Vibrational coherence transfer in the ultrafast intersystem crossing of a diplatinum complex in solution
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
29941568
PubMed Central
PMC6048523
DOI
10.1073/pnas.1719899115
PII: 1719899115
Knihovny.cz E-zdroje
- Klíčová slova
- diplatinum complexes, intersystem crossing, solvation, ultrafast, vibrational coherence,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
We investigate the ultrafast transient absorption response of tetrakis(μ-pyrophosphito)diplatinate(II), [Pt2(μ-P2O5H2)4]4- [hereafter abbreviated Pt(pop)], in acetonitrile upon excitation of its lowest singlet 1A2u state. Compared with previously reported solvents [van der Veen RM, Cannizzo A, van Mourik F, Vlček A, Jr, Chergui M (2011) J Am Chem Soc 133:305-315], a significant shortening of the intersystem crossing (ISC) time (<1 ps) from the lowest singlet to the lowest triplet state is found, allowing for a transfer of vibrational coherence, observed in the course of an ISC in a polyatomic molecule in solution. Density functional theory (DFT) quantum mechanical/molecular mechanical (QM/MM) simulations of Pt(pop) in acetonitrile and ethanol show that high-lying, mostly triplet, states are strongly mixed and shifted to lower energies due to interactions with the solvent, providing an intermediate state (or manifold of states) for the ISC. This suggests that the larger the solvation energies of the intermediate state(s), the shorter the ISC time. Because the latter is smaller than the pure dephasing time of the vibrational wave packet, coherence is conserved during the spin transition. These results underscore the crucial role of the solvent in directing pathways of intramolecular energy flow.
Zobrazit více v PubMed
Zewail AH. Femtochemistry: Atomic-scale dynamics of the chemical bond using ultrafast lasers (Nobel lecture) Angew Chem Int Ed Engl. 2000;39:2586–2631. PubMed
Chergui M. Ultrafast photophysics of transition metal complexes. Acc Chem Res. 2015;48:801–808. PubMed
Dantus M, Bowman RM, Gruebele M, Zewail AH. Femtosecond real-time probing of reactions. 5. The reaction of Ihgi. J Chem Phys. 1989;91:7437–7450.
Rose TS, Rosker MJ, Zewail AH. Femtosecond real-time probing of reactions. 4. The reactions of alkali-halides. J Chem Phys. 1989;91:7415–7436.
Zewail AH. Femtochemistry: Atomic-scale dynamics of the chemical bond. J Phys Chem A. 2000;104:5660–5694. PubMed
Szarka AZ, Pugliano N, Palit DK, Hochstrasser RM. Vibrational coherence in the solution-phase photoisomerization reaction of cis-stilbene. Chem Phys Lett. 1995;240:25–30.
Volk M, et al. Anisotropy measurements of solvated HgI2 dissociation: Transition state and fragment rotational dynamics. J Phys Chem A. 1997;101:638–643.
Voth GA, Hochstrasser RM. Transition state dynamics and relaxation processes in solutions: A frontier of physical chemistry. J Phys Chem. 1996;100:13034–13049.
Cina JA, Fleming GR. Vibrational coherence transfer and trapping as sources for long-lived quantum beats in polarized emission from energy transfer complexes. J Phys Chem A. 2004;108:11196–11208.
Scherer NF, Jonas DM, Fleming GR. Femtosecond wave-packet and chemical-reaction dynamics of iodine in solution—tunable probe study of motion along the reaction coordinate. J Chem Phys. 1993;99:153–168.
Apkarian VA, Schwentner N. Molecular photodynamics in rare gas solids. Chem Rev. 1999;99:1481–1514. PubMed
Cong P, Roberts G, Herek JL, Mohktari A, Zewail AH. Femtosecond real-time probing of reactions. 18. Experimental and theoretical mapping of trajectories and potentials in the NaI dissociation reaction. J Phys Chem. 1996;100:7832–7848.
Dhar L, Rogers JA, Nelson KA. Time-resolved vibrational spectroscopy in the impulsive limit. Chem Rev. 1994;94:157–193.
Banin U, Waldman A, Ruhman S. Ultrafast photodissociation of I3− in solution—direct observation of coherent product vibrations. J Chem Phys. 1992;96:2416–2419.
Banin U, Ruhman S. Ultrafast vibrational dynamics of nascent diiodide fragments studied by femtosecond transient resonance impulsive stimulated Raman-scattering. J Chem Phys. 1993;99:9318–9321.
Pugliano N, Gnanakaran S, Hochstrasser RM. The dynamics of photodissociation reactions in solution. J Photoch Photobio A. 1996;102:21–28.
Rosca F, et al. Investigations of coherent vibrational oscillations in myoglobin. J Phys Chem A. 2000;104:4280–4290.
Bursing H, Vohringer P. Transition state probing and fragment rotational dynamics following impulsive bond breakage of HgI2. Phys Chem Chem Phys. 2000;2:73–82.
Hess S, Bursing H, Vohringer P. Dynamics of fragment recoil in the femtosecond photodissociation of triiodide ions in liquid solution. J Chem Phys. 1999;111:5461–5473.
Lenderink E, Duppen K, Wiersma DA. Femtosecond twisting and coherent vibrational motion in the excited-state of tetraphenylethylene. J Phys Chem. 1995;99:8972–8977.
Wang Q, Schoenlein RW, Peteanu LA, Mathies RA, Shank CV. Vibrationally coherent photochemistry in the femtosecond primary event of vision. Science. 1994;266:422–424. PubMed
Kobayashi T, Saito T, Ohtani H. Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization. Nature. 2001;414:531–534. PubMed
Polli D, et al. Conical intersection dynamics of the primary photoisomerization event in vision. Nature. 2010;467:440–443. PubMed
Schenkl S, et al. Insights into excited-state and isomerization dynamics of bacteriorhodopsin from ultrafast transient UV absorption. Proc Natl Acad Sci USA. 2006;103:4101–4106. PubMed PMC
Zgrablic G, Haacke S, Chergui M. Vibrational coherences of the protonated Schiff base of all-trans retinal in solution. Chem Phys. 2007;338:168–174.
Briand J, et al. Coherent ultrafast torsional motion and isomerization of a biomimetic dipolar photoswitch. Phys Chem Chem Phys. 2010;12:3178–3187. PubMed
Takeuchi S, Tahara T. Coherent nuclear wavepacket motions in ultrafast excited-state intramolecular proton transfer: Sub-30-fs resolved pump-probe absorption spectroscopy of 10-hydroxybenzo[h]quinoline in solution. J Phys Chem A. 2005;109:10199–10207. PubMed
Fuji T, Ong HJ, Kobayashi T. Real-time observation of vibrational coherence persisting after internal conversion and vibrational relaxation in cyanine dye molecules. Chem Phys Lett. 2003;380:135–140.
Braem O, Penfold TJ, Cannizzo A, Chergui M. A femtosecond fluorescence study of vibrational relaxation and cooling dynamics of UV dyes. Phys Chem Chem Phys. 2012;14:3513–3519. PubMed
Nakashima S, et al. Coherent dynamics in ultrafast charge-transfer reaction of plastocyanin. Chem Phys Lett. 2000;331:396–402.
Egorova D, Domcke W. Quantum dynamical simulations of ultrafast photoinduced electron-transfer processes. J Photoch Photobio A. 2004;166:19–31.
Wynne K, Reid GD, Hochstrasser RM. Vibrational coherence in electron transfer: The tetracyanoethylene-pyrene complex. J Chem Phys. 1996;105:2287–2297.
Gonzalez CR, Fernandez-Alberti S, Echave J, Chergui M. Vibrational coherence and nonadiabatic dynamics in the condensed phase. J Chem Phys. 2002;116:3343–3352.
Consani C, et al. Vibrational coherences and relaxation in the high-spin state of aqueous [FeII(bpy)3]2+ Angew Chem Int Ed Engl. 2009;48:7184–7187. PubMed
Auböck G, Chergui M. Sub-50-fs photoinduced spin crossover in [Fe(bpy)3]2+ Nat Chem. 2015;7:629–633. PubMed
Schrauben JN, Dillman KL, Beck WF, McCusker JK. Vibrational coherence in the excited state dynamics of Cr(acac)(3): Probing the reaction coordinate for ultrafast intersystem crossing. Chem Sci (Camb) 2010;1:405–410.
Iwamura M, Nozaki K, Takeuchi S, Tahara T. Real-time observation of tight Au-Au bond formation and relevant coherent motion upon photoexcitation of [Au(CN)2−] oligomers. J Am Chem Soc. 2013;135:538–541. PubMed
Iwamura M, et al. Coherent vibration and ultrafast dynamics upon bond formation in excited dimers of an Au(I) complex. Phys Chem Chem Phys. 2016;18:5103–5107. PubMed
Auböck G, et al. Femtosecond pump/supercontinuum-probe setup with 20 kHz repetition rate. Rev Sci Instrum. 2012;83:093105. PubMed
van der Veen RM, Cannizzo A, van Mourik F, Vlček A, Jr, Chergui M. Vibrational relaxation and intersystem crossing of binuclear metal complexes in solution. J Am Chem Soc. 2011;133:305–315. PubMed
Jean JM, Fleming GR. Competition between energy and phase relaxation in electronic curve crossing processes. J Chem Phys. 1995;103:2092–2101.
Gray HB, Záliš S, Vlček A. Electronic structures and photophysics of d8-d8 complexes. Coord Chem Rev. 2017;345:297–317.
Fordyce WA, Brummer JG, Crosby GA. Electronic spectroscopy of a diplatinum(Ii) octaphosphite complex. J Am Chem Soc. 1981;103:7061–7064.
Rice SF, Gray HB. Electronic absorption and emission-spectra of binuclear platinum(Ii) complexes–Characterization of the lowest singlet and triplet excited-states of Pt2(H2p2o5)44- J Am Chem Soc. 1983;105:4571–4575.
Stiegman AE, Rice SF, Gray HB, Miskowski VM. Electronic spectroscopy of D8-D8 diplatinum complexes–1a2u(Dsigma star-]P-sigma), 3eu(Dxz,Dyz-]P-Sigma), and 3,1b2u(Dsigma star-] Dx2-Y2) excited-states of Pt2(P2o5h2)44- Inorg Chem. 1987;26:1112–1116.
van der Veen RM, et al. Structural determination of a photochemically active diplatinum molecule by time-resolved EXAFS spectroscopy. Angew Chem Int Ed Engl. 2009;48:2711–2714. PubMed
van der Veen RM, et al. L-edge XANES analysis of photoexcited metal complexes in solution. Phys Chem Chem Phys. 2010;12:5551–5561. PubMed
Christensen M, et al. Time-resolved X-ray scattering of an electronically excited state in solution. Structure of the 3A(2u) state of tetrakis-mu-pyrophosphitodiplatinate(II) J Am Chem Soc. 2009;131:502–508. PubMed
Cho S, et al. Coherence in metal-metal-to-ligand-charge-transfer excited states of a dimetallic complex investigated by ultrafast transient absorption anisotropy. J Phys Chem A. 2011;115:3990–3996. PubMed
Hartsock RW, Zhang W, Hill MG, Sabat B, Gaffney KJ. Characterizing the deformational isomers of bimetallic Ir2(dimen)42+ (dimen = 1,8-diisocyano-p-menthane) with vibrational wavepacket dynamics. J Phys Chem A. 2011;115:2920–2926. PubMed
Monni R, et al. Conservation of vibrational coherence in ultrafast electronic relaxation: The case of diplatinum complexes in solution. Chem Phys Lett. 2017;683:112–121.
Roundhill DM, Gray HB, Che CM. Pyrophosphito-bridged diplatinum chemistry. Acc Chem Res. 1989;22:55–61.
Milder SJ, Brunschwig BS. Factors affecting nonradiative decay–Temperature-dependence of the picosecond fluorescence lifetime of Pt2(Pop)4(4-) J Phys Chem. 1992;96:2189–2196.
Auböck G, Consani C, van Mourik F, Chergui M. Ultrabroadband femtosecond two-dimensional ultraviolet transient absorption. Opt Lett. 2012;37:2337–2339. PubMed
Moret ME, Tavernelli I, Rothlisberger U. Combined QM/MM and classical molecular dynamics study of [Ru(bpy)3]2+ in water. J Phys Chem B. 2009;113:7737–7744. PubMed
Tavernelli I, Curchod BFE, Rothlisberger U. Nonadiabatic molecular dynamics with solvent effects: A LR-TDDFT QM/MM study of ruthenium (II) tris (bipyridine) in water. Chem Phys. 2011;391:101–109.
Curchod BFE, Rothlisberger U, Tavernelli I. Trajectory-based nonadiabatic dynamics with time-dependent density functional theory. ChemPhysChem. 2013;14:1314–1340. PubMed
von Lilienfeld OA, Tavernelli I, Rothlisberger U, Sebastiani D. Optimization of effective atom centered potentials for london dispersion forces in density functional theory. Phys Rev Lett. 2004;93:153004. PubMed
von Lilienfeld OA, Tavernelli I, Rothlisberger U, Sebastiani D. Performance of optimized atom-centered potentials for weakly bonded systems using density functional theory. Phys Rev B. 2005;71:195119.
Lin IC, et al. Library of dispersion-corrected atom-centered potentials for generalized gradient approximation functionals: Elements H, C, N, O, He, Ne, Ar, and Kr. Phys Rev B. 2007;75:205131.
Wang F, Ziegler T. Excitation energies of some d(1) systems calculated using time-dependent density functional theory: An implementation of open-shell TDDFT theory for doublet-doublet excitations. Mol Phys. 2004;102:2585–2595.
Záliš S, Lam YC, Gray HB, Vlček A. Spin-orbit TDDFT electronic structure of diplatinum(II,II) complexes. Inorg Chem. 2015;54:3491–3500. PubMed
Durrell AC, et al. Structural control of 1A2u-to-3A2u intersystem crossing in diplatinum(II,II) complexes. J Am Chem Soc. 2012;134:14201–14207. PubMed
Bergsma JP, Berens PH, Wilson KR, Fredkin DR, Heller EJ. Electronic spectra from molecular dynamics: A simple approach. J Phys Chem. 1984;88:612–619.
Levi G, Pápai M, Henriksen NE, Dohn AO, Møller KB. Solution structure and ultrafast vibrational relaxation of the PtPOP complex revealed by ΔSCF-QM/MM direct dynamics simulations. J Phys Chem C. 2018;122:7100–7119.
Kruppa SV, et al. Fragmentation pathways of dianionic [Pt2(μ-P2O5H2)4 + X,Y]2− (X,Y = H, K, Ag) species in an ion trap induced by collisions and UV photoexcitation. Int J Mass Spectrom. 2016;395:7–19.
Winghart M-O, et al. Time-resolved photoelectron spectroscopy of a dinuclear Pt(II) complex: Tunneling autodetachment from both singlet and triplet excited states of a molecular dianion. J Chem Phys. 2016;144:054305. PubMed
Bargheer M, Niv MY, Gerber RB, Schwentner N. Ultrafast solvent-induced spin-flip and nonadiabatic coupling: ClF in argon solids. Phys Rev Lett. 2002;89:108301. PubMed
Bargheer M, et al. Dynamics of electronic states and spin-flip for photodissociation of dihalogens in matrices: Experiment and semiclassical surface-hopping and quantum model simulations for F2 and ClF in solid Ar. J Phys Chem A. 2007;111:9573–9585. PubMed