stilbene photochemistry: solvent dependence of the initial dynamics and quantum yields. J Am Chem Soc. 1993;115:10791–10795. doi: 10.1021/ja00076a041. DOI

Takeuchi S, et al. Spectroscopic tracking of structural evolution in ultrafast stilbene photoisomerization. Science. 2008;322:1073–1077. doi: 10.1126/science.1160902. PubMed DOI

Quenneville J, Martínez TJ. Ab initio study of cis-trans photoisomerization in stilbene and ethylene. J Phys Chem A. 2003;107:829–837. doi: 10.1021/jp021210w. DOI

Schoenlein R, Peteanu L, Mathies R, Shank C. The first step in vision: femtosecond isomerization of rhodopsin. Science. 1991;254:412–415. doi: 10.1126/science.1925597. PubMed DOI

Willner I, Rubin S. Control of the structure and functions of biomaterials by light. Angewandte Chemie Int Ed Engl. 1996;35:367–385. doi: 10.1002/anie.199603671. DOI

Weir H, Williams M, Parrish RM, Hohenstein EG, Martínez TJ. Nonadiabatic dynamics of photoexcited cis-stilbene using ab initio multiple spawning. J Phys Chem B. 2020;124:5476–5487. doi: 10.1021/acs.jpcb.0c03344. PubMed DOI

Williams M, et al. Unmasking the cis-stilbene phantom state via vacuum ultraviolet time-resolved photoelectron spectroscopy and ab initio multiple spawning. The J Phys Chem Lett. 2021;12:6363–6369. doi: 10.1126/science.1925597. PubMed DOI

Fuß W, Kosmidis C, Schmid W, Trushin S. The lifetime of the perpendicular minimum of cis-stilbene observed by dissociative intense-laser field ionization. Chem Phys Lett. 2004;385:423–430. doi: 10.1016/j.cplett.2003.12.114. DOI

Chiang W-Y, Laane J. Fluorescence spectra and torsional potential functions for trans-stilbene in its S0 and S1 (π, π*) electronic states. J Chem Phys. 1994;100:8755–8767. doi: 10.1063/1.466730. DOI

Kwok WM, et al. Time-resolved resonance raman study of s1 cis-stilbene and its deuterated isotopomers. J Raman Spectrosc. 2003;34:886–891. doi: 10.1002/jrs.1070. DOI

Kukura P. Structural observation of the primary isomerization in vision with femtosecond-stimulated raman. Science. 2005;310:1006–1009. doi: 10.1126/science.1118379. PubMed DOI

Schapiro I, et al. The ultrafast photoisomerizations of rhodopsin and bathorhodopsin are modulated by bond length alternation and HOOP driven electronic effects. J Am Chem Soc. 2011;133:3354–3364. doi: 10.1021/ja1056196. PubMed DOI

Fdez Galván I, Delcey MG, Pedersen TB, Aquilante F, Lindh R. Analytical state-average complete-activespace self-consistent field nonadiabatic coupling vectors: Implementation with density-fitted two-electron integrals and application to conical intersections. J Chem Theory Comput. 2016;12:3636–3653. doi: 10.1021/acs.jctc.6b00384. PubMed DOI

Pollak E. Transition state theory for photoisomerization rates of trans-stilbene in the gas and liquid phases. The J Chem Phys. 1987;86:3944–3949. doi: 10.1063/1.451903. DOI

Chudoba C, Riedle E, Pfeiffer M, Elsaesser T. Vibrational coherence in ultrafast excited state proton transfer. Chem Phys Lett. 1996;263:622–628. doi: 10.1016/s0009-2614(96)01268-7. DOI

Takeuchi S, Tahara T. Femtosecond absorption study of photodissociation of diphenylcyclopropenone in solution: reaction dynamics and coherent nuclear motion. J Chem Phys. 2004;120:4768–4776. doi: 10.1063/1.1645778. PubMed DOI

Takeuchi S, Tahara T. Coherent nuclear wavepacket motions in ultrafast excited-state intramolecular proton transfer: sub-30-fs resolved pump-probe absorption spectroscopy of 10-hydroxybenzo[h]quinoline in solution. J Phys Chem A. 2005;109:10199–10207. doi: 10.1021/jp0519013. PubMed DOI

Monni R, et al. Vibrational coherence transfer in the ultrafast intersystem crossing of a diplatinum complex in solution. Proc Natl Acad Sci. 2018;115:E6396–E6403. doi: 10.1073/pnas.1719899115. PubMed DOI PMC

Banin U, Waldman A, Ruhman S. Ultrafast photodissociation of I3-in solution: Direct observation of coherent product vibrations. J Chem Phys. 1992;96:2416–2419. doi: 10.1063/1.462041. DOI

von Conta A, Huppert M, Wörner HJ. A table-top monochromator for tunable femtosecond xuv pulses generated in a semi-infinite gas cell: Experiment and simulations. Rev Sci Instruments. 2016;87 doi: 10.1063/1.4955263. PubMed DOI

Perry CF, et al. Ionization energy of liquid water revisited. J Phys Chem Lett. 2020;11:1789–1794. doi: 10.1021/acs.jpclett.9b03391. PubMed DOI

Walt SG, et al. Role of multi-electron effects in the asymmetry of strong-field ionization and fragmentation of polar molecules: The methyl halide series. J Phys Chem A. 2015;119:11772–11782. doi: 10.1021/acs.jpca.5b07331. PubMed DOI

Walt SG, et al. Dynamics of valence-shell electrons and nuclei probed by strong-field holography and rescattering. Nat Comm. 2017;8:15651. doi: 10.1038/ncomms15651. PubMed DOI PMC

Svoboda V, Ram NB, Rajeev R, Wörner HJ. Time-resolved photoelectron imaging with a femtosecond vacuumultraviolet light source: Dynamics in the Ã/B̃-and F̃-bands of SO2. J Chem Phys. 2017;146:084301. doi: 10.1063/1.4976552. PubMed DOI

Belyaev AK, Lasser C, Trigila G. Landau–Zener type surface hopping algorithms. The J Chem Phys. 2014;140:224108. doi: 10.1063/1.4882073. PubMed DOI

Suchan J, Janoš J, Slavíček P. Pragmatic Approach to Photodynamics: Mixed Landau–Zener Surface Hopping with Intersystem Crossing. J Chem Theory Comput. 2020;16:5809–5820. doi: 10.1021/acs.jctc.0c00512. PubMed DOI

Ceriotti M, Bussi G, Parrinello M. Colored-noise thermostats àla Carte. J Chem Theory Comput. 2010;6:1170–1180.:arXiv:1204.0822v1 doi: 10.1021/ct900563s. DOI

Hollas D, Muchová E, Slavíček P. Modeling Liquid Photoemission Spectra: Path-Integral Molecular Dynamics Combined with Tuned Range-Separated Hybrid Functionals. J Chem Theory Comput. 2016;12:5009–5017. doi: 10.1021/acs.jctc.6b00630. PubMed DOI

Hollas D, Suchan J, Ončák M, Slavícek P. PHOTOX/ABIN v11. 2018.

GLE4MD input library

Dral PO, et al. Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Theory, Implementation, and Parameters. J Chem Theory Comput. 2016;12:1082–1096. doi: 10.1021/acs.jctc.5b01046. PubMed DOI PMC

Silva-Junior MR, Thiel W. Benchmark of Electronically Excited States for Semiempirical Methods: MNDO, AM1, PM3, OM1, OM2, OM3, INDO/S, and INDO/S2. J Chem Theory Comput. 2010;6:1546–1564. doi: 10.1021/ct100030j. PubMed DOI

Janoš J, et al. Conformational control of the photodynamics of a bilirubin dipyrrinone subunit: Femtosecond spectroscopy combined with nonadiabatic simulations. The J Phys Chem A. 2020;124:10457–10471. doi: 10.1021/acs.jpca.0c08945. PubMed DOI

Dewar MJ, Thiel W. Ground states of molecules. 38. the mndo method. approximations and parameters. J Am Chem Soc. 1977;99:4899–4907. doi: 10.1002/chin.197744060. DOI

Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M. Molpro: a general-purpose quantum chemistry program package. Wiley Interdiscip Rev Comput Mol Sci. 2012;2:242–253. doi: 10.1002/wcms.82. DOI

Plasser F, et al. Efficient and flexible computation of many-electron wave function overlaps. J Chem Theory Comput. 2016;12:1207–1219. doi: 10.1021/acs.jctc.5b01148. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...