Sensitivity Analysis in Photodynamics: How Does the Electronic Structure Control cis-Stilbene Photodynamics?
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39668373
PubMed Central
PMC11672677
DOI
10.1021/acs.jctc.4c01008
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The techniques of computational photodynamics are increasingly employed to unravel reaction mechanisms and interpret experiments. However, misinterpretations in nonadiabatic dynamics caused by inaccurate underlying potentials are often difficult to foresee. This work focuses on revealing the systematic errors in the nonadiabatic simulations due to the underlying potentials and suggests a thrifty approach to evaluate the sensitivity of the simulations to the potential. This issue is exemplified in the photochemistry of cis-stilbene, where similar experimental outcomes have been differently interpreted based on the electronic structure methods supporting nonadiabatic dynamics. We examine the predictions of cis-stilbene photochemistry using trajectory surface hopping methods coupled with various electronic structure methods (OM3-MRCISD, SA2-CASSCF, XMS-SA2-CASPT2, and XMS-SA3-CASPT2) and assess their ability to interpret experimental observations. While the excited-state lifetimes and calculated photoelectron spectra show consistency with experiments, the reaction quantum yields vary significantly: either completely suppressing cyclization or isomerization. Intriguingly, analyzing stationary points on the potential energy surface does not hint at any major discrepancy, making the electronic structure methods seemingly reliable when treated separately. We show that performing an ensemble of simulations with different potentials provides an estimate of the electronic structure sensitivity. However, this ensemble approach is costly. Thus, we propose running nonadiabatic simulations with an external bias at a resource-efficient underlying potential (semiempirical or machine-learned) for the sensitivity analysis. We demonstrate this approach using a semiempirical OM3-MRCISD method with a harmonic bias toward cyclization.
Zobrazit více v PubMed
Mukherjee S.; Mattos R. S.; Toldo J. M.; Lischka H.; Barbatti M. Prediction Challenge: Simulating Rydberg Photoexcited Cyclobutanone with Surface Hopping Dynamics based on Different Electronic Structure Methods 2024, 160 (15), 154306.10.1063/5.0203636. PubMed DOI
Janoš J.; Slavíček P. What Controls the Quality of Photodynamical Simulations? Electronic Structure Versus Nonadiabatic Algorithm. J. Chem. Theory Comput. 2023, 19, 8273–8284. 10.1021/acs.jctc.3c00908. PubMed DOI PMC
Merritt I. C. D.; Jacquemin D.; Vacher M. Nonadiabatic Coupling in Trajectory Surface Hopping: How Approximations Impact Excited-State Reaction Dynamics. J. Chem. Theory Comput. 2023, 19, 1827–1842. 10.1021/acs.jctc.2c00968. PubMed DOI
Mai S.; Atkins A. J.; Plasser F.; González L. The Influence of the Electronic Structure Method on Intersystem Crossing Dynamics. The Case of Thioformaldehyde. J. Chem. Theory Comput. 2019, 15, 3470–3480. 10.1021/acs.jctc.9b00282. PubMed DOI
Barneschi L.; Kaliakin D.; Huix-Rotllant M.; Ferré N.; Filatov(Gulak) M.; Olivucci M. Assessment of the Electron Correlation Treatment on the Quantum-Classical Dynamics of Retinal Protonated Schiff Base Models: XMS-CASPT2, RMS-CASPT2, and REKS Methods. J. Chem. Theory Comput. 2023, 19, 8189–8200. 10.1021/acs.jctc.3c00879. PubMed DOI
Chakraborty P.; Liu Y.; McClung S.; Weinacht T.; Matsika S. Time Resolved Photoelectron Spectroscopy as a Test of Electronic Structure and Nonadiabatic Dynamics. J. Phys. Chem. Lett. 2021, 12, 5099–5104. 10.1021/acs.jpclett.1c00926. PubMed DOI
Bellshaw D.; Minns R. S.; Kirrander A. Correspondence between electronic structure calculations and simulations: nonadiabatic dynamics in CS2. Phys. Chem. Chem. Phys. 2019, 21, 14226–14237. 10.1039/C8CP05693E. PubMed DOI
Tuna D.; Lefrancois D.; Wolański L.; Gozem S.; Schapiro I.; Andruniów T.; Dreuw A.; Olivucci M. Assessment of Approximate Coupled-Cluster and Algebraic-Diagrammatic-Construction Methods for Ground- and Excited-State Reaction Paths and the Conical-Intersection Seam of a Retinal-Chromophore Model. J. Chem. Theory Comput. 2015, 11, 5758–5781. 10.1021/acs.jctc.5b00022. PubMed DOI
Papineau T. V.; Jacquemin D.; Vacher M. Which Electronic Structure Method to Choose in Trajectory Surface Hopping Dynamics Simulations? Azomethane as a Case Study. J. Phys. Chem. Lett. 2024, 15, 636–643. 10.1021/acs.jpclett.3c03014. PubMed DOI
Prediction Challenge: Cyclobutanone Photochemistry. https://pubs.aip.org/collection/16531/Prediction-Challenge-Cyclobutanone-Photochemistry (accessed July 18, 2024).
Shi Y.-g.; Mellerup S. K.; Yuan K.; Hu G.-F.; Sauriol F.; Peng T.; Wang N.; Chen P.; Wang S. Stabilising fleeting intermediates of stilbene photocyclization with amino-borane functionalisation: the rare isolation of persistent dihydrophenanthrenes and their [1, 5] H-shift isomers. Chem. Sci. 2018, 9, 3844–3855. 10.1039/C8SC00560E. PubMed DOI PMC
Moore W. M.; Morgan D. D.; Stermitz F. R. The Photochemical Conversion of Stilbene to Phenanthrene. The Nature of the Intermediate. J. Am. Chem. Soc. 1963, 85, 829–830. 10.1021/ja00889a050. DOI
Muszkat K. A.; Fischer E. Structure, spectra, photochemistry, and thermal reactions of the 4a,4b-dihydrophenanthrenes. J. Am. Chem. Soc. 1967, 662–678. 10.1039/j29670000662. DOI
Petek H.; Yoshihara K.; Fujiwara Y.; Lin Z.; Penn J. H.; Frederick J. H. Is the nonradiative decay of S1 cis-stilbene due to the dihydrophenanthrene isomerization channel? Suggestive evidence from photophysical measurements on 1,2-diphenylcycloalkenes. J. Phys. Chem. A 1990, 94, 7539–7543. 10.1021/j100382a043. DOI
Repinec S. T.; Sension R. J.; Szarka A. Z.; Hochstrasser R. M. Femtosecond laser studies of the cis-stilbene photoisomerization reactions: the cis-stilbene to dihydrophenanthrene reaction. J. Phys. Chem. A 1991, 95, 10380–10385. 10.1021/j100178a026. DOI
Doany F.; Hochstrasser R.; Greene B.; Millard R. Femtosecond-resolved ground-state recovery of cis-stilbene in solution. Chem. Phys. Lett. 1985, 118, 1–5. 10.1016/0009-2614(85)85254-4. DOI
Greene B. I.; Farrow R. C. Subpicosecond time resolved multiphoton ionization: Excited state dynamics of cis-stilbene under collision free conditions. J. Chem. Phys. 1983, 78, 3336–3338. 10.1063/1.445201. DOI
Todd D. C.; Fleming G. R. Cis-stilbene isomerization: Temperature dependence and the role of mechanical friction. J. Chem. Phys. 1993, 98, 269–279. 10.1063/1.464672. DOI
Sension R. J.; Repinec S. T.; Szarka A. Z.; Hochstrasser R. M. Femtosecond laser studies of the cis-stilbene photoisomerization reactions. J. Chem. Phys. 1993, 98, 6291–6315. 10.1063/1.464824. DOI
Greene B.; Hochstrasser R.; Weisman R. Photoproperties of isolated cis and trans stilbene molecules. Chem. Phys. 1980, 48, 289–298. 10.1016/0301-0104(80)80059-0. DOI
Williams M.; Forbes R.; Weir H.; Veyrinas K.; MacDonell R. J.; Boguslavskiy A. E.; Schuurman M. S.; Stolow A.; Martínez T. J. Unmasking the cis-Stilbene Phantom State via Vacuum Ultraviolet Time-Resolved Photoelectron Spectroscopy and Ab Initio Multiple Spawning. J. Phys. Chem. Lett. 2021, 12, 6363–6369. 10.1021/acs.jpclett.1c01227. PubMed DOI
Ishii K.; Takeuchi S.; Tahara T. A 40-fs time-resolved absorption study on cis-stilbene in solution: observation of wavepacket motion on the reactive excited state. Chem. Phys. Lett. 2004, 398, 400–406. 10.1016/j.cplett.2004.09.075. DOI
Karashima S.; Miao X.; Kanayama A.; Yamamoto Y.-i.; Nishitani J.; Kavka N.; Mitric R.; Suzuki T. Ultrafast Ring Closure Reaction of Gaseous cis-Stilbene from S1(ππ*). J. Am. Chem. Soc. 2023, 145, 3283–3288. 10.1021/jacs.2c12266. PubMed DOI
Nakamura T.; Takeuchi S.; Taketsugu T.; Tahara T. Femtosecond fluorescence study of the reaction pathways and nature of the reactive S1 state of cis-stilbene. Phys. Chem. Chem. Phys. 2012, 14, 6225–6232. 10.1039/c2cp23959k. PubMed DOI
Hammond G. S.; Saltiel J.; Lamola A. A.; Turro N. J.; Bradshaw J. S.; Cowan D. O.; Counsell R. C.; Vogt V.; Dalton C. Mechanisms of Photochemical Reactions in Solution. XXII.1 Photochemical cis-trans Isomerization. J. Am. Chem. Soc. 1964, 86, 3197–3217. 10.1021/ja01070a002. DOI
Singh C.; Ghosh R.; Mondal J. A.; Palit D. K. Excited state dynamics of a push–pull stilbene: A femtosecond transient absorption spectroscopic study. J. Photochem. Photobiol., A 2013, 263, 50–60. 10.1016/j.jphotochem.2013.04.027. DOI
Kwok W. M.; Ma C.; Phillips D.; Beeby A.; Marder T. B.; Thomas R. L.; Tschuschke C.; Baranović G.; Matousek P.; Towrie M.; Parker A. W. Time-resolved resonance Raman study of S1 cis-stilbene and its deuterated isotopomers. J. Raman Spectrosc. 2003, 34, 886–891. 10.1002/jrs.1070. DOI
Myers A. B.; Mathies R. A. Excited-state torsional dynamics of cis-stilbene from resonance Raman intensities. J. Chem. Phys. 1984, 81, 1552–1558. 10.1063/1.447884. DOI
Greenfield M.; McGrane S. D.; Moore D. S. Control of cis-Stilbene Photochemistry Using Shaped Ultraviolet Pulses. J. Phys. Chem. A 2009, 113, 2333–2339. 10.1021/jp801758v. PubMed DOI
Improta R.; Santoro F. Excited-State Behavior of trans and cis Isomers of Stilbene and Stiff Stilbene: A TD-DFT Study. J. Phys. Chem. A 2005, 109, 10058–10067. 10.1021/jp054250j. PubMed DOI
Harabuchi Y.; Keipert K.; Zahariev F.; Taketsugu T.; Gordon M. S. Dynamics Simulations with Spin-Flip Time-Dependent Density Functional Theory: Photoisomerization and Photocyclization Mechanisms of cis-Stilbene in ππ* States. J. Phys. Chem. A 2014, 118, 11987–11998. 10.1021/jp5072428. PubMed DOI
Weir H.; Williams M.; Parrish R. M.; Hohenstein E. G.; Martínez T. J. Nonadiabatic Dynamics of Photoexcited cis-Stilbene Using Ab Initio Multiple Spawning. J. Phys. Chem. B 2020, 124, 5476–5487. 10.1021/acs.jpcb.0c03344. PubMed DOI
Tomasello G.; Garavelli M.; Orlandi G. Tracking the stilbene photoisomerization in the S1 state using RASSCF. Phys. Chem. Chem. Phys. 2013, 15, 19763–19773. 10.1039/c3cp52310a. PubMed DOI
Chaudhuri R. K.; Freed K. F.; Chattopadhyay S.; Mahapatra U. S. Theoretical Studies of the Ground and Excited State Structures of Stilbene. J. Phys. Chem. A 2013, 117, 9424–9434. 10.1021/jp311493w. PubMed DOI
Ioffe I. N.; Granovsky A. A. Photoisomerization of Stilbene: The Detailed XMCQDPT2 Treatment. J. Chem. Theory Comput. 2013, 9, 4973–4990. 10.1021/ct400647w. PubMed DOI
Wang C.; Waters M.; Zhang P.; Suchan J.; Svoboda V.; Luu T. T.; Perry C.; Yin Z.; Slavíček P.; Wörner H. Different timescales during ultrafast stilbene isomerization in the gas and liquid phases revealed using time-resolved photoelectron spectroscopy. Nat. Chem. 2022, 14, 1126–1132. 10.1038/s41557-022-01012-0. PubMed DOI PMC
Bearpark M. J.; Bernardi F.; Clifford S.; Olivucci M.; Robb M. A.; Vreven T. Cooperating Rings in cis-Stilbene Lead to an S0/S1 Conical Intersection. J. Phys. Chem. A 1997, 101, 3841–3847. 10.1021/jp961509c. DOI
Rodier J. M.; Myers A. B. cis-Stilbene photochemistry: solvent dependence of the initial dynamics and quantum yields. J. Am. Chem. Soc. 1993, 115, 10791–10795. 10.1021/ja00076a041. DOI
Saltiel J.; Gupta S. Photochemistry of the Stilbenes in Methanol. Trapping the Common Phantom Singlet State. J. Phys. Chem. A 2018, 122, 6089–6099. 10.1021/acs.jpca.8b04011. PubMed DOI
Baumert T.; Frohnmeyer T.; Kiefer B.; Niklaus P.; Strehle M.; Gerber G.; Zewail A. Femtosecond transition state dynamics of cis -stilbene. Appl. Phys. B 2001, 72, 105–108. 10.1007/s003400000497. DOI
Pedersen S.; Bañares L.; Zewail A. H. Femtosecond vibrational transition-state dynamics in a chemical reaction. J. Chem. Phys. 1992, 97, 8801–8804. 10.1063/1.463350. DOI
Rui Y.; Chen Y.; Ivanova E.; Grabowski I.; Dral P. Best DFT functional is the ensemble of functionals. Adv. Sci. 2024, 2408239.10.1002/advs.20240823. PubMed DOI PMC
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Mennucci B.; Petersson G. A.; Nakatsuji H.; Caricato M.; Li X.; Hratchian H. P.; Izmaylov A. F.; Bloino J.; Zheng G.; Sonnenberg J. L.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M.; Heyd J. J.; Brothers E.; Kudin K. N.; Staroverov V. N.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Rega N.; Millam J. M.; Klene M.; Knox J. E.; Cross J. B.; Bakken V.; Adamo C.; Jaramillo J.; Gomperts R.; Stratmann R. E.; Yazyev O.; Austin A. J.; Cammi R.; Pomelli C.; Ochterski J. W.; Martin R. L.; Morokuma K.; Zakrzewski V. G.; Voth G. A.; Salvador P.; Dannenberg J. J.; Dapprich S.; Daniels A. D.; Farkas O.; Foresman J. B.; Ortiz J. V.; Cioslowski J.; Fox D. J.. Gaussian 09 Revision E.01; Gaussian Inc.: Wallingford CT, 2009.
Shiozaki T. BAGEL: Brilliantly Advanced General Electronic-structure Library. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8, e1331.10.1002/wcms.1331. DOI
Thiel W.Program MNDO, Version 7.0 of 4 August 2005 2005.
Bearpark M. J.; Robb M. A.; Bernhard Schlegel H. A direct method for the location of the lowest energy point on a potential surface crossing. Chem. Phys. Lett. 1994, 223, 269–274. 10.1016/0009-2614(94)00433-1. DOI
Ciminelli C.; Granucci G.; Persico M. The Photoisomerization Mechanism of Azobenzene: A Semiclassical Simulation of Nonadiabatic Dynamics. Chem. - Eur. J. 2004, 10, 2327–2341. 10.1002/chem.200305415. PubMed DOI
Tully J. C. Molecular dynamics with electronic transitions. J. Chem. Phys. 1990, 93, 1061–1071. 10.1063/1.459170. DOI
Suchan J.; Janoš J.; Slavíček P. Pragmatic Approach to Photodynamics: Mixed Landau–Zener Surface Hopping with Intersystem Crossing. J. Chem. Theory Comput. 2020, 16, 5809–5820. 10.1021/acs.jctc.0c00512. PubMed DOI
Hollas D.; Suchan J.; Ončák M.; Slavíček P.. PHOTOX/ABIN v1.1, 2018.
Granucci G.; Persico M.; Zoccante A. Including quantum decoherence in surface hopping. J. Chem. Phys. 2010, 133, 134111.10.1063/1.3489004. PubMed DOI
Belyaev A. K.; Lebedev O. V. Nonadiabatic nuclear dynamics of atomic collisions based on branching classical trajectories. Phys. Rev. A 2011, 84, 014701.10.1103/PhysRevA.84.014701. DOI
Li X.; Hu D.; Xie Y.; Lan Z. Analysis of trajectory similarity and configuration similarity in on-the-fly surface-hopping simulation on multi-channel nonadiabatic photoisomerization dynamics. J. Chem. Phys. 2018, 149, 244104.10.1063/1.5048049. PubMed DOI
Saltiel J.; Waller A. S.; Sears D. F. J. The temperature and medium dependencies of cis-stilbene fluorescence. The energetics of twisting in the lowest excited singlet state. J. Am. Chem. Soc. 1993, 115, 2453–2465. 10.1021/ja00059a047. DOI
Park J. W.; Shiozaki T. Analytical Derivative Coupling for Multistate CASPT2 Theory. J. Chem. Theory Comput. 2017, 13, 2561–2570. 10.1021/acs.jctc.7b00018. PubMed DOI
Lei Y.; Yu L.; Zhou B.; Zhu C.; Wen Z.; Lin S. H. Landscapes of four-enantiomer conical intersections for photoisomerization of stilbene: CASSCF calculation. J. Phys. Chem. A 2014, 118, 9021–9031. 10.1021/jp5020109. PubMed DOI
Centurion M.; Wolf T. J.; Yang J. Ultrafast Imaging of Molecules with Electron Diffraction. Annu. Rev. Phys. Chem. 2022, 73, 21–42. 10.1146/annurev-physchem-082720-010539. PubMed DOI
Lindner J. O.; Röhr M. I. S.; Mitrić R. Multistate metadynamics for automatic exploration of conical intersections. Phys. Rev. A 2018, 97, 052502.10.1103/PhysRevA.97.052502. DOI
Janoš J.; Vinklárek I. S.; Rakovský J.; Mukhopadhyay D. P.; Curchod B. F. E.; Fárník M.; Slavíček P. On the Wavelength-Dependent Photochemistry of the Atmospheric Molecule CF3COCl. ACS Earth Space Chem. 2023, 7, 2275–2286. 10.1021/acsearthspacechem.3c00196. PubMed DOI PMC
Muchová E.; Bezek M.; Suchan J.; Cibulka R.; Slavíček P. Molecular dynamics and metadynamics simulations of [2 + 2] photocycloaddition. Int. J. Quantum Chem. 2018, 118, e25534.10.1002/qua.25534. DOI
Gao Y.-J.; Chang X.-P.; Liu X.-Y.; Li Q.-S.; Cui G.; Thiel W. Excited-State Decay Paths in Tetraphenylethene Derivatives. J. Phys. Chem. A 2017, 121, 2572–2579. 10.1021/acs.jpca.7b00197. PubMed DOI PMC
Shustova N. B.; Ong T.-C.; Cozzolino A. F.; Michaelis V. K.; Griffin R. G.; Dincă M. Phenyl Ring Dynamics in a Tetraphenylethylene-Bridged Metal–Organic Framework: Implications for the Mechanism of Aggregation-Induced Emission. J. Am. Chem. Soc. 2012, 134, 15061–15070. 10.1021/ja306042w. PubMed DOI PMC
Bergmann J.; Oksanen E.; Ryde U. Combining crystallography with quantum mechanics. Curr. Opin. Struct. Biol. 2022, 72, 18–26. 10.1016/j.sbi.2021.07.002. PubMed DOI