• This record comes from PubMed

Toward a New Era of SERS and TERS at the Nanometer Scale: From Fundamentals to Innovative Applications

. 2023 Feb 22 ; 123 (4) : 1552-1634. [epub] 20230206

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article, Review

Surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS) have opened a variety of exciting research fields. However, although a vast number of applications have been proposed since the two techniques were first reported, none has been applied to real practical use. This calls for an update in the recent fundamental and application studies of SERS and TERS. Thus, the goals and scope of this review are to report new directions and perspectives of SERS and TERS, mainly from the viewpoint of combining their mechanism and application studies. Regarding the recent progress in SERS and TERS, this review discusses four main topics: (1) nanometer to subnanometer plasmonic hotspots for SERS; (2) Ångström resolved TERS; (3) chemical mechanisms, i.e., charge-transfer mechanism of SERS and semiconductor-enhanced Raman scattering; and (4) the creation of a strong bridge between the mechanism studies and applications.

See more in PubMed

Fleischmann M.; Hendra P. J.; Mcquillan A. J. Raman-Spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett. 1974, 26, 163–166. 10.1016/0009-2614(74)85388-1. DOI

Albrecht M. G.; Creighton J. A. Anomalously Intense Raman-Spectra of Pyridine at a Silver Electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217. 10.1021/ja00457a071. DOI

Jeanmaire D. L.; Van Duyne R. P. Surface Raman Spectroelectrochemistry: Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. J. Electroanal. Chem. 1977, 84, 1–20. 10.1016/S0022-0728(77)80224-6. DOI

Stöckle R. M.; Suh Y. D.; Deckert V.; Zenobi R. Nanoscale Chemical Analysis by Tip-enhanced Raman Spectroscopy. Chem. Phys. Lett. 2000, 318, 131–136. 10.1016/S0009-2614(99)01451-7. DOI

Anderson M. S. Locally Enhanced Raman Spectroscopy with an Atomic Force Microscope. Appl. Phys. Lett. 2000, 76, 3130–3132. 10.1063/1.126546. DOI

Hayazawa N.; Inouye Y.; Sekkat Z.; Kawata S. Metallized Tip Amplification of Near-field Raman Scattering. Opt. Commun. 2000, 183, 333–336. 10.1016/S0030-4018(00)00894-4. DOI

Langer J.; Jimenez de Aberasturi D.; Aizpurua J.; Alvarez-Puebla R. A.; Auguié B.; Baumberg J. J.; Bazan G. C.; Bell S. E.; Boisen A.; Brolo A. G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117. 10.1021/acsnano.9b04224. PubMed DOI PMC

Zong C.; Xu M.; Xu L. J.; Wei T.; Ma X.; Zheng X. S.; Hu R.; Ren B. Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chem. Rev. 2018, 118, 4946–4980. 10.1021/acs.chemrev.7b00668. PubMed DOI

Xu K.; Zhou R.; Takei K.; Hong M. Toward Flexible Surface-Enhanced Raman Scattering (SERS) Sensors for Point-of-Care Diagnostics. Adv. Sci. 2019, 6, 1900925.10.1002/advs.201900925. PubMed DOI PMC

Jiang Y. F.; Sun D. W.; Pu H. B.; Wei Q. Y. Surface Enhanced Raman Spectroscopy (SERS): A Novel Reliable Technique for Rapid Detection of Common Harmful Chemical Residues. Trends Food Sci. Technol. 2018, 75, 10–22. 10.1016/j.tifs.2018.02.020. DOI

Fan M.; Andrade G. F. S.; Brolo A. G. A Review on Recent Advances in the Applications of Surface-Enhanced Raman Scattering in Analytical Chemistry. Anal. Chim. Acta 2020, 1097, 1–29. 10.1016/j.aca.2019.11.049. PubMed DOI

Bell S. E. J.; Charron G.; Cortes E.; Kneipp J.; de la Chapelle M. L.; Langer J.; Prochazka M.; Tran V.; Schlucker S. Towards Reliable and Quantitative Surface-Enhanced Raman Scattering (SERS): From Key Parameters to Good Analytical Practice. Angew. Chem., Int. Ed. Engl. 2020, 59, 5454–5462. 10.1002/anie.201908154. PubMed DOI PMC

Garcia-Rico E.; Alvarez-Puebla R. A.; Guerrini L. Direct Surface-Enhanced Raman Scattering (SERS) Spectroscopy of Nucleic Acids: From Fundamental Studies to Real-Life Applications. Chem. Soc. Rev. 2018, 47, 4909–4923. 10.1039/C7CS00809K. PubMed DOI

Tang H. B.; Zhu C. H.; Meng G. W.; Wu N. Q. Review-Surface-Enhanced Raman Scattering Sensors for Food Safety and Environmental Monitoring. J. Electrochem. Soc. 2018, 165, B3098–B3118. 10.1149/2.0161808jes. DOI

Baumberg J. J.; Aizpurua J.; Mikkelsen M. H.; Smith D. R. Extreme Nanophotonics from Ultrathin Metallic Gaps. Nat. Mater. 2019, 18, 668–678. 10.1038/s41563-019-0290-y. PubMed DOI

Haran G.; Chuntonov L. Artificial Plasmonic Molecules and Their Interaction with Real Molecules. Chem. Rev. 2018, 118, 5539–5580. 10.1021/acs.chemrev.7b00647. PubMed DOI

Itoh T.; Yamamoto Y. S. Between Plasmonics and Surface-enhanced Resonant Raman Spectroscopy: Toward Single-Molecule Strong Coupling at a Hotspot. Nanoscale 2021, 13, 1566–1580. 10.1039/D0NR07344J. PubMed DOI

Zhang H.; Duan S.; Radjenovic P. M.; Tian Z.-Q.; Li J.-F. Core-Shell Nanostructure-Enhanced Raman Spectroscopy for Surface Catalysis. Acc. Chem. Res. 2020, 53, 729–739. 10.1021/acs.accounts.9b00545. PubMed DOI

Hess C. New Advances in Using Raman Spectroscopy for the Characterization of Catalysts and Catalytic Reactions. Chem. Soc. Rev. 2021, 50, 3519–3564. 10.1039/D0CS01059F. PubMed DOI

Li Z. D.; Kurouski D. Nanoscale Structural Characterization of Plasmon-driven Reactions. Nanophotonics 2021, 10, 1657–1673. 10.1515/nanoph-2020-0647. DOI

Su H. S.; Feng H. S.; Wu X.; Sun J. J.; Ren B. Recent Advances in Plasmon-Enhanced Raman Spectroscopy for Catalytic Reactions on Bifunctional Metallic Nanostructures. Nanoscale 2021, 13, 13962–13975. 10.1039/D1NR04009J. PubMed DOI

Chen H.; Das A.; Bi L.; Choi N.; Moon J. I.; Wu Y.; Park S.; Choo J. Recent Advances in Surface-enhanced Raman Scattering-Based Microdevices for Point-of-Care Diagnosis of Viruses and Bacteria. Nanoscale 2020, 12, 21560–21570. 10.1039/D0NR06340A. PubMed DOI

Tahir M. A.; Dina N. E.; Cheng H.; Valev V. K.; Zhang L. Surface-Enhanced Raman Spectroscopy for Bioanalysis and Diagnosis. Nanoscale 2021, 13, 11593–11634. 10.1039/D1NR00708D. PubMed DOI

Ding S. Y.; You E. M.; Tian Z. Q.; Moskovits M. Electromagnetic Theories of Surface-Enhanced Raman Spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076. 10.1039/C7CS00238F. PubMed DOI

Itoh T.; Yamamoto Y. S.; Ozaki Y. Plasmon-Enhanced Spectroscopy of Absorption and Spontaneous Emissions Explained Using Cavity Quantum Optics. Chem. Soc. Rev. 2017, 46, 3904–3921. 10.1039/C7CS00155J. PubMed DOI

Yamamoto Y. S.; Itoh T. Why and How Do the Shapes of Surface-Enhanced Raman Scattering Spectra Change? Recent Progress from Mechanistic Studies. J. Raman Spectrosc. 2016, 47, 78–88. 10.1002/jrs.4874. DOI

Yamamoto Y. S.; Ozaki Y.; Itoh T. Recent Progress and Frontiers in the Electromagnetic Mechanism of Surface-Enhanced Raman Scattering. J. Photochem. Photobiol. C: Photochem. Rev. 2014, 21, 81–104. 10.1016/j.jphotochemrev.2014.10.001. DOI

Dovzhenko D. S.; Ryabchuk S. V.; Rakovich Y. P.; Nabiev I. R. Light-Matter Interaction in the Strong Coupling Regime: Configurations, Conditions, and Applications. Nanoscale 2018, 10, 3589–3605. 10.1039/C7NR06917K. PubMed DOI

Zhu W.; Esteban R.; Borisov A. G.; Baumberg J. J.; Nordlander P.; Lezec H. J.; Aizpurua J.; Crozier K. B. Quantum Mechanical Effects in Plasmonic Structures with Subnanometre Gaps. Nat. Commun. 2016, 7, 11495.10.1038/ncomms11495. PubMed DOI PMC

Huang Y. F.; Wu D. Y.; Zhu H. P.; Zhao L. B.; Liu G. K.; Ren B.; Tian Z. Q. Surface-Enhanced Raman Spectroscopic Study of p-Aminothiophenol. Phys. Chem. Chem. Phys. 2012, 14, 8485–8497. 10.1039/c2cp40558j. PubMed DOI

Payton J. L.; Morton S. M.; Moore J. E.; Jensen L. A Hybrid Atomistic Electrodynamics-quantum Mechanical Approach for Simulating Surface-Enhanced Raman Scattering. Acc. Chem. Res. 2014, 47, 88–99. 10.1021/ar400075r. PubMed DOI

Demirel G.; Usta H.; Yilmaz M.; Celik M.; Alidagi H. A.; Buyukserin F. Surface-Enhanced Raman Spectroscopy (SERS): An Adventure from Plasmonic Metals to Organic Semiconductors as SERS Platforms. J. Mater. Chem. C 2018, 6, 5314–5335. 10.1039/C8TC01168K. DOI

Ji W.; Zhao B.; Ozaki Y. Semiconductor Materials in Analytical Applications of Surface-Enhanced Raman Scattering. J. Raman Spectrosc. 2016, 47, 51–58. 10.1002/jrs.4854. DOI

Wang H.; Liu Y.; Rao G.; Wang Y.; Du X.; Hu A.; Hu Y.; Gong C.; Wang X.; Xiong J. Coupling Enhancement Mechanisms, Materials, and Strategies for Surface-Enhanced Raman Scattering Devices. Analyst 2021, 146, 5008–5032. 10.1039/D1AN00624J. PubMed DOI

Shvalya V.; Filipic G.; Zavasnik J.; Abdulhalim I.; Cvelbar U. Surface-enhanced Raman Spectroscopy for Chemical and Biological Sensing Using Nanoplasmonics: The Relevance of Interparticle Spacing and Surface Morphology. Appl. Phys. Rev. 2020, 7, 031307.10.1063/5.0015246. DOI

Hang Y.; Boryczka J.; Wu N. Visible-light and Near-infrared Fluorescence and Surface-enhanced Raman Scattering Point-of-Care Sensing and Bio-imaging: A Review. Chem. Soc. Rev. 2022, 51, 329–375. 10.1039/C9CS00621D. PubMed DOI PMC

Naqvi S.; Zhang Y.; Ahmed S.; Abdulraheem M. I.; Hu J.; Tahir M. N.; Raghavan V. Applied Surface Enhanced Raman Spectroscopy in Plant Hormones Detection, Annexation of Advanced Technologies: A review. Talanta 2022, 236, 122823.10.1016/j.talanta.2021.122823. PubMed DOI

Ding S.-Y.; Yi J.; Li J.-F.; Ren B.; Wu D.-Y.; Panneerselvam R.; Tian Z.-Q. Nanostructure-based Plasmon-Enhanced Raman Spectroscopy for Surface Analysis of Materials. Nat. Rev. Mater. 2016, 1, 16021.10.1038/natrevmats.2016.21. DOI

Li J.-F.; Zhang Y.-J.; Ding S.-Y.; Panneerselvam R.; Tian Z.-Q. Core-Shell Nanoparticle-Enhanced Raman Spectroscopy. Chem. Rev. 2017, 117, 5002–5069. 10.1021/acs.chemrev.6b00596. PubMed DOI

Zhang Z. L.; Xu P.; Yang X. Z.; Liang W. J.; Sun M. T. Surface Plasmon-Driven Photocatalysis in Ambient, Aqueous and High-Vacuum Monitored by SERS and TERS. J. Photochem. Photobiol. C-Photochem. Rev. 2016, 27, 100–112. 10.1016/j.jphotochemrev.2016.04.001. DOI

Moskovits M. Surface-Enhanced Spectroscopy. Rev. Mod. Phys. 1985, 57, 783–826. 10.1103/RevModPhys.57.783. DOI

Campion A.; Kambhampati P. Surface-Enhanced Raman Scattering. Chem. Soc. Rev. 1998, 27, 241–250. 10.1039/a827241z. DOI

Zrimsek A. B.; Chiang N.; Mattei M.; Zaleski S.; McAnally M. O.; Chapman C. T.; Henry A. I.; Schatz G. C.; Van Duyne R. P. Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy. Chem. Rev. 2017, 117, 7583–7613. 10.1021/acs.chemrev.6b00552. PubMed DOI

Nie S.; Emory S. R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 1997, 275, 1102–1106. 10.1126/science.275.5303.1102. PubMed DOI

Kneipp K.; Wang Y.; Kneipp H.; Perelman L. T.; Itzkan I.; Dasari R.; Feld M. S. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667–1670. 10.1103/PhysRevLett.78.1667. DOI

Gruenke N. L.; Cardinal M. F.; McAnally M. O.; Frontiera R. R.; Schatz G. C.; Van Duyne R. P. Ultrafast and Nonlinear Surface-Enhanced Raman Spectroscopy. Chem. Soc. Rev. 2016, 45, 2263–2290. 10.1039/C5CS00763A. PubMed DOI

Le Ru E. C.; Etchegoin P. G.. Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects. Elsevier, 2009; pp 1–663.

Moskovits M. Surface-Roughness and Enhanced Intensity of Raman-scattering by Molecules Adsorbed on Metals. J. Chem. Phys. 1978, 69, 4159–4161. 10.1063/1.437095. DOI

Xu H. X.; Bjerneld E. J.; Kall M.; Borjesson L. Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering. Phys. Rev. Lett. 1999, 83, 4357–4360. 10.1103/PhysRevLett.83.4357. DOI

Xu H.; Aizpurua J.; Kall M.; Apell P. Electromagnetic Contributions to Single-Molecule Sensitivity in Surface-Enhanced Raman Scattering. Phys. Rev. E 2000, 62, 4318–4324. 10.1103/PhysRevE.62.4318. PubMed DOI

Yoshida K.; Itoh T.; Tamaru H.; Biju V.; Ishikawa M.; Ozaki Y. Quantitative Evaluation of Electromagnetic Enhancement in Surface-Enhanced Resonance Raman Scattering from Plasmonic Properties and Morphologies of Individual Ag Nanostructures. Phys. Rev. B 2010, 81, 115406.10.1103/PhysRevB.81.115406. DOI

Dubey A.; Mishra R.; Cheng C. W.; Kuang Y. P.; Gwo S.; Yen T. J. Demonstration of a Superior Deep-UV Surface-Enhanced Resonance Raman Scattering (SERRS) Substrate and Single-Base Mutation Detection in Oligonucleotides. J. Am. Chem. Soc. 2021, 143, 19282–19286. 10.1021/jacs.1c09762. PubMed DOI

Lombardi J. R.; Birke R. L.; Lu T. H.; Xu J. Charge-Transfer Theory of Surface Enhanced Raman Spectroscopy: Herzberg-Teller Contributions. J. Chem. Phys. 1986, 84, 4174–4180. 10.1063/1.450037. DOI

Otto A.; Mrozek I.; Grabhorn H.; Akemann W. Surface-Enhanced Raman Scattering. J. Phys.-Condens. Matter 1992, 4, 1143–1212. 10.1088/0953-8984/4/5/001. DOI

Arenas J. F.; Soto J.; Tocon I. L.; Fernandez D. J.; Otero J. C.; Marcos J. I. The Role of Charge-Transfer States of the Metal-adsorbate Complex in Surface-Enhanced Raman scattering. J. Chem. Phys. 2002, 116, 7207–7216. 10.1063/1.1450542. DOI

Benz F.; Schmidt M. K.; Dreismann A.; Chikkaraddy R.; Zhang Y.; Demetriadou A.; Carnegie C.; Ohadi H.; De Nijs B.; Esteban R.; et al. Single-Molecule Optomechanics in “Picocavities. Science 2016, 354, 726–729. 10.1126/science.aah5243. PubMed DOI

Wessel J. Surface-Enhanced Optical Microscopy. J. Opt. Soc. Am. B 1985, 2, 1538–1541. 10.1364/JOSAB.2.001538. DOI

Pettinger B.; Picardi G.; Schuster R.; Ertl G. Surface Enhanced Raman Spectroscopy: Towards Single Molecule Spectroscopy. Electrochem. 2000, 68, 942–949. 10.5796/electrochemistry.68.942. DOI

Verma P. Tip-Enhanced Raman Spectroscopy: Technique and Recent Advances. Chem. Rev. 2017, 117, 6447–6466. 10.1021/acs.chemrev.6b00821. PubMed DOI

Wang X.; Huang S. C.; Huang T. X.; Su H. S.; Zhong J. H.; Zeng Z. C.; Li M. H.; Ren B. Tip-Enhanced Raman spectroscopy for Surfaces and Interfaces. Chem. Soc. Rev. 2017, 46, 4020–4041. 10.1039/C7CS00206H. PubMed DOI

Zhang R.; Zhang Y.; Dong Z. C.; Jiang S.; Zhang C.; Chen L. G.; Zhang L.; Liao Y.; Aizpurua J.; Luo Y.; et al. Chemical Mapping of a Single Molecule by Plasmon-Enhanced Raman Scattering. Nature 2013, 498, 82–86. 10.1038/nature12151. PubMed DOI

Wang D. S.; Kerker M. Enhanced Raman Scattering by Molecules Adsorbed at the Surface of Colloidal Spheroids. Phys. Rev. B 1981, 24, 1777–1790. 10.1103/PhysRevB.24.1777. DOI

Aravind P. K.; Nitzan A.; Metiu H. The Interaction between Electromagnetic Resonances and its Role in Spectroscopic Studies of Molecules Adsorbed on Colloidal Particles or Metal Spheres. Surf. Sci. 1981, 110, 189–204. 10.1016/0039-6028(81)90595-1. DOI

Inoue M.; Ohtaka K. Surface Enhanced Raman-Scattering by Metal Spheres. 1. Cluster Effect. J. Phys. Soc. Jpn. 1983, 52, 3853–3864. 10.1143/JPSJ.52.3853. DOI

Bohren C. F.; Huffman D. R.. Absorption and Scattering of Light by Small Particles; Wiley, 1983; pp 1–530.

Fox M.Quantum Optics: An Introduction; Oxford University Press, 2006; pp 1–378.

Andreani L. C.; Panzarini G.; Gerard J. M. Strong-Coupling Regime for Quantum Boxes in Pillar Microcavities: Theory. Phys. Rev. B 1999, 60, 13276–13279. 10.1103/PhysRevB.60.13276. DOI

Itoh T.; Yamamoto Y. S. Reproduction of Surface-Enhanced Resonant Raman Scattering and Fluorescence Spectra of a Strong Coupling System Composed of a Single Silver Nanoparticle Dimer and a Few Dye Molecules. J. Chem. Phys. 2018, 149, 244701.10.1063/1.5061816. PubMed DOI

Savage K. J.; Hawkeye M. M.; Esteban R.; Borisov A. G.; Aizpurua J.; Baumberg J. J. Revealing the Quantum Regime in Tunnelling Plasmonics. Nature 2012, 491, 574–577. 10.1038/nature11653. PubMed DOI

Zhu W.; Crozier K. B. Quantum Mechanical Limit to Plasmonic Enhancement as Observed by Surface-Enhanced Raman Scattering. Nat. Commun. 2014, 5, 5228.10.1038/ncomms6228. PubMed DOI

Itoh T.; Iga M.; Tamaru H.; Yoshida K.; Biju V.; Ishikawa M. Quantitative Evaluation of Blinking in Surface Enhanced Resonance Raman Scattering and Fluorescence by Electromagnetic Mechanism. J. Chem. Phys. 2012, 136, 024703.10.1063/1.3675567. PubMed DOI

Jensen L.; Aikens C. M.; Schatz G. C. Electronic Structure Methods for Studying Surface-Enhanced Raman Scattering. Chem. Soc. Rev. 2008, 37, 1061–1073. 10.1039/b706023h. PubMed DOI

Dirac P. A. M. The Quantum Theory of the Emission and Absorption of Radiation. Proc. R. Soc. London A: Math. Phys. Eng. Sci. 1927, 114, 243–265. 10.1098/rspa.1927.0039. DOI

Born M.; Oppenheimer J. R. Zur Quantentheorie der Molekeln. Ann. Phys. 1927, 389, 457–484. 10.1002/andp.19273892002. DOI

Allemand C. D. Depolarization Ratio Measurements in Raman Spectrometry. Appl. Spectrosc. 1970, 24, 348–353. 10.1366/000370270774371552. DOI

Albrecht A. C. Theory of Raman Intensities. J. Chem. Phys. 1961, 34, 1476–1484. 10.1063/1.1701032. DOI

Watanabe H.; Hayazawa N.; Inouye Y.; Kawata S. DFT Vibrational Calculations of Rhodamine 6G Adsorbed on Silver: Analysis of Tip-Enhanced Raman Spectroscopy. J. Phys. Chem. B 2005, 109, 5012–5020. 10.1021/jp045771u. PubMed DOI

Zhou Q.; Li X.; Fan Q.; Zhang X.; Zheng J. Charge Transfer between Metal Nanoparticles Interconnected with a Functionalized Molecule Probed by Surface-Enhanced Raman Spectroscopy. Angew. Chem., Int. Ed. Engl. 2006, 45, 3970–3973. 10.1002/anie.200504419. PubMed DOI

Osawa M.; Matsuda N.; Yoshii K.; Uchida I. Charge-Transfer Resonance Raman Process in Surface-Enhanced Raman-Scattering from p-Aminothiophenol Adsorbed on Silver- Herzberg-Teller contribution. J. Phys. Chem. 1994, 98, 12702–12707. 10.1021/j100099a038. DOI

Brolo A. G.; Irish D. E.; Lipkowski J. Surface-Enhanced Raman Spectra of Pyridine and Pyrazine Adsorbed on a Au(210) Single-Crystal Electrode. J. Phys. Chem. B 1997, 101, 3906–3909. 10.1021/jp970340f. DOI

Centeno S. P.; Lopez-Tocon I.; Arenas J. F.; Soto J.; Otero J. C. Selection Rules of the Charge Transfer Mechanism of Surface-Enhanced Raman Scattering: The Effect of the Adsorption on the Relative Intensities of Pyrimidine Bonded to Silver Nanoclusters. J. Phys. Chem. B 2006, 110, 14916–14922. 10.1021/jp0621373. PubMed DOI

Zhao L.; Jensen L.; Schatz G. C. Pyridine-Ag20 cluster: A Model System for Studying Surface-Enhanced Raman Scattering. J. Am. Chem. Soc. 2006, 128, 2911–2919. 10.1021/ja0556326. PubMed DOI

Lombardi J. R.; Birke R. L. A Unified Approach to Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2008, 112, 5605–5617. 10.1021/jp800167v. DOI

Halas N. J.; Lal S.; Chang W. S.; Link S.; Nordlander P. Plasmons in Strongly Coupled Metallic Nanostructures. Chem. Rev. 2011, 111, 3913–3961. 10.1021/cr200061k. PubMed DOI

Nam J. M.; Oh J. W.; Lee H.; Suh Y. D. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles. Acc. Chem. Res. 2016, 49, 2746–2755. 10.1021/acs.accounts.6b00409. PubMed DOI

Li G.-C.; Zhang Q.; Maier S. A.; Lei D. Plasmonic Particle-on-Film Nanocavities: A Versatile Platform for Plasmon-Enhanced Spectroscopy and Photochemistry. Nanophotonics 2018, 7, 1865–1889. 10.1515/nanoph-2018-0162. DOI

Simoncelli S.; Roller E. M.; Urban P.; Schreiber R.; Turberfield A. J.; Liedl T.; Lohmuller T. Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas. ACS Nano 2016, 10, 9809–9815. 10.1021/acsnano.6b05276. PubMed DOI

Zhan P.; Wen T.; Wang Z. G.; He Y.; Shi J.; Wang T.; Liu X.; Lu G.; Ding B. DNA Origami Directed Assembly of Gold Bowtie Nanoantennas for Single-Molecule Surface-Enhanced Raman Scattering. Angew. Chem., Int. Ed. Engl. 2018, 57, 2846–2850. 10.1002/anie.201712749. PubMed DOI

Garai M.; Gao N.; Xu Q.-H. Single-Particle Spectroscopic Studies on Two-Photon Photoluminescence of Coupled Au Nanorod Dimers. J. Phys. Chem. C 2018, 122, 23102–23110. 10.1021/acs.jpcc.8b07094. DOI

Xiang Q.; Li Z.; Zheng M.; Liu Q.; Chen Y.; Yang L.; Jiang T.; Duan H. Sensitive SERS Detection at the Single-Particle Level Based on Nanometer-Separated Mushroom-Shaped Plasmonic Dimers. Nanotechnology 2018, 29, 105301.10.1088/1361-6528/aaa691. PubMed DOI

Tian Y.; Shuai Z.; Shen J.; Zhang L.; Chen S.; Song C.; Zhao B.; Fan Q.; Wang L. Plasmonic Heterodimers with Binding Site-Dependent Hot Spot for Surface-Enhanced Raman Scattering. Small 2018, 14, e180066910.1002/smll.201800669. PubMed DOI

Qiu J.; Xie M.; Lyu Z.; Gilroy K. D.; Liu H.; Xia Y. General Approach to the Synthesis of Heterodimers of Metal Nanoparticles through Site-Selected Protection and Growth. Nano Lett. 2019, 19, 6703–6708. 10.1021/acs.nanolett.9b03167. PubMed DOI

Tiwari S.; Khandelwal U.; Sharma V.; Kumar G. V. P. Single Molecule Surface Enhanced Raman Scattering in a Single Gold Nanoparticle-Driven Thermoplasmonic Tweezer. J. Phys. Chem. Lett. 2021, 12, 11910–11918. 10.1021/acs.jpclett.1c03450. PubMed DOI

Sugano K.; Maruoka K.; Ikegami K.; Uesugi A.; Isono Y. Dynamic Surface-Enhanced Raman Spectroscopy of DNA Oligomer with a Single Hotspot from a Gold Nanoparticle Dimer. Opt. Lett. 2022, 47, 373–376. 10.1364/OL.441580. PubMed DOI

Itoh T.; Yoshikawa H.; Yoshida K.; Biju V.; Ishikawa M. Evaluation of Electromagnetic Enhancement of Surface Enhanced Hyper Raman Scattering Using Plasmonic Properties of Binary Active Sites in Single Ag Nanoaggregates. J. Chem. Phys. 2009, 130, 214706.10.1063/1.3146788. PubMed DOI

Brown L. V.; Sobhani H.; Lassiter J. B.; Nordlander P.; Halas N. J. Heterodimers: Plasmonic Properties of Mismatched Nanoparticle Pairs. ACS Nano 2010, 4, 819–832. 10.1021/nn9017312. PubMed DOI

Ye J.; Wen F.; Sobhani H.; Lassiter J. B.; Van Dorpe P.; Nordlander P.; Halas N. J. Plasmonic Nanoclusters: Near Field Properties of the Fano Resonance Interrogated with SERS. Nano Lett. 2012, 12, 1660–1667. 10.1021/nl3000453. PubMed DOI

Yoshida K.-I.; Itoh T.; Biju V.; Ishikawa M.; Ozaki Y. Experimental Evaluation of the Twofold Electromagnetic Enhancement Theory of Surface-Enhanced Resonance Raman Scattering. Phys. Rev. B 2009, 79, 085419.10.1103/PhysRevB.79.085419. DOI

Itoh T.; Yamamoto Y. S.; Kitahama Y.; Balachandran J. One-Dimensional Plasmonic Hotspots Located Between Silver Nanowire Dimers Evaluated by Surface-Enhanced Resonance Raman scattering. Phys. Rev. B 2017, 95, 115441.10.1103/PhysRevB.95.115441. DOI

Itoh T.; Yamamoto Y. S.; Balachandran J. Propagation Mechanism of Surface Plasmons Coupled with Surface-Enhanced Resonant Raman Scattering Light through a One-Dimensional Hotspot along a Silver Nanowire Dimer Junction. Phys. Rev. B 2021, 103, 245425.10.1103/PhysRevB.103.245425. DOI

Fang Y. R.; Wei H.; Hao F.; Nordlander P.; Xu H. X. Remote-Excitation Surface-Enhanced Raman Scattering Using Propagating Ag Nanowire Plasmons. Nano Lett. 2009, 9, 2049–2053. 10.1021/nl900321e. PubMed DOI

Hutchison J. A.; Centeno S. P.; Odaka H.; Fukumura H.; Hofkens J.; Uji I. H. Subdiffraction Limited, Remote Excitation of Surface Enhanced Raman Scattering. Nano Lett. 2009, 9, 995–1001. 10.1021/nl8030696. PubMed DOI

Itoh T.; Yamamoto Y. S. Recent Topics on Single-Molecule Fluctuation Analysis Using Blinking in Surface-Enhanced Resonance Raman Scattering: Clarification by the Electromagnetic Mechanism. Analyst 2016, 141, 5000–5009. 10.1039/C6AN00936K. PubMed DOI

Li Y.; Hu H.; Jiang W.; Shi J.; Halas N. J.; Nordlander P.; Zhang S.; Xu H. Duplicating Plasmonic Hotspots by Matched Nanoantenna Pairs for Remote Nanogap Enhanced Spectroscopy. Nano Lett. 2020, 20, 3499–3505. 10.1021/acs.nanolett.0c00434. PubMed DOI

Aravind P. K.; Metiu H. The Effects of the Interaction between Resonances in the Electromagnetic Response of a Sphere-Plane Structure - Applications to Surface Enhanced Spectroscopy. Surf. Sci. 1983, 124, 506–528. 10.1016/0039-6028(83)90806-3. DOI

Nordlander P.; Prodan E. Plasmon Hybridization in Nanoparticles Near Metallic Surfaces. Nano Lett. 2004, 4, 2209–2213. 10.1021/nl0486160. DOI

Le F.; Lwin N. Z.; Steele J. M.; Kall M.; Halas N. J.; Nordlander P. Plasmons in the Metallic Nanoparticle - Film System as a Tunable Impurity Problem. Nano Lett. 2005, 5, 2009–2013. 10.1021/nl0515100. PubMed DOI

Ciraci C.; Hill R. T.; Mock J. J.; Urzhumov Y.; Fernandez-Dominguez A. I.; Maier S. A.; Pendry J. B.; Chilkoti A.; Smith D. R. Probing the Ultimate Limits of Plasmonic Enhancement. Science 2012, 337, 1072–1074. 10.1126/science.1224823. PubMed DOI PMC

Benz F.; Chikkaraddy R.; Salmon A.; Ohadi H.; de Nijs B.; Mertens J.; Carnegie C.; Bowman R. W.; Baumberg J. J. SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape. J. Phys. Chem. Lett. 2016, 7, 2264–2269. 10.1021/acs.jpclett.6b00986. PubMed DOI PMC

Carnegie C.; Griffiths J.; de Nijs B.; Readman C.; Chikkaraddy R.; Deacon W. M.; Zhang Y.; Szabo I.; Rosta E.; Aizpurua J.; et al. Room-Temperature Optical Picocavities below 1 nm(3) Accessing Single-Atom Geometries. J. Phys. Chem. Lett. 2018, 9, 7146–7151. 10.1021/acs.jpclett.8b03466. PubMed DOI

Shin H. H.; Yeon G. J.; Choi H. K.; Park S. M.; Lee K. S.; Kim Z. H. Frequency-Domain Proof of the Existence of Atomic-Scale SERS Hot-Spots. Nano Lett. 2018, 18, 262–271. 10.1021/acs.nanolett.7b04052. PubMed DOI

Yu Y.; Xiao T.-H.; Wu Y.; Li W.; Zeng Q.-G.; Long L.; Li Z.-Y. Roadmap for Single-Molecule Surface-Enhanced Raman Spectroscopy. Adv. Photonics 2020, 2, 014002.10.1117/1.AP.2.1.014002. DOI

Huang J. A.; Mousavi M. Z.; Giovannini G.; Zhao Y.; Hubarevich A.; Soler M. A.; Rocchia W.; Garoli D.; De Angelis F. Multiplexed Discrimination of Single Amino Acid Residues in Polypeptides in a Single SERS Hot Spot. Angew. Chem., Int. Ed. Engl. 2020, 59, 11423–11431. 10.1002/anie.202000489. PubMed DOI

Fan J. A.; Wu C.; Bao K.; Bao J.; Bardhan R.; Halas N. J.; Manoharan V. N.; Nordlander P.; Shvets G.; Capasso F. Self-Assembled Plasmonic Nanoparticle Clusters. Science 2010, 328, 1135–1138. 10.1126/science.1187949. PubMed DOI

Zhang Y.; Zhen Y. R.; Neumann O.; Day J. K.; Nordlander P.; Halas N. J. Coherent Anti-Stokes Raman Scattering with Single-Molecule Sensitivity Using a Plasmonic Fano Resonance. Nat. Commun. 2014, 5, 4424.10.1038/ncomms5424. PubMed DOI

Kleinman S. L.; Sharma B.; Blaber M. G.; Henry A. I.; Valley N.; Freeman R. G.; Natan M. J.; Schatz G. C.; Van Duyne R. P. Structure Enhancement Factor Relationships in Single Gold Nanoantennas by Surface-Enhanced Raman Excitation Spectroscopy. J. Am. Chem. Soc. 2013, 135, 301–308. 10.1021/ja309300d. PubMed DOI

Chen J.; Gan F.; Wang Y.; Li G. Plasmonic Sensing and Modulation Based on Fano Resonances. Adv. Opt. Mater. 2018, 6, 1701152.10.1002/adom.201701152. DOI

Rahmani M.; Luk’yanchuk B.; Hong M. Fano Resonance in Novel Plasmonic Nanostructures. Laser Photon. Rev. 2013, 7, 329–349. 10.1002/lpor.201200021. DOI

Luk’yanchuk B.; Zheludev N. I.; Maier S. A.; Halas N. J.; Nordlander P.; Giessen H.; Chong C. T. The Fano Resonance in Plasmonic Nanostructures and Metamaterials. Nat. Mater. 2010, 9, 707–715. 10.1038/nmat2810. PubMed DOI

Michaels A. M.; Nirmal M.; Brus L. E. Surface Enhanced Raman Spectroscopy of Individual Rhodamine 6G Molecules on Large Ag Nanocrystals. J. Am. Chem. Soc. 1999, 121, 9932–9939. 10.1021/ja992128q. DOI

Constantino C. J. L.; Lemma T.; Antunes P. A.; Aroca R. Single-Molecule Detection Using Surface-Enhanced Resonance Raman Scattering and Langmuir-Blodgett Monolayers. Anal. Chem. 2001, 73, 3674–3678. 10.1021/ac0101961. PubMed DOI

Weiss A.; Haran G. Time-Dependent Single-Molecule Raman Scattering as a Probe of Surface Dynamics. J. Phys. Chem. B 2001, 105, 12348–12354. 10.1021/jp0126863. DOI

Habuchi S.; Cotlet M.; Gronheid R.; Dirix G.; Michiels J.; Vanderleyden J.; De Schryver F. C.; Hofkens J. Single-Molecule Surface Enhanced Resonance Raman Spectroscopy of the Enhanced Green Fluorescent Protein. J. Am. Chem. Soc. 2003, 125, 8446–8447. 10.1021/ja0353311. PubMed DOI

Ward D. R.; Grady N. K.; Levin C. S.; Halas N. J.; Wu Y.; Nordlander P.; Natelson D. Electromigrated Nanoscale Gaps for Surface-Enhanced Raman Spectroscopy. Nano Lett. 2007, 7, 1396–1400. 10.1021/nl070625w. PubMed DOI

Le Ru E. C.; Meyer M.; Etchegoin P. G. Proof of Single-Molecule Sensitivity in Surface Enhanced Raman Scattering (SERS) by Means of a Two-Analyte Technique. J. Phys. Chem. B 2006, 110, 1944–1948. 10.1021/jp054732v. PubMed DOI

Dieringer J. A.; Lettan R. B. 2nd; Scheidt K. A.; Van Duyne R. P. A Frequency Domain Existence Proof of Single-Molecule Surface-Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2007, 129, 16249–16256. 10.1021/ja077243c. PubMed DOI

Stranahan S. M.; Willets K. A. Super-Resolution Optical Imaging of Single-Molecule SERS Hot Spots. Nano Lett. 2010, 10, 3777–3784. 10.1021/nl102559d. PubMed DOI

Kitahama Y.; Tanaka Y.; Itoh T.; Ozaki Y. Power-Law Statistics in Blinking SERS of Thiacyanine Adsorbed on a Single Silver Nanoaggregate. Phys. Chem. Chem. Phys. 2010, 12, 7457–7460. 10.1039/c000824a. PubMed DOI

Etchegoin P. G.; Le Ru E. C. Resolving Single Molecules in Surface-Enhanced Raman Scattering within the Inhomogeneous Broadening of Raman Peaks. Anal. Chem. 2010, 82, 2888–2892. 10.1021/ac9028888. PubMed DOI

Kim N. H.; Hwang W.; Baek K.; Rohman M. R.; Kim J.; Kim H. W.; Mun J.; Lee S. Y.; Yun G.; Murray J.; et al. Smart SERS Hot Spots: Single Molecules Can Be Positioned in a Plasmonic Nanojunction Using Host-Guest Chemistry. J. Am. Chem. Soc. 2018, 140, 4705–4711. 10.1021/jacs.8b01501. PubMed DOI

Willets K. A. Super-Resolution Imaging of SERS Hot Spots. Chem. Soc. Rev. 2014, 43, 3854–3864. 10.1039/C3CS60334B. PubMed DOI

Titus E. J.; Weber M. L.; Stranahan S. M.; Willets K. A. Super-Resolution SERS Imaging Beyond the Single-Molecule Limit: An Isotope-Edited Approach. Nano Lett. 2012, 12, 5103–5110. 10.1021/nl3017779. PubMed DOI

Olson A. P.; Spies K. B.; Browning A. C.; Soneral P. A. G.; Lindquist N. C. Chemically Imaging Bacteria with Super-Resolution SERS on Ultra-Thin Silver Substrates. Sci. Rep. 2017, 7, 9135.10.1038/s41598-017-08915-w. PubMed DOI PMC

Wang M.; Chen M.; Zhanghao K.; Zhang X.; Jing Z.; Gao J.; Zhang M. Q.; Jin D.; Dai Z.; Xi P.; et al. Polarization-Based Super-Resolution Imaging of Surface-Enhanced Raman Scattering Nanoparticles with Orientational Information. Nanoscale 2018, 10, 19757–19765. 10.1039/C8NR04808H. PubMed DOI

de Albuquerque C. D. L.; Schultz Z. D. Super-resolution Surface-Enhanced Raman Scattering Imaging of Single Particles in Cells. Anal. Chem. 2020, 92, 9389–9398. 10.1021/acs.analchem.0c01864. PubMed DOI PMC

Galloway C. M.; Etchegoin P. G.; Le Ru E. C. Ultrafast Nonradiative Decay Rates on Metallic Surfaces by Comparing Surface-Enhanced Raman and Fluorescence Signals of Single Molecules. Phys. Rev. Lett. 2009, 103, 063003.10.1103/PhysRevLett.103.063003. PubMed DOI

Xu H.; Wang X. H.; Persson M. P.; Xu H. Q.; Kall M.; Johansson P. Unified Treatment of Fluorescence and Raman Scattering Processes Near Metal Surfaces. Phys. Rev. Lett. 2004, 93, 243002.10.1103/PhysRevLett.93.243002. PubMed DOI

Johansson P.; Xu H.; Käll M. Surface-Enhanced Raman Scattering and Fluorescence Near Metal Nanoparticles. Phys. Rev. B 2005, 72, 035427.10.1103/PhysRevB.72.035427. DOI

Xu H.; Kall M. Surface-Plasmon-Enhanced Optical Forces in Silver Nanoaggregates. Phys. Rev. Lett. 2002, 89, 246802.10.1103/PhysRevLett.89.246802. PubMed DOI

Shimizu K. T.; Neuhauser R. G.; Leatherdale C. A.; Empedocles S. A.; Woo W. K.; Bawendi M. G. Blinking Statistics in Single Semiconductor Nanocrystal Quantum Dots. Phys. Rev. B 2001, 63, 205316.10.1103/PhysRevB.63.205316. DOI

Kitahama Y.; Nishiyama Y.; Ozaki Y. Blinking Surface-Enhanced Raman Scattering and Fluorescence From a Single Silver Nanoaggregate Simultaneously Analyzed by Bi-Color Intensity Ratios and a Truncated Power Law. J. Phys. Chem. C 2018, 122, 22106–22113. 10.1021/acs.jpcc.8b06920. DOI

Lindquist N. C.; Brolo A. G. Ultra-High-Speed Dynamics in Surface-Enhanced Raman Scattering. J. Phys. Chem. C 2021, 125, 7523–7532. 10.1021/acs.jpcc.0c11150. DOI

Zong C.; Chen C. J.; Wang X.; Hu P.; Liu G. K.; Ren B. Single-Molecule Level Rare Events Revealed by Dynamic Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2020, 92, 15806–15810. 10.1021/acs.analchem.0c02936. PubMed DOI

Barrow S. J.; Kasera S.; Rowland M. J.; del Barrio J.; Scherman O. A. Cucurbituril-Based Molecular Recognition. Chem. Rev. 2015, 115, 12320–12406. 10.1021/acs.chemrev.5b00341. PubMed DOI

Ai Q.; Zhou J.; Guo J.; Pandey P.; Liu S.; Fu Q.; Liu Y.; Deng C.; Chang S.; Liang F.; et al. Observing Dynamic Molecular Changes at Single-Molecule Level in a Cucurbituril Based Plasmonic Molecular Junction. Nanoscale 2020, 12, 17103–17112. 10.1039/D0NR03360J. PubMed DOI

Taylor R. W.; Lee T. C.; Scherman O. A.; Esteban R.; Aizpurua J.; Huang F. M.; Baumberg J. J.; Mahajan S. Precise Subnanometer Plasmonic Junctions for SERS within Gold Nanoparticle Assemblies Using Cucurbit[n]uril ″Glue″. ACS Nano 2011, 5, 3878–3887. 10.1021/nn200250v. PubMed DOI

Taylor R. W.; Coulston R. J.; Biedermann F.; Mahajan S.; Baumberg J. J.; Scherman O. A. In situ SERS Monitoring of Photochemistry within a Nanojunction Reactor. Nano Lett. 2013, 13, 5985–5990. 10.1021/nl403164c. PubMed DOI PMC

Sigle D. O.; Kasera S.; Herrmann L. O.; Palma A.; de Nijs B.; Benz F.; Mahajan S.; Baumberg J. J.; Scherman O. A. Observing Single Molecules Complexing with Cucurbit[7]uril through Nanogap Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. Lett. 2016, 7, 704–710. 10.1021/acs.jpclett.5b02535. PubMed DOI

Lee H. K.; Lee Y. H.; Koh C. S. L.; Phan-Quang G. C.; Han X.; Lay C. L.; Sim H. Y. F.; Kao Y. C.; An Q.; Ling X. Y. Designing Surface-Enhanced Raman Scattering (SERS) Platforms beyond Hotspot Engineering: Emerging Opportunities in Analyte Manipulations and Hybrid Materials. Chem. Soc. Rev. 2019, 48, 731–756. 10.1039/C7CS00786H. PubMed DOI

Brus L. Noble Metal Nanocrystals: Plasmon Electron Transfer Photochemistry and Single-Molecule Raman Spectroscopy. Acc. Chem. Res. 2008, 41, 1742–1749. 10.1021/ar800121r. PubMed DOI

Choi H. K.; Lee K. S.; Shin H. H.; Koo J. J.; Yeon G. J.; Kim Z. H. Single-Molecule Surface-Enhanced Raman Scattering as a Probe of Single-Molecule Surface Reactions: Promises and Current Challenges. Acc. Chem. Res. 2019, 52, 3008–3017. 10.1021/acs.accounts.9b00358. PubMed DOI

Xie W.; Schlucker S. Surface-Enhanced Raman Spectroscopic Detection of Molecular Chemo- and Plasmo-Catalysis on Noble Metal Nanoparticles. Chem. Commun. 2018, 54, 2326–2336. 10.1039/C7CC07951F. PubMed DOI

Lombardi J. R.; Birke R. L.; Haran G. Single Molecule SERS Spectral Blinking and Vibronic Coupling. J. Phys. Chem. C 2011, 115, 4540–4545. 10.1021/jp111345u. DOI

Itoh T.; Hashimoto K.; Biju V.; Ishikawa M.; Wood B. R.; Ozaki Y. Elucidation of Interaction between Metal-Fee Tetraphenylporphine and Surface Ag Atoms through Temporal Fluctuation of Surface-Enhanced Resonance Raman Scattering and Background-Light Emission. J. Phys. Chem. B 2006, 110, 9579–9585. 10.1021/jp0609939. PubMed DOI

Mukherjee S.; Libisch F.; Large N.; Neumann O.; Brown L. V.; Cheng J.; Lassiter J. B.; Carter E. A.; Nordlander P.; Halas N. J. Hot Electrons Do the Impossible: Plasmon-Induced Dissociation of H2 on Au. Nano Lett. 2013, 13, 240–247. 10.1021/nl303940z. PubMed DOI

Yu S.; Wilson A. J.; Kumari G.; Zhang X.; Jain P. K. Opportunities and Challenges of Solar-Energy-Driven Carbon Dioxide to Fuel Conversion with Plasmonic Catalysts. ACS Energy Lett. 2017, 2, 2058–2070. 10.1021/acsenergylett.7b00640. DOI

Ingram D. B.; Linic S. Water Splitting on Composite Plasmonic-Metal/Semiconductor Photoelectrodes: Evidence for Selective Plasmon-Induced Formation of Charge Carriers Near the Semiconductor Surface. J. Am. Chem. Soc. 2011, 133, 5202–5205. 10.1021/ja200086g. PubMed DOI

Oshikiri T.; Ueno K.; Misawa H. Plasmon-Induced Ammonia Synthesis through Nitrogen Photofixation with Visible Light Irradiation. Angew. Chem., Int. Ed. Engl. 2014, 53, 9802–9805. 10.1002/anie.201404748. PubMed DOI

Christopher P.; Xin H.; Linic S. Visible-Light-Enhanced Catalytic Oxidation Reactions on Plasmonic Silver Nanostructures. Nat. Chem. 2011, 3, 467–472. 10.1038/nchem.1032. PubMed DOI

Zhan C.; Chen X. J.; Huang Y. F.; Wu D. Y.; Tian Z. Q. Plasmon-Mediated Chemical Reactions on Nanostructures Unveiled by Surface-Enhanced Raman Spectroscopy. Acc. Chem. Res. 2019, 52, 2784–2792. 10.1021/acs.accounts.9b00280. PubMed DOI

Li S.; Miao P.; Zhang Y.; Wu J.; Zhang B.; Du Y.; Han X.; Sun J.; Xu P. Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis. Adv. Mater. 2021, 33, e200008610.1002/adma.202000086. PubMed DOI

Cai Z. F.; Merino J. P.; Fang W.; Kumar N.; Richardson J. O.; De Feyter S.; Zenobi R. Molecular-Level Insights on Reactive Arrangement in On-Surface Photocatalytic Coupling Reactions Using Tip-Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2022, 144, 538–546. 10.1021/jacs.1c11263. PubMed DOI

Huang Y. F.; Wang W.; Guo H. Y.; Zhan C.; Duan S.; Zhan D.; Wu D. Y.; Ren B.; Tian Z. Q. Microphotoelectrochemical Surface-Enhanced Raman Spectroscopy: Toward Bridging Hot-Electron Transfer with a Molecular Reaction. J. Am. Chem. Soc. 2020, 142, 8483–8489. 10.1021/jacs.0c02523. PubMed DOI

de Nijs B.; Benz F.; Barrow S. J.; Sigle D. O.; Chikkaraddy R.; Palma A.; Carnegie C.; Kamp M.; Sundararaman R.; Narang P.; et al. Plasmonic Tunnel Junctions for Single-Molecule Redox Chemistry. Nat. Commun. 2017, 8, 994.10.1038/s41467-017-00819-7. PubMed DOI PMC

Szczerbinski J.; Gyr L.; Kaeslin J.; Zenobi R. Plasmon-Driven Photocatalysis Leads to Products Known from E-beam and X-ray-Induced Surface Chemistry. Nano Lett. 2018, 18, 6740–6749. 10.1021/acs.nanolett.8b02426. PubMed DOI

Ferrari A. C.; Basko D. M. Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene. Nat. Nanotechnol. 2013, 8, 235–246. 10.1038/nnano.2013.46. PubMed DOI

Itoh T.; Yamamoto Y. S.; Biju V.; Tamaru H.; Wakida S.-I. Fluctuating Single sp2 Carbon Clusters at Single Hotspots of Silver Nanoparticle Dimers Investigated by Surface-Enhanced Resonance Raman Scattering. AIP Advances 2015, 5, 127113.10.1063/1.4937936. DOI

Hertzog M.; Wang M.; Mony J.; Borjesson K. Strong Light-Matter Interactions: A New Direction within Chemistry. Chem. Soc. Rev. 2019, 48, 937–961. 10.1039/C8CS00193F. PubMed DOI PMC

Ribeiro R. F.; Martinez-Martinez L. A.; Du M.; Campos-Gonzalez-Angulo J.; Yuen-Zhou J. Polariton Chemistry: Controlling Molecular Dynamics with Optical Cavities. Chem. Sci. 2018, 9, 6325–6339. 10.1039/C8SC01043A. PubMed DOI PMC

Ebbesen T. W. Hybrid Light-Matter States in a Molecular and Material Science Perspective. Acc. Chem. Res. 2016, 49, 2403–2412. 10.1021/acs.accounts.6b00295. PubMed DOI

Galego J.; Garcia-Vidal F. J.; Feist J. Suppressing Photochemical Reactions with Quantized Light Fields. Nat. Commun. 2016, 7, 13841.10.1038/ncomms13841. PubMed DOI PMC

Shi X.; Ueno K.; Oshikiri T.; Sun Q.; Sasaki K.; Misawa H. Enhanced Water Splitting under Modal Strong Coupling Conditions. Nat. Nanotechnol. 2018, 13, 953–958. 10.1038/s41565-018-0208-x. PubMed DOI

Torma P.; Barnes W. L. Strong Coupling between Surface Plasmon Polaritons and Emitters: A Review. Rep. Prog. Phys. 2015, 78, 013901.10.1088/0034-4885/78/1/013901. PubMed DOI

Le Ru E. C.; Etchegoin P. G.; Grand J.; Felidj N.; Aubard J.; Levi G. Mechanisms of Spectral Profile Modification in Surface-Enhanced Fluorescence. J. Phys. Chem. C 2007, 111, 16076–16079. 10.1021/jp076003g. DOI

Kneipp K.; Wang Y.; Kneipp H.; Itzkan I. I.; Dasari R. R.; Feld M. S. Population Pumping of Excited Vibrational States by Spontaneous Surface-Enhanced Raman Scattering. Phys. Rev. Lett. 1996, 76, 2444–2447. 10.1103/PhysRevLett.76.2444. PubMed DOI

Maher R. C.; Galloway C. M.; Le Ru E. C.; Cohen L. F.; Etchegoin P. G. Vibrational Pumping in Surface Enhanced Raman Scattering (SERS). Chem. Soc. Rev. 2008, 37, 965–79. 10.1039/b707870f. PubMed DOI

Wei H.; Yan X.; Niu Y.; Li Q.; Jia Z.; Xu H. Plasmon-Exciton Interactions: Spontaneous Emission and Strong Coupling. Adv. Funct. Mater. 2021, 31, 2100889.10.1002/adfm.202100889. DOI

Wu X.; Gray S. K.; Pelton M. Quantum-Dot-Induced Transparency in a Nanoscale Plasmonic Resonator. Opt. Express 2010, 18, 23633–23645. 10.1364/OE.18.023633. PubMed DOI

Itoh T.; Yamamoto Y. S.; Tamaru H.; Biju V.; Wakida S.-i.; Ozaki Y. Single-Molecular Surface-Enhanced Resonance Raman Scattering as a Quantitative Probe of Local Electromagnetic Field: The Case of Strong Coupling between Plasmonic and Excitonic Resonance. Phys. Rev. B 2014, 89, 195436.10.1103/PhysRevB.89.195436. DOI

Itoh T.; Yamamoto Y. S.; Okamoto T. Anti-crossing Property of Strong Coupling System of Silver Nanoparticle Dimers Coated with Thin Dye Molecular Films Analyzed by Electromagnetism. J. Chem. Phys. 2020, 152, 054710.10.1063/1.5133875. PubMed DOI

Wersall M.; Cuadra J.; Antosiewicz T. J.; Balci S.; Shegai T. Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons. Nano Lett. 2017, 17, 551–558. 10.1021/acs.nanolett.6b04659. PubMed DOI

Neuman T.; Aizpurua J.; Esteban R. Quantum Theory of Surface-Enhanced Resonant Raman Scattering (SERRS) of Molecules in Strongly Coupled Plasmon-Exciton Systems. Nanophotonics 2020, 9, 295–308. 10.1515/nanoph-2019-0336. DOI

Rossi T. P.; Shegai T.; Erhart P.; Antosiewicz T. J. Strong Plasmon-Molecule Coupling at the Nanoscale Revealed by First-Principles Modeling. Nat. Commun. 2019, 10, 3336.10.1038/s41467-019-11315-5. PubMed DOI PMC

Ruppin R. Optical-Absorption of a Coated Sphere above a Substrate. Physica A 1991, 178, 195–205. 10.1016/0378-4371(91)90080-V. DOI

Murata N.; Hata R.; Ishihara H. Crossover between Energy Transparency Resonance and Rabi Splitting in Antenna-Molecule Coupled Systems. J. Phys. Chem. C 2015, 119, 25493–25498. 10.1021/acs.jpcc.5b08590. DOI

Zengin G.; Gschneidtner T.; Verre R.; Shao L.; Antosiewicz T. J.; Moth-Poulsen K.; Käll M.; Shegai T. Evaluating Conditions for Strong Coupling between Nanoparticle Plasmons and Organic Dyes Using Scattering and Absorption Spectroscopy. J. Phys. Chem. C 2016, 120, 20588–20596. 10.1021/acs.jpcc.6b00219. DOI

Chikkaraddy R.; de Nijs B.; Benz F.; Barrow S. J.; Scherman O. A.; Rosta E.; Demetriadou A.; Fox P.; Hess O.; Baumberg J. J. Single-Molecule Strong Coupling at Room Temperature in Plasmonic Nanocavities. Nature 2016, 535, 127–130. 10.1038/nature17974. PubMed DOI PMC

Pelton M.; Storm S. D.; Leng H. Strong Coupling of Emitters to Single Plasmonic Nanoparticles: Exciton-Induced Transparency and Rabi Splitting. Nanoscale 2019, 11, 14540–14552. 10.1039/C9NR05044B. PubMed DOI

Zengin G.; Johansson G.; Johansson P.; Antosiewicz T. J.; Kall M.; Shegai T. Approaching the Strong Coupling Limit in Single Plasmonic Nanorods Interacting with J-aggregates. Sci. Rep. 2013, 3, 3074.10.1038/srep03074. PubMed DOI PMC

Zengin G.; Wersall M.; Nilsson S.; Antosiewicz T. J.; Kall M.; Shegai T. Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions. Phys. Rev. Lett. 2015, 114, 157401.10.1103/PhysRevLett.114.157401. PubMed DOI

Munkhbat B.; Wersall M.; Baranov D. G.; Antosiewicz T. J.; Shegai T. Suppression of Photo-Oxidation of Organic Chromophores by Strong Coupling to Plasmonic Nanoantennas. Sci. Adv. 2018, 4, eaas955210.1126/sciadv.aas9552. PubMed DOI PMC

Li N.; Han Z.; Huang Y.; Liang K.; Wang X.; Wu F.; Qi X.; Shang Y.; Yu L.; Ding B. Strong Plasmon-Exciton Coupling in Bimetallic Nanorings and Nanocuboids. J. Mater. Chem. C 2020, 8, 7672–7678. 10.1039/D0TC01837F. DOI

Zhang W.; You J. B.; Liu J.; Xiong X.; Li Z.; Png C. E.; Wu L.; Qiu C. W.; Zhou Z. K. Steering Room-Temperature Plexcitonic Strong Coupling: A Diexcitonic Perspective. Nano Lett. 2021, 21, 8979–8986. 10.1021/acs.nanolett.1c02248. PubMed DOI

Liu R.; Zhou Z. K.; Yu Y. C.; Zhang T.; Wang H.; Liu G.; Wei Y.; Chen H.; Wang X. H. Strong Light-Matter Interactions in Single Open Plasmonic Nanocavities at the Quantum Optics Limit. Phys. Rev. Lett. 2017, 118, 237401.10.1103/PhysRevLett.118.237401. PubMed DOI

Nagasawa F.; Takase M.; Murakoshi K. Raman Enhancement via Polariton States Produced by Strong Coupling between a Localized Surface Plasmon and Dye Excitons at Metal Nanogaps. J. Phys. Chem. Lett. 2014, 5, 14–19. 10.1021/jz402243a. PubMed DOI

Huang J.; Traverso A. J.; Yang G.; Mikkelsen M. H. Real-Time Tunable Strong Coupling: From Individual Nanocavities to Metasurfaces. ACS Photonics 2019, 6, 838–843. 10.1021/acsphotonics.8b01743. DOI

Schlather A. E.; Large N.; Urban A. S.; Nordlander P.; Halas N. J. Near-Field Mediated Plexcitonic Coupling and Giant Rabi Splitting in Individual Metallic Dimers. Nano Lett. 2013, 13, 3281–3286. 10.1021/nl4014887. PubMed DOI

Santhosh K.; Bitton O.; Chuntonov L.; Haran G. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun. 2016, 7, 11823.10.1038/ncomms11823. PubMed DOI PMC

Roller E. M.; Argyropoulos C.; Hogele A.; Liedl T.; Pilo-Pais M. Plasmon-Exciton Coupling Using DNA Templates. Nano Lett. 2016, 16, 5962–5966. 10.1021/acs.nanolett.6b03015. PubMed DOI

Gross H.; Hamm J. M.; Tufarelli T.; Hess O.; Hecht B. Near-Field Strong Coupling of Single Quantum Dots. Sci. Adv. 2018, 4, eaar490610.1126/sciadv.aar4906. PubMed DOI PMC

Luo Y.; Wang Y.; Liu M.; Zhu H.; Chen O.; Zou S.; Zhao J. Colloidal Assembly of Au-Quantum Dot-Au Sandwiched Nanostructures with Strong Plasmon-Exciton Coupling. J. Phys. Chem. Lett. 2020, 11, 2449–2456. 10.1021/acs.jpclett.0c00110. PubMed DOI

Bitton O.; Gupta S. N.; Houben L.; Kvapil M.; Krapek V.; Sikola T.; Haran G. Vacuum Rabi Splitting of a Dark Plasmonic Cavity Mode Revealed by Fast Electrons. Nat. Commun. 2020, 11, 487.10.1038/s41467-020-14364-3. PubMed DOI PMC

Leng H.; Szychowski B.; Daniel M. C.; Pelton M. Strong Coupling and Induced Transparency at Room Temperature with Single Quantum Dots and Gap Plasmons. Nat. Commun. 2018, 9, 4012.10.1038/s41467-018-06450-4. PubMed DOI PMC

Chen X.; Chen Y. H.; Qin J.; Zhao D.; Ding B.; Blaikie R. J.; Qiu M. Mode Modification of Plasmonic Gap Resonances Induced by Strong Coupling with Molecular Excitons. Nano Lett. 2017, 17, 3246–3251. 10.1021/acs.nanolett.7b00858. PubMed DOI

Ojambati O. S.; Chikkaraddy R.; Deacon W. D.; Horton M.; Kos D.; Turek V. A.; Keyser U. F.; Baumberg J. J. Quantum Electrodynamics at Room Temperature Coupling a Single Vibrating Molecule with a Plasmonic Nanocavity. Nat. Commun. 2019, 10, 1049.10.1038/s41467-019-08611-5. PubMed DOI PMC

Katzen J. M.; Tserkezis C.; Cai Q.; Li L. H.; Kim J. M.; Lee G.; Yi G. R.; Hendren W. R.; Santos E. J. G.; Bowman R. M.; et al. Strong Coupling of Carbon Quantum Dots in Plasmonic Nanocavities. ACS Appl. Mater. Interfaces 2020, 12, 19866–19873. 10.1021/acsami.0c03312. PubMed DOI

Li L.; Wang L.; Du C.; Guan Z.; Xiang Y.; Wu W.; Ren M.; Zhang X.; Tang A.; Cai W.; Xu J. Ultrastrong Coupling of CdZnS/ZnS Quantum Dots to Bonding Breathing Plasmons of Aluminum Metal-Insulator-Metal Nanocavities in Near-Ultraviolet Spectrum. Nanoscale 2020, 12, 3112–3120. 10.1039/C9NR08048A. PubMed DOI

Cade N. I.; Ritman-Meer T.; Richards D. Strong Coupling of Localized Plasmons and Molecular Excitons in Nanostructured Silver Films. Phys. Rev. B 2009, 79, 241404(R)10.1103/PhysRevB.79.241404. DOI

Kato F.; Minamimoto H.; Nagasawa F.; Yamamoto Y. S.; Itoh T.; Murakoshi K. Active Tuning of Strong Coupling States between Dye Excitons and Localized Surface Plasmons via Electrochemical Potential Control. ACS Photonics 2018, 5, 788–796. 10.1021/acsphotonics.7b00841. DOI

Itoh T.; Yamamoto Y. S.; Okamoto T. Absorption Cross-Section Spectroscopy of a Single Strong-Coupling System between Plasmon and Molecular Exciton Resonance Using a Single Silver Nanoparticle Dimer Generating Surface-Enhanced Resonant Raman Scattering. Phys. Rev. B 2019, 99, 235409.10.1103/PhysRevB.99.235409. DOI

Itoh T.; Yamamoto Y. S.; Tamaru H.; Biju V.; Murase N.; Ozaki Y. Excitation Laser Energy Dependence of Surface-Enhanced Fluorescence Showing Plasmon-Induced Ultrafast Electronic Dynamics in Dye Molecules. Phys. Rev. B 2013, 87, 235408.10.1103/PhysRevB.87.235408. DOI

Bergfield J. P.; Hendrickson J. R. Signatures of Plexcitonic States in Molecular Electroluminescence. Sci. Rep. 2018, 8, 2314.10.1038/s41598-018-19382-2. PubMed DOI PMC

Tian G.; Luo Y. Electroluminescence of Molecules in a Scanning Tunneling Microscope: Role of Tunneling Electrons and Surface Plasmons. Phys. Rev. B 2011, 84, 205419.10.1103/PhysRevB.84.205419. PubMed DOI

Cho C. H.; Aspetti C. O.; Park J.; Agarwal R. Silicon Coupled with Plasmon Nanocavity Generates Bright Visible Hot-Luminescence. Nat. Photonics 2013, 7, 285–289. 10.1038/nphoton.2013.25. PubMed DOI PMC

Cho C. H.; Aspetti C. O.; Turk M. E.; Kikkawa J. M.; Nam S. W.; Agarwal R. Tailoring Hot-Exciton Emission and Lifetimes in Semiconducting Nanowires via Whispering-Gallery Nanocavity Plasmons. Nat. Mater. 2011, 10, 669–675. 10.1038/nmat3067. PubMed DOI

Bingi J.; S V.; Warrier A. R.; Vijayan C. Plasmonically Tunable Blue-Shifted Emission from Coumarin 153 in Ag Nanostructure Random Media: A Demonstration of Fast Dynamic Surface-Enhanced Fluorescence. Plasmonics 2014, 9, 349–355. 10.1007/s11468-013-9631-x. DOI

Aspetti C. O.; Cho C. H.; Agarwal R.; Agarwal R. Studies of Hot Photoluminescence in Plasmonically Coupled Silicon via Variable Energy Excitation and Temperature-Dependent Spectroscopy. Nano Lett. 2014, 14, 5413–5422. 10.1021/nl502606q. PubMed DOI PMC

Gökbulut B.; Topcu G.; Demir M. M.; Inci M. N. Plasmon-Induced Spectral Tunability of Perovskite Nanowires. Opt. Mater. 2021, 122, 111702.10.1016/j.optmat.2021.111702. DOI

Dong Z. C.; Zhang X. L.; Gao H. Y.; Luo Y.; Zhang C.; Chen L. G.; Zhang R.; Tao X.; Zhang Y.; Yang J. L.; et al. Generation of Molecular Hot Electroluminescence by Resonant Nanocavity Plasmons. Nat. Photonics 2010, 4, 50–54. 10.1038/nphoton.2009.257. DOI

Chen G.; Li X. G.; Zhang Z. Y.; Dong Z. C. Molecular Hot Electroluminescence Due to Strongly Enhanced Spontaneous Emission Rates in a Plasmonic Nanocavity. Nanoscale 2015, 7, 2442–2449. 10.1039/C4NR06519K. PubMed DOI

Chong M. C.; Sosa-Vargas L.; Bulou H.; Boeglin A.; Scheurer F.; Mathevet F.; Schull G. Ordinary and Hot Electroluminescence from Single-Molecule Devices: Controlling the Emission Color by Chemical Engineering. Nano Lett. 2016, 16, 6480–6484. 10.1021/acs.nanolett.6b02997. PubMed DOI

Tian X.-J.; Kong F.-F.; Yu Y.-J.; Jing S.-H.; Zhang X.-B.; Liao Y.; Zhang Y.; Zhang Y.; Dong Z.-C. Plasmon-Enhanced S-2 Electroluminescence from the High-Lying Excited State of a Single Porphyrin Molecule. Appl. Phys. Lett. 2020, 117, 243301.10.1063/5.0027291. DOI

Crim F. F. Bond-Selected Chemistry: Vibrational State Control of Photodissociation and Bimolecular Reaction. J. Phys. Chem. 1996, 100, 12725–12734. 10.1021/jp9604812. DOI

Laubereau A.; Kaiser W. Vibrational Dynamics of Liquids and Solids Investigated by Picosecond Light Pulses. Rev. Mod. Phys. 1978, 50, 607–665. 10.1103/RevModPhys.50.607. DOI

Haslett T. L.; Tay L.; Moskovits M. Can Surface-Enhanced Raman Scattering Serve as a Channel for Strong Optical Pumping?. J. Chem. Phys. 2000, 113, 1641–1646. 10.1063/1.481952. DOI

Brolo A. G.; Sanderson A. C.; Smith A. P. Ratio of the Surface-Enhanced Anti-Stokes Scattering to the Surface-Enhanced Stokes-Raman Scattering for Molecules Adsorbed on a Silver Electrode. Phys. Rev. B 2004, 69, 045424.10.1103/PhysRevB.69.045424. DOI

Maher R. C.; Etchegoin P. G.; Le Ru E. C.; Cohen L. F. A Conclusive Demonstration of Vibrational Pumping under Surface Enhanced Raman Scattering Conditions. J. Phys. Chem. B 2006, 110, 11757–11760. 10.1021/jp060306d. PubMed DOI

Maher R. C.; Cohen L. F.; Le Ru E. C.; Etchegoin P. G. On the Experimental Estimation of Surface Enhanced Raman Scattering (SERS) Cross Sections by Vibrational Pumping. J. Phys. Chem. B 2006, 110, 19469–19478. 10.1021/jp0626521. PubMed DOI

Etchegoin P. G.; Le Ru E. C.; Maher R. C.; Cohen L. F. Enhancement Factor Averaging and the Photostability of Probes in SERS Vibrational Pumping. Phys. Chem. Chem. Phys. 2007, 9, 4923–4929. 10.1039/b706395d. PubMed DOI

Galloway C. M.; Le Ru E. C.; Etchegoin P. G. Single-Molecule Vibrational Pumping in SERS. Phys. Chem. Chem. Phys. 2009, 11, 7372–7380. 10.1039/b904638k. PubMed DOI

Kozich V.; Werncke W. The Vibrational Pumping Mechanism in Surface-Enhanced Raman Scattering: A Subpicosecond Time-Resolved Study. J. Phys. Chem. C 2010, 114, 10484–10488. 10.1021/jp101219e. DOI

Roelli P.; Galland C.; Piro N.; Kippenberg T. J. Molecular Cavity Optomechanics as a Theory of Plasmon-Enhanced Raman Scattering. Nat. Nanotechnol. 2016, 11, 164–169. 10.1038/nnano.2015.264. PubMed DOI

Pozzi E. A.; Zrimsek A. B.; Lethiec C. M.; Schatz G. C.; Hersam M. C.; Van Duyne R. P. Evaluating Single-Molecule Stokes and Anti-Stokes SERS for Nanoscale Thermometry. J. Phys. Chem. C 2015, 119, 21116–21124. 10.1021/acs.jpcc.5b08054. DOI

Schmidt M. K.; Esteban R.; Benz F.; Baumberg J. J.; Aizpurua J. Linking Classical and Molecular Optomechanics Descriptions of SERS. Faraday Discuss. 2017, 205, 31–65. 10.1039/C7FD00145B. PubMed DOI

Schmidt M. K.; Esteban R.; Gonzalez-Tudela A.; Giedke G.; Aizpurua J. Quantum Mechanical Description of Raman Scattering from Molecules in Plasmonic Cavities. ACS Nano 2016, 10, 6291–6298. 10.1021/acsnano.6b02484. PubMed DOI

Zhang Y.; Esteban R.; Boto R. A.; Urbieta M.; Arrieta X.; Shan C.; Li S.; Baumberg J. J.; Aizpurua J. Addressing Molecular Optomechanical Effects in Nanocavity-Enhanced Raman Scattering Beyond the Single Plasmonic Mode. Nanoscale 2021, 13, 1938–1954. 10.1039/D0NR06649D. PubMed DOI

Crampton K. T.; Fast A.; Potma E. O.; Apkarian V. A. Junction Plasmon Driven Population Inversion of Molecular Vibrations: A Picosecond Surface-Enhanced Raman Spectroscopy Study. Nano Lett. 2018, 18, 5791–5796. 10.1021/acs.nanolett.8b02438. PubMed DOI

Ward D. R.; Corley D. A.; Tour J. M.; Natelson D. Vibrational and Electronic Heating in Nanoscale Junctions. Nat. Nanotechnol. 2011, 6, 33–38. 10.1038/nnano.2010.240. PubMed DOI

Ayars E. J.; Hallen H. D.; Jahncke C. L. Electric Field Gradient Effects in Raman Spectroscopy. Phys. Rev. Lett. 2000, 85, 4180–4183. 10.1103/PhysRevLett.85.4180. PubMed DOI

Duan S.; Tian G.; Ji Y.; Shao J.; Dong Z.; Luo Y. Theoretical Modeling of Plasmon-Enhanced Raman Images of a Single Molecule with Subnanometer Resolution. J. Am. Chem. Soc. 2015, 137, 9515–9518. 10.1021/jacs.5b03741. PubMed DOI

Sass J. K.; Neff H.; Moskovits M.; Holloway S. Electric-Field Gradient Effects on the Spectroscopy of Adsorbed Molecules. J. Phys. Chem. 1981, 85, 621–623. 10.1021/j150606a002. DOI

Moskovits M.; DiLella D. P. Surface Enhanced Raman Spectroscopy of Benzene and Benzene-d6 Adsorbed on Silver. J. Chem. Phys. 1980, 73, 6068–6075. 10.1063/1.440142. DOI

Moskovits M.; DiLella D. P. Intense Quadrupole Transitions in the Spectra of Molecules Near Metal Surfaces. J. Chem. Phys. 1982, 77, 1655–1660. 10.1063/1.444008. DOI

Takase M.; Ajiki H.; Mizumoto Y.; Komeda K.; Nara M.; Nabika H.; Yasuda S.; Ishihara H.; Murakoshi K. Selection-Rule Breakdown in Plasmon-Induced Electronic Excitation of an Isolated Single-Walled Carbon Nanotube. Nat. Photonics 2013, 7, 550–554. 10.1038/nphoton.2013.129. DOI

Aikens C. M.; Madison L. R.; Schatz G. C. The Effect of Field Gradient on SERS. Nat. Photonics 2013, 7, 508–510. 10.1038/nphoton.2013.153. DOI

Jorio A.; Mueller N. S.; Reich S. Symmetry-Derived Selection Rules for Plasmon-Enhanced Raman Scattering. Phys. Rev. B 2017, 95, 155409.10.1103/PhysRevB.95.155409. DOI

Kim H. Y.; Kim D. S. Selection Rule Engineering of Forbidden Transitions of a Hydrogen Atom Near a Nanogap. Nanophotonics 2018, 7, 229–236. 10.1515/nanoph-2017-0037. DOI

Neuman T.; Esteban R.; Casanova D.; Garcia-Vidal F. J.; Aizpurua J. Coupling of Molecular Emitters and Plasmonic Cavities beyond the Point-Dipole Approximation. Nano Lett. 2018, 18, 2358–2364. 10.1021/acs.nanolett.7b05297. PubMed DOI

Liu P.; Chulhai D. V.; Jensen L. Single-Molecule Imaging Using Atomistic Near-Field Tip-Enhanced Raman Spectroscopy. ACS Nano 2017, 11, 5094–5102. 10.1021/acsnano.7b02058. PubMed DOI

Chen X.; Liu P.; Hu Z.; Jensen L. High-Resolution Tip-Enhanced Raman Scattering Probes Sub-Molecular Density Changes. Nat. Commun. 2019, 10, 2567.10.1038/s41467-019-10618-x. PubMed DOI PMC

Rivera N.; Kaminer I.; Zhen B.; Joannopoulos J. D.; Soljacic M. Shrinking Light to Allow Forbidden Transitions on the Atomic Scale. Science 2016, 353, 263–269. 10.1126/science.aaf6308. PubMed DOI

Zhang Y.; Dong Z.-C.; Aizpurua J. Theoretical Treatment of Single-Molecule Scanning Raman Picoscopy in Strongly Inhomogeneous Near Fields. J. Raman Spectrosc. 2021, 52, 296–309. 10.1002/jrs.5991. DOI

Wang X.; Huang S.; Hu S.; Yan S.; Ren B. Fundamental Understanding and Applications of Plasmon-Enhanced Raman Spectroscopy. Nat. Rev. Phys. 2020, 2, 253–271. 10.1038/s42254-020-0171-y. DOI

Gersten J. I. The Effect of Surface Roughness on Surface Enhanced Raman Scattering. J. Chem. Phys. 1980, 72, 5779–5780. 10.1063/1.439002. DOI

Kolhatkar G.; Plathier J.; Ruediger A. Nanoscale Investigation of Materials, Chemical Reactions, and Biological Systems by Tip Enhanced Raman Spectroscopy-A Review. J. Mater. Chem. C 2018, 6, 1307–1319. 10.1039/C7TC05688E. DOI

Zhang Y.; Yang B.; Ghafoor A.; Zhang Y.; Zhang Y. F.; Wang R. P.; Yang J. L.; Luo Y.; Dong Z. C.; Hou J. G. Visually Constructing the Chemical Structure of a Single Molecule by Scanning Raman Picoscopy. Nat. Sci. Rev. 2019, 6, 1169–1175. 10.1093/nsr/nwz180. PubMed DOI PMC

Lee J.; Crampton K. T.; Tallarida N.; Apkarian V. A. Visualizing Vibrational Normal Modes of a Single Molecule with Atomically Confined Light. Nature 2019, 568, 78–82. 10.1038/s41586-019-1059-9. PubMed DOI

Jaculbia R. B.; Imada H.; Miwa K.; Iwasa T.; Takenaka M.; Yang B.; Kazuma E.; Hayazawa N.; Taketsugu T.; Kim Y. Single-Molecule Resonance Raman Effect in a Plasmonic Nanocavity. Nat. Nanotechnol. 2020, 15, 105–110. 10.1038/s41565-019-0614-8. PubMed DOI

Aizpurua J.; Apell S. P.; Berndt R. Role of Tip Shape in Light Emission from the Scanning Tunneling Microscope. Phys. Rev. B 2000, 62, 2065–2073. 10.1103/PhysRevB.62.2065. DOI

Wang Y. H.; Zheng S.; Yang W. M.; Zhou R. Y.; He Q. F.; Radjenovic P.; Dong J. C.; Li S.; Zheng J.; Yang Z. L.; et al. In situ Raman Spectroscopy Reveals the Structure and Dissociation of Interfacial Water. Nature 2021, 600, 81–85. 10.1038/s41586-021-04068-z. PubMed DOI

Wang R. P.; Yang B.; Fu Q.; Zhang Y.; Zhu R.; Dong X. R.; Zhang Y.; Wang B.; Yang J. L.; Luo Y.; et al. Raman Detection of Bond Breaking and Making of a Chemisorbed Up-Standing Single Molecule at Single-Bond Level. J. Phys. Chem. Lett. 2021, 12, 1961–1968. 10.1021/acs.jpclett.1c00074. PubMed DOI

Xu J. Y.; Zhu X.; Tan S. J.; Zhang Y.; Li B.; Tian Y. Z.; Shan H.; Cui X. F.; Zhao A. D.; Dong Z. C.; et al. Determining Structural and Chemical Heterogeneities of Surface Species at the Single-Bond Limit. Science 2021, 371, 818–822. 10.1126/science.abd1827. PubMed DOI

Hell S. W.; Wichmann J. Breaking the Diffraction Resolution Limit by Stimulated Emission: Stimulated-Emission-Depletion Fluorescence Microscopy. Opt. Lett. 1994, 19, 780–782. 10.1364/OL.19.000780. PubMed DOI

Moerner W. E.; Kador L. Optical Detection and Spectroscopy of Single Molecules in a Solid. Phys. Rev. Lett. 1989, 62, 2535.10.1103/PhysRevLett.62.2535. PubMed DOI

Betzig E. Proposed Method for Molecular Optical Imaging. Opt. Lett. 1995, 20, 237–239. 10.1364/OL.20.000237. PubMed DOI

Kazuma E.; Jung J.; Ueba H.; Trenary M.; Kim Y. Real-Space and Real-Time Observation of a Plasmon-Induced Chemical Reaction of a Single Molecule. Science 2018, 360, 521–526. 10.1126/science.aao0872. PubMed DOI

Zhong J.; Jin X.; Meng L.; Wang X.; Su H.-S.; Yang Z.; Williams C. T.; Ren B. Probing the Electronic and Catalytic Properties of a Bimetallic Surface with 3 nm Resolution. Nat. Nanotechnol. 2017, 12, 132.10.1038/nnano.2016.241. PubMed DOI

Su H. S.; Feng H. S.; Zhao Q. Q.; Zhang X. G.; Sun J. J.; He Y.; Huang S. C.; Huang T. X.; Zhong J. H.; Wu D. Y.; et al. Probing the Local Generation and Diffusion of Active Oxygen Species on a Pd/Au Bimetallic Surface by Tip-Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2020, 142, 1341–1347. 10.1021/jacs.9b10512. PubMed DOI

Gadelha A. C.; Ohlberg D. A.; Rabelo C.; Neto E. G.; Vasconcelos T. L.; Campos J. L.; Lemos J. S.; Ornelas V.; Miranda D.; Nadas R.; et al. Localization of Lattice Dynamics in Low-Angle Twisted Bilayer Graphene. Nature 2021, 590, 405–409. 10.1038/s41586-021-03252-5. PubMed DOI

Sheng S. X.; Wu J. B.; Cong X.; Li W. B.; Gou J.; Zhong Q.; Cheng P.; Tan P. H.; Chen L.; Wu K. H. Vibrational Properties of a Monolayer Silicene Sheet Studied by Tip-Enhanced Raman Spectroscopy. Phys. Rev. Lett. 2017, 119, 196803.10.1103/PhysRevLett.119.196803. PubMed DOI

He Z.; Han Z. H.; Kizer M.; Linhardt R. J.; Wang X.; Sinyukov A. M.; Wang J. Z.; Deckert V.; Sokolov A. V.; Hu J.; et al. Tip-Enhanced Raman Imaging of Single-Stranded DNA with Single Base Resolution. J. Am. Chem. Soc. 2019, 141, 753–757. 10.1021/jacs.8b11506. PubMed DOI

Deckert Gaudig T.; Kämmer E.; Deckert V. Tracking of Nanoscale Structural Variations on a Single Amyloid Fibril with Tip-Enhanced Raman Scattering. J. Biophotonics 2012, 5, 215–219. 10.1002/jbio.201100142. PubMed DOI

Zhang R.; Zhang X. B.; Wang H. F.; Zhang Y.; Jiang S.; Hu C. R.; Zhang Y.; Luo Y.; Dong Z. C. Distinguishing Individual DNA Bases In a Network by Non Resonant Tip Enhanced Raman Scattering. Angew. Chem., Int. Ed. Engl. 2017, 56, 5561–5564. 10.1002/anie.201702263. PubMed DOI

Abbe E. Beiträge zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung. Arch. Mikroskop. Anatom. 1873, 9, 413–468. 10.1007/BF02956173. DOI

Liu Y.; Zhang X. Metamaterials: A New Frontier of Science and Technology. Chem. Soc. Rev. 2011, 40, 2494–2507. 10.1039/c0cs00184h. PubMed DOI

Barnes W. L.; Dereux A.; Ebbesen T. W. Surface Plasmon Subwavelength Optics. Nature 2003, 424, 824–830. 10.1038/nature01937. PubMed DOI

Pohl D. W.; Denk W.; Lanz M. Optical Stethoscopy: Image Recording with Resolution λ/20. Appl. Phys. Lett. 1984, 44, 651–653. 10.1063/1.94865. DOI

Lewis A.; Isaacson M.; Harootunian A.; Muray A. Development of a 500 Å Spatial Resolution Light Microscope: I. Light is Efficiently Transmitted Through λ/16 Diameter Apertures. Ultramicroscopy 1984, 13, 227–231. 10.1016/0304-3991(84)90201-8. DOI

Zhang W. H.; Fang Z. Y.; Zhu X. Near-Field Raman Spectroscopy with Aperture Tips. Chem. Rev. 2017, 117, 5095–5109. 10.1021/acs.chemrev.6b00337. PubMed DOI

Hermann R. J.; Gordon M. J. Nanoscale Optical Microscopy and Spectroscopy Using Near-Field Probes. Annu. Rev. Chem. Biomol. Eng. 2018, 9, 365–387. 10.1146/annurev-chembioeng-060817-084150. PubMed DOI

Anderson N.; Hartschuh A.; Cronin S.; Novotny L. Nanoscale Vibrational Analysis of Single-Walled Carbon Nanotubes. J. Am. Chem. Soc. 2005, 127, 2533–2537. 10.1021/ja045190i. PubMed DOI

Ichimura T.; Fujii S.; Verma P.; Yano T.; Inouye Y.; Kawata S. Subnanometric Near-Field Raman Investigation in the Vicinity of a Metallic Nanostructure. Phys. Rev. Lett. 2009, 102, 186101.10.1103/PhysRevLett.102.186101. PubMed DOI

Steidtner J.; Pettinger B. Tip-Enhanced Raman Spectroscopy and Microscopy on Single Dye Molecules with 15 nm Resolution. Phys. Rev. Lett. 2008, 100, 236101.10.1103/PhysRevLett.100.236101. PubMed DOI

Stadler J.; Schmid T.; Zenobi R. Nanoscale Chemical Imaging Using Top-Illumination Tip-Enhanced Raman Spectroscopy. Nano Lett. 2010, 10, 4514–4520. 10.1021/nl102423m. PubMed DOI

Yano T.-A.; Verma P.; Saito Y.; Ichimura T.; Kawata S. Pressure-Assisted Tip-Enhanced Raman Imaging at a Resolution of a Few Nanometres. Nat. Photonics 2009, 3, 473–477. 10.1038/nphoton.2009.74. DOI

Treffer R.; Lin X.; Bailo E.; Deckert-Gaudig T.; Deckert V. Distinction of Nucleobases-a Tip-Enhanced Raman Approach. Beilstein. J. Nanotechnol. 2011, 2, 628–637. 10.3762/bjnano.2.66. PubMed DOI PMC

Yang B.; Chen G.; Ghafoor A.; Zhang Y. F.; Zhang Y.; Zhang Y.; Luo Y.; Yang J. L.; Sandoghdar V.; Aizpurua J.; et al. Sub-Nanometre Resolution in Single-Molecule Photoluminescence Imaging. Nat. Photonics 2020, 14, 693–699. 10.1038/s41566-020-0677-y. DOI

Zhu J. Z.; Chen G.; Ijaz T.; Li X. G.; Dong Z. C. Influence of an Atomistic Protrusion at the Tip Apex on Enhancing Molecular Emission in Tunnel Junctions: A Theoretical Study. J. Chem. Phys. 2021, 154, 214706.10.1063/5.0048440. PubMed DOI

Urbieta M.; Barbry M.; Zhang Y.; Koval P.; Sánchez-Portal D.; Zabala N.; Aizpurua J. Atomic-Scale Lightning Rod Effect in Plasmonic Picocavities: A Classical View to a Quantum Effect. ACS Nano 2018, 12, 585–595. 10.1021/acsnano.7b07401. PubMed DOI

Rendell R.; Scalapino D. Surface Plasmons Confined by Microstructures on Tunnel Junctions. Phys. Rev. B 1981, 24, 3276.10.1103/PhysRevB.24.3276. DOI

Becker S. F.; Esmann M.; Yoo K.; Gross P.; Vogelgesang R.; Park N.; Lienau C. Gap-Plasmon-Enhanced Nanofocusing Near-Field Microscopy. ACS Photonics 2016, 3, 223–232. 10.1021/acsphotonics.5b00438. DOI

Marchesin F.; Koval P.; Barbry M.; Aizpurua J.; Sanchez-Portal D. Plasmonic Response of Metallic Nanojunctions Driven by Single Atom Motion: Quantum Transport Revealed in Optics. ACS Photonics 2016, 3, 269–277. 10.1021/acsphotonics.5b00609. DOI

Barbry M.; Koval P.; Marchesin F.; Esteban R.; Borisov A. G.; Aizpurua J.; Sánchez-Portal D. Atomistic Near-Field Nanoplasmonics: Reaching Atomic-Scale Resolution in Nanooptics. Nano Lett. 2015, 15, 3410–3419. 10.1021/acs.nanolett.5b00759. PubMed DOI

Li W.; Zhou Q.; Zhang P.; Chen X. W. Bright optical eigenmode of 1 nm 3 mode volume. Phys. Rev. Lett. 2021, 126, 257401.10.1103/PhysRevLett.126.257401. PubMed DOI

Luo Y.; Fernandez-Dominguez A.; Wiener A.; Maier S. A.; Pendry J. Surface Plasmons and Nonlocality: A Simple Model. Phys. Rev. Lett. 2013, 111, 093901.10.1103/PhysRevLett.111.093901. PubMed DOI

Atkin J. M.; Raschke M. B. Optical Spectroscopy Goes Intramolecular. Nature 2013, 498, 44–45. 10.1038/498044a. PubMed DOI

Li X.; Xiao D.; Zhang Z. Landau Damping of Quantum Plasmons in Metal Nanostructures. New J. Phys. 2013, 15, 023011.10.1088/1367-2630/15/2/023011. DOI

Kale M. J.; Christopher P. Plasmons at the Interface. Science 2015, 349, 587–588. 10.1126/science.aac8522. PubMed DOI

Khurgin J.; Tsai W. Y.; Tsai D. P.; Sun G. Landau Damping and Limit to Field Confinement and Enhancement in Plasmonic Dimers. ACS Photonics 2017, 4, 2871–2880. 10.1021/acsphotonics.7b00860. DOI

Gonçalves P.; Christensen T.; Rivera N.; Jauho A.-P.; Mortensen N. A.; Soljačić M. Plasmon-Emitter Interactions at the Nanoscale. Nat. Commun. 2020, 11, 1–13. 10.1038/s41467-019-13820-z. PubMed DOI PMC

Tserkezis C.; Mortensen N. A.; Wubs M. How Nonlocal Damping Reduces Plasmon-Enhanced Fluorescence in Ultranarrow Gaps. Phys. Rev. B 2017, 96, 085413.10.1103/PhysRevB.96.085413. DOI

Alcaraz Iranzo D.; Nanot S.; Dias E. J.; Epstein I.; Peng C.; Efetov D. K.; Lundeberg M. B.; Parret R.; Osmond J.; Hong J. Y.; et al. Probing the Ultimate Plasmon Confinement Limits with a van der Waals Heterostructure. Science 2018, 360, 291–295. 10.1126/science.aar8438. PubMed DOI

Duan S.; Tian G.; Luo Y. Theory for Modeling of High Resolution Resonant and Nonresonant Raman Images. Chem. Theory Comput. 2016, 12, 4986–4995. 10.1021/acs.jctc.6b00592. PubMed DOI

Kawata S.; Verma P. Optical Nano-Imaging of Materials: Peeping Through Tip-Enhanced Raman Scattering. CHIMIA Inter J. Chem. 2006, 60, 770–776. 10.2533/chimia.2006.770. DOI

Meng L.; Yang Z.; Chen J.; Sun M. Effect of Electric Field Gradient on Sub-Nanometer Spatial Resolution of Tip-Enhanced Raman Spectroscopy. Sci. Rep. 2015, 5, 9240.10.1038/srep09240. PubMed DOI PMC

Liu P.; Chen X.; Ye H.; Jensen L. Resolving Molecular Structures with High-Resolution Tip-Enhanced Raman Scattering Images. ACS Nano 2019, 13, 9342–9351. 10.1021/acsnano.9b03980. PubMed DOI

Zhang C.; Chen B. Q.; Li Z. Y. Optical Origin of Subnanometer Resolution in Tip-Enhanced Raman Mapping. J. Phys. Chem. C 2015, 119, 11858–11871. 10.1021/acs.jpcc.5b02653. DOI

Latorre F.; Kupfer S.; Bocklitz T.; Kinzel D.; Trautmann S.; Gräfe S.; Deckert V. Spatial Resolution of Tip-Enhanced Raman Spectroscopy-DFT Assessment of the Chemical Effect. Nanoscale 2016, 8, 10229–10239. 10.1039/C6NR00093B. PubMed DOI

Long D. A.; The Raman effect: A Unified Treatment of the Theory of Raman Scattering by Molecules; Wiley Chichester, 2002; pp 1–584.

McHale J. L.Molecular spectroscopy; CRC Press, 2017; pp 1–475.

Jiang S.; Zhang Y.; Zhang R.; Hu C. R.; Liao M. H.; Luo Y.; Yang J. L.; Dong Z. C.; Hou J. G. Distinguishing Adjacent Molecules on a Surface Using Plasmon-Enhanced Raman Scattering. Nat. Nanotechnol. 2015, 10, 865–869. 10.1038/nnano.2015.170. PubMed DOI

Jiang S.; Zhang X. B.; Zhang Y.; Hu C. R.; Zhang R.; Zhang Y.; Liao Y.; Smith Z. J.; Dong Z. C.; Hou J. G. Subnanometer-Resolved Chemical Imaging via Multivariate Analysis of Tip-Enhanced Raman Maps. Light. Sci. Appl. 2017, 6, e1709810.1038/lsa.2017.98. PubMed DOI PMC

Chiang N.; Chen X.; Goubert G.; Chulhai D. V.; Chen X.; Pozzi E. A.; Jiang N.; Hersam M. C.; Seideman T.; Jensen L.; et al. Conformational Contrast of Surface-Mediated Molecular Switches Yields Ångstrom-Scale Spatial Resolution in Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy. Nano Lett. 2016, 16, 7774–7778. 10.1021/acs.nanolett.6b03958. PubMed DOI

Li L.; Schultz J. F.; Mahapatra S.; Liu X.; Shaw C.; Zhang X.; Hersam M. C.; Jiang N. Angstrom-Scale Spectroscopic Visualization of Interfacial Interactions in an Organic/Borophene Vertical Heterostructure. J. Am. Chem. Soc. 2021, 143, 15624–15634. 10.1021/jacs.1c04380. PubMed DOI

Huang T.; Cong X.; Wu S.; Lin K.; Yao X.; He Y. H.; Wu J. B.; Bao Y. F.; Huang S. C.; Wang X.; et al. Probing the Edge-Related Properties of Atomically Thin MoS2 at Nanoscale. Nat. Commun. 2019, 10, 5544.10.1038/s41467-019-13486-7. PubMed DOI PMC

Liu S.; Hammud A.; Wolf M.; Kumagai T. Atomic Point Contact Raman Spectroscopy of a Si(111)-7 × 7 Surface. Nano Lett. 2021, 21, 4057–4061. 10.1021/acs.nanolett.1c00998. PubMed DOI PMC

Liu S.; Cirera B.; Sun Y.; Hamada I.; Müller M.; Hammud A.; Wolf M.; Kumagai T. Dramatic Enhancement of Tip-Enhanced Raman Scattering Mediated by Atomic Point Contact Formation. Nano Lett. 2020, 20, 5879–5884. 10.1021/acs.nanolett.0c01791. PubMed DOI PMC

Zhang Y.; Zhang R.; Jiang S.; Zhang Y.; Dong Z. C. Probing Adsorption Configurations of Small Molecules on Surfaces by Single Molecule Tip Enhanced Raman Spectroscopy. ChemPhysChem 2019, 20, 37–41. 10.1002/cphc.201800861. PubMed DOI

Lee J.; Tallarida N.; Chen X.; Jensen L.; Apkarian V. A. Microscopy with a Single-Molecule Scanning Electrometer. Sci. Adv. 2018, 4, eaat547210.1126/sciadv.aat5472. PubMed DOI PMC

Li C.; Duan S.; Wen B.; Li S.; Kathiresan M.; Xie L.; Chen S.; Anema J. R.; Mao B.; Luo Y.; et al. Observation of Inhomogeneous Plasmonic Field Distribution in a Nanocavity. Nat. Nanotechnol. 2020, 15, 922–926. 10.1038/s41565-020-0753-y. PubMed DOI

Zhang Y.; Zhang Y.; Dong Z. C. Scanning Raman picoscopy: Ångström-Resolved Tip-Enhanced Raman Spectromicroscopy. Chin. J. Chem. Phys. 2021, 34, 1–14. 10.1063/1674-0068/cjcp2102027. DOI

Zhang C.; Gao B.; Chen L. G.; Meng Q. S.; Yang H.; Zhang R.; Tao X.; Gao H. Y.; Liao Y.; Dong Z. C. Fabrication of Silver Tips for Scanning Tunneling Microscope Induced Luminescence. Rev. Sci. Instrum. 2011, 82, 083101.10.1063/1.3617456. PubMed DOI

Ghafoor A.; Yang B.; Yu Y. J.; Zhang Y. F.; Zhang X. B.; Chen G.; Zhang Y.; Zhang Y.; Dong Z. C. Site-Dependent TERS Study of a Porphyrin Molecule on Ag (100) at 7 K. Chin. J. Chem. Phys. 2019, 32, 287–291. 10.1063/1674-0068/cjcp1812280. DOI

Li H.; Zhang Y. F.; Zhang X. B.; Farrukh A.; Zhang Y.; Zhang Y.; Dong Z. C. Probing the Deformation of [12] Cycloparaphenylene Molecular Nanohoops Adsorbed on Metal Surfaces by Tip-Enhanced Raman Spectroscopy. J. Chem. Phys. 2020, 153, 244201.10.1063/5.0033383. PubMed DOI

Kneipp K. Surface-Enhanced Raman Scattering. Phys. Today 2007, 60, 40–46. 10.1063/1.2812122. DOI

Otto A. The ’Chemical’ (Electronic) Contribution to Surface-Enhanced Raman Scattering. J. Raman Spectrosc. 2005, 36, 497–509. 10.1002/jrs.1355. DOI

Valley N.; Greeneltch N.; Van Duyne R. P.; Schatz G. C. A Look at the Origin and Magnitude of the Chemical Contribution to the Enhancement Mechanism of Surface-Enhanced Raman Spectroscopy (SERS): Theory and Experiment. J. Phys. Chem. Lett. 2013, 4, 2599–2604. 10.1021/jz4012383. DOI

Morton S. M.; Jensen L. Understanding the Molecule-Surface Chemical Coupling in SERS. J. Am. Chem. Soc. 2009, 131, 4090–4098. 10.1021/ja809143c. PubMed DOI

Jensen L.; Zhao L. L.; Schatz G. C. Size-Dependence of the Enhanced Raman Scattering of Pyridine Adsorbed on Agn (n = 2–8, 20) Clusters. J. Phys. Chem. C 2007, 111, 4756–4764. 10.1021/jp067634y. DOI

Lombardi J. R.; Birke R. L. A Unified View of Surface-Enhanced Raman Scattering. Acc. Chem. Res. 2009, 42, 734–742. 10.1021/ar800249y. PubMed DOI

Ma H.; Chen Y.; Wang H.; Wang X.; Zhang X.; Han X.; He C.; Zhao B. Charge-Transfer Effect on Surface-Enhanced Raman Spectroscopy in Ag/PTCA: Herzberg-Teller Selection Rules. J. Phys. Chem. C 2017, 121, 25788–25794. 10.1021/acs.jpcc.7b07281. DOI

Chenal C.; Birke R. L.; Lombardi J. R. Determination of the Degree of Charge-Transfer Contributions to Surface-Enhanced Raman Spectroscopy. ChemPhysChem 2008, 9, 1617–1623. 10.1002/cphc.200800221. PubMed DOI

Ji W.; Xue X. X.; Ruan W. D.; Wang C. X.; Ji N.; Chen L.; Li Z. S.; Song W.; Zhao B.; Lombardi J. R. Scanned Chemical Enhancement of Surface-enhanced Raman Scattering Using a Charge-Transfer Complex. Chem. Commun. 2011, 47, 2426–2428. 10.1039/C0CC03697H. PubMed DOI

Ji W.; Kitahama Y.; Xue X. X.; Zhao B.; Ozaki Y. Generation of Pronounced Resonance Profile of Charge-Transfer Contributions to Surface-Enhanced Raman Scattering. J. Phys. Chem. C 2012, 116, 2515–2520. 10.1021/jp209947p. DOI

Ji W.; Kitahama Y.; Han X. X.; Xue X. X.; Ozaki Y.; Zhao B. pH-Dependent SERS by Semiconductor-Controlled Charge-Transfer Contribution. J. Phys. Chem. C 2012, 116, 24829–24836. 10.1021/jp308805n. DOI

Sun L.; Bai F. Q.; Zhang H. X. Theoretical Investigation of Chemically Enhanced Mechanism of SERS Spectroscopy for Ag/MPH/TiO2 System. Acta Phys.-Chim. Sin. 2011, 27, 1335–1340. 10.3866/PKU.WHXB20110602. DOI

Rajh T.; Chen L. X.; Lukas K.; Liu T.; Thurnauer M. C.; Tiede D. M. Surface Restructuring of Nanoparticles: An Efficient Route for Ligand-Metal Oxide Crosstalk. J. Phys. Chem. B 2002, 106, 10543–10552. 10.1021/jp021235v. DOI

Alvarez-Puebla R. A.; Liz-Marzán L. M. SERS Detection of Small Inorganic Molecules and Ions. Angew. Chem., Int. Ed. Engl. 2012, 51, 11214–11223. 10.1002/anie.201204438. PubMed DOI

Ji W.; Li L.; Zhang Y.; Wang X.; Ozaki Y. Recent Advances in Surface-Enhanced Raman Scattering-Based Sensors for the Detection of Inorganic Ions: Sensing Mechanism and Beyond. J. Raman Spectrosc. 2021, 52, 468–481. 10.1002/jrs.5975. DOI

Guerrini L.; Alvarez-Puebla R. A. Surface-Enhanced Raman Scattering Sensing of Transition Metal Ions in Waters. ACS Omega 2021, 6, 1054–1063. 10.1021/acsomega.0c05261. PubMed DOI PMC

Tsoutsi D.; Guerrini L.; Hermida-Ramon J. M.; Giannini V.; Liz-Marzán L. M.; Wei A.; Alvarez-Puebla R. A. Simultaneous SERS Detection of Copper and Cobalt at Ultratrace Levels. Nanoscale 2013, 5, 5841–5846. 10.1039/c3nr01518a. PubMed DOI

Ling X.; Zhang J. First-Layer Effect in Graphene-Enhanced Raman Scattering. Small 2010, 6, 2020–2025. 10.1002/smll.201000918. PubMed DOI

Ling X.; Zhang J. Interference Phenomenon in Graphene-Enhanced Raman Scattering. J. Phys. Chem. C 2011, 115, 2835–2840. 10.1021/jp111502n. DOI

Lee Y. K.; Jung C. H.; Park J.; Seo H.; Somorjai G. A.; Park J. Y. Surface Plasmon-Driven Hot Electron Flow Probed with Metal-Semiconductor Nanodiodes. Nano Lett. 2011, 11, 4251–4255. 10.1021/nl2022459. PubMed DOI

Lee S. J.; Moskovits M. Visualizing Chromatographic Separation of Metal Ions on a Surface-Enhanced Raman Active Medium. Nano Lett. 2011, 11, 145–150. 10.1021/nl1031309. PubMed DOI

Liu Z.; Ai J.; Kumar P.; You E.; Zhou X.; Liu X.; Tian Z.; Bouř P.; Duan Y.; Han L.; et al. Enantiomeric Discrimination by Surface-Enhanced Raman Scattering-Chiral Anisotropy of Chiral Nanostructured Gold Films. Angew. Chem., Int. Ed. Engl. 2020, 59, 15226–15231. 10.1002/anie.202006486. PubMed DOI

Wang Y.; Yu Z.; Ji W.; Tanaka Y.; Sui H.; Zhao B.; Ozaki Y. Enantioselective Discrimination of Alcohols by Hydrogen Bonding: A SERS Study. Angew. Chem., Int. Ed. Engl. 2014, 53, 13866–13870. 10.1002/anie.201407642. PubMed DOI

Wang Y.; Zhao X.; Yu Z.; Xu Z.; Zhao B.; Ozaki Y. A Chiral-Label-Free SERS Strategy for the Synchronous Chiral Discrimination and Identification of Small Aromatic Molecules. Angew. Chem., Int. Ed. Engl. 2020, 59, 19079–19086. 10.1002/anie.202007771. PubMed DOI

Wang Y.; Liu J.; Zhao X.; Yang C.; Ozaki Y.; Xu Z.; Zhao B.; Yu Z. A Chiral Signal-Amplified Sensor for Enantioselective Discrimination of Amino Acids Based on Charge Transfer-Induced SERS. Chem. Commun. 2019, 55, 9697–9700. 10.1039/C9CC04665H. PubMed DOI

Wang Y.; Liu J.; Ozaki Y.; Xu Z.; Zhao B. Effect of TiO2 on Altering Direction of Interfacial Charge Transfer in a TiO2-Ag-MPY-FePc System by SERS. Angew. Chem., Int. Ed. Engl. 2019, 58, 8172–8176. 10.1002/anie.201900589. PubMed DOI

Wang X.; Zhao B.; Li P.; Han X. X.; Ozaki Y. Charge Transfer at the TiO2/N3/Ag Interface Monitored by Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2017, 121, 5145–5153. 10.1021/acs.jpcc.7b00153. DOI

Wang X.; Li P.; Han X. X.; Kitahama Y.; Zhao B.; Ozaki Y. An Enhanced Degree of Charge Transfer in Dye-Sensitized Solar Cells with a ZnO-TiO2/N3/Ag Structure as Revealed by Surface-Enhanced Raman Scattering. Nanoscale 2017, 9, 15303–15313. 10.1039/C7NR03839A. PubMed DOI

Hayashi S.; Koh R.; Ichiyama Y.; Yamamoto K. Evidence for Surface-Enhanced Raman Scattering on Nonmetallic Surfaces: Copper Phthalocyanine Molecules on GaP Small Particles. Phys. Rev. Lett. 1988, 60, 1085–1088. 10.1103/PhysRevLett.60.1085. PubMed DOI

Loo B. H. Observation of the Surface Enhanced Raman Scattering Effect from the Semiconductor—Electrolyte Interface. J. Electroanal. Chem. Interfacial Electrochem. 1982, 136, 209–213. 10.1016/0022-0728(82)87037-X. DOI

Yamada H.; Yamamoto Y. Surface Enhanced Raman Scattering (SERS) of Chemisorbed Species on Various Kinds of Metals and Semiconductors. Surf. Sci. 1983, 134, 71–90. 10.1016/0039-6028(83)90312-6. DOI

Zhang P.; Wang Y.; He T.; Zhang B.; Wang X.; Xin H.; Liu F.-c. SERS of Pyridine, 1,4-Dioxane and 1-Ethyl-3-methyl-2-thiacyanine Iodide Adsorbed on Alfa-Fe2O3 Colloids. Chem. Phys. Lett. 1988, 153, 215–222. 10.1016/0009-2614(88)85215-1. DOI

Alessandri I.; Lombardi J. R. Enhanced Raman Scattering with Dielectrics. Chem. Rev. 2016, 116, 14921–14981. 10.1021/acs.chemrev.6b00365. PubMed DOI

Wang Y.-X.; Wang Y.-F.; Gao Y.; Sun Z.-H.; Zhao C.; Hu H.-L.; Xu W.-Q.; Wang Z.-C.; Zhao B. Surface Enhanced Raman Spectroscopy of 4-Mercaptopyridine Molecules on Pb3O4 Nanoparticles. Chem. Res. Chin. Univ. 2006, 22, 388–389. 10.1016/S1005-9040(06)60123-2. DOI

Wang Y.; Hu H.; Jing S.; Wang Y.; Sun Z.; Zhao B.; Zhao C.; Lombardi J. R. Enhanced Raman Scattering as a Probe for 4-Mercaptopyridine Surface-Modified Copper Oxide Nanocrystals. Anal. Sci. 2007, 23, 787–791. 10.2116/analsci.23.787. PubMed DOI

Wang Y.; Sun Z.; Wang Y.; Hu H.; Zhao B.; Xu W.; Lombardi J. R. Surface-enhanced Raman Scattering on Mercaptopyridine-Capped US Microclusters. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2007, 66, 1199–1203. 10.1016/j.saa.2006.06.008. PubMed DOI

Wang Y.; Zhang J.; Jia H.; Li M.; Zeng J.; Yang B.; Zhao B.; Xu W.; Lombardi J. R. Mercaptopyridine Surface-Functionalized CdTe Quantum Dots with Enhanced Raman Scattering Properties. J. Phys. Chem. C 2008, 112, 996–1000. 10.1021/jp077467h. DOI

Wang Y.; Ruan W.; Zhang J.; Yang B.; Xu W.; Zhao B.; Lombardi J. R. Direct Observation of Surface-Enhanced Raman Scattering in ZnO Nanocrystals. J. Raman Spectrosc. 2009, 40, 1072–1077. 10.1002/jrs.2241. DOI

Wang Y. F.; Sun Z. H.; Hu H. L.; Jing S. Y.; Zhao B.; Xu W. Q.; Zhao C.; Lombardi J. R. Raman Scattering Study of Molecules Adsorbed on ZnS Nanocrystals. J. Raman Spectrosc. 2007, 38, 34–38. 10.1002/jrs.1570. DOI

Ling X.; Xie L. M.; Fang Y.; Xu H.; Zhang H. L.; Kong J.; Dresselhaus M. S.; Zhang J.; Liu Z. F. Can Graphene be Used as a Substrate for Raman Enhancement?. Nano Lett. 2010, 10, 553–561. 10.1021/nl903414x. PubMed DOI

Xue X.; Ji W.; Mao Z.; Li Z.; Ruan W.; Zhao B.; Lombardi J. R. Effects of Mn Doping on Surface Enhanced Raman Scattering Properties of TiO2 Nanoparticles. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2012, 95, 213–217. 10.1016/j.saa.2012.04.101. PubMed DOI

Xue X.; Ji W.; Mao Z.; Ruan W.; Zhao B.; Ma S.; Lombardi J. R. Study of Enhanced Raman Scattering for Molecules Adsorbed on Cu-doped TiO2 Nanoparticles. Sci. Sin. Chim. 2011, 41, 398–402. 10.1360/032010-679. DOI

Xue X.; Ruan W.; Yang L.; Ji W.; Xie Y.; Chen L.; Song W.; Zhao B.; Lombardi J. R. Surface-Enhanced Raman Scattering of Molecules Adsorbed on Co-doped ZnO Nanoparticles. J. Raman Spectrosc. 2012, 43, 61–64. 10.1002/jrs.2988. DOI

Xue X. X.; Ji W.; Mao Z.; Li Z. S.; Guo Z. N.; Zhao B.; Zhao C. SERS Study of Co-doped TiO2 Nanoparticles. Chem. Res. Chin. Univ. 2013, 29, 751–754. 10.1007/s40242-013-3051-5. DOI

Xue X. X.; Ji W.; Mao Z.; Zhao C.; Zhao B.; Lombardi J. R. Simultaneous Enhancement of Phonons Modes with Molecular Vibrations Due to Mg Doping of a TiO2 Substrate. RSC Adv. 2013, 3, 20891–20895. 10.1039/c3ra43780a. DOI

Yang L.; Jiang X.; Yang M. Improvement of Surface-Enhanced Raman Scattering Performance for Broad Band Gap Semiconductor Nanomaterial (TiO2): Strategy of Metal doping. Appl. Phys. Lett. 2011, 99, 111114.10.1063/1.3638467. DOI

Ling X.; Moura L. G.; Pimenta M. A.; Zhang J. Charge-Transfer Mechanism in Graphene-Enhanced Raman Scattering. J. Phys. Chem. C 2012, 116, 25112–25118. 10.1021/jp3088447. DOI

Ling X.; Wu J.; Xu W.; Zhang J. Probing the Effect of Molecular Orientation on the Intensity of Chemical Enhancement Using Graphene-Enhanced Raman Spectroscopy. Small 2012, 8, 1365–1372. 10.1002/smll.201102223. PubMed DOI

Ling X.; Zhang J. Investigation of the Adsorption Behavior of PbPc on Graphene by Raman Spectroscopy. Acta Phys.-Chim. Sin. 2012, 28, 2355–2362. 10.3866/PKU.WHXB201208242. DOI

Ling X.; Wu J.; Xie L.; Zhang J. Graphene-Thickness-Dependent Graphene-Enhanced Raman Scattering. J. Phys. Chem. C 2013, 117, 2369–2376. 10.1021/jp310564d. DOI

Huang S.; Ling X.; Liang L.; Song Y.; Fang W.; Zhang J.; Kong J.; Meunier V.; Dresselhaus M. S. Molecular Selectivity of Graphene-Enhanced Raman Scattering. Nano Lett. 2015, 15, 2892–2901. 10.1021/nl5045988. PubMed DOI

Han X. X.; Ji W.; Zhao B.; Ozaki Y. Semiconductor-Enhanced Raman Scattering: Active Nanomaterials and Applications. Nanoscale 2017, 9, 4847–4861. 10.1039/C6NR08693D. PubMed DOI

Ji W.; Han X. X.; Zhao B.. Charge-Transfer-Induced Enhancement of Raman Scattering Based on Semiconductors. In Recent Developments in Plasmon-Supported Raman Spectroscopy: 45 Years of Enhanced Raman Signals; World Scientific Publishing Europe Ltd., 2018; pp 451–482.

Yang B.; Jin S.; Guo S.; Park Y.; Chen L.; Zhao B.; Jung Y. M. Recent Development of SERS Technology: Semiconductor-Based Study. ACS Omega 2019, 4, 20101–20108. 10.1021/acsomega.9b03154. PubMed DOI PMC

Wang X.; Guo L. SERS Activity of Semiconductors: Crystalline and Amorphous Nanomaterials. Angew. Chem., Int. Ed. Engl. 2020, 59, 4231–4239. 10.1002/anie.201913375. PubMed DOI

Ji W.; Li L.; Song W.; Wang X.; Zhao B.; Ozaki Y. Enhanced Raman Scattering by ZnO Superstructures: Synergistic Effect of Charge Transfer and Mie Resonances. Angew. Chem., Int. Ed. Engl. 2019, 58, 14452–14456. 10.1002/anie.201907283. PubMed DOI

Rodriguez I.; Shi L.; Lu X.; Korgel B. A.; Alvarez-Puebla R. A.; Meseguer F. Silicon Nanoparticles as Raman Scattering Enhancers. Nanoscale 2014, 6, 5666–5670. 10.1039/C4NR00593G. PubMed DOI

Lombardi J. R.; Birke R. L. Theory of Surface-Enhanced Raman Scattering in Semiconductors. J. Phys. Chem. C 2014, 118, 11120–11130. 10.1021/jp5020675. DOI

Song G.; Gong W.; Cong S.; Zhao Z. Ultrathin Two-Dimensional Nanostructures: Surface Defects for Morphology-Driven Enhanced Semiconductor SERS. Angew. Chem., Int. Ed. Engl. 2021, 60, 5505–5511. 10.1002/anie.202015306. PubMed DOI

Zheng Z.; Cong S.; Gong W.; Xuan J.; Li G.; Lu W.; Geng F.; Zhao Z. Semiconductor SERS Enhancement Enabled by Oxygen Incorporation. Nat. Commun. 2017, 8, 1993.10.1038/s41467-017-02166-z. PubMed DOI PMC

Song G.; Cong S.; Zhao Z. Defect Engineering in Semiconductor-Based SERS. Chem. Sci. 2022, 13, 1210–1224. 10.1039/D1SC05940H. PubMed DOI PMC

Cong S.; Yuan Y.; Chen Z.; Hou J.; Yang M.; Su Y.; Zhang Y.; Li L.; Li Q.; Geng F.; et al. Noble Metal-Comparable SERS Enhancement from Semiconducting Metal Oxides by Making Oxygen Vacancies. Nat. Commun. 2015, 6, 7800.10.1038/ncomms8800. PubMed DOI PMC

Wang X.; Shi W.; Wang S.; Zhao H.; Lin J.; Yang Z.; Chen M.; Guo L. Two-dimensional Amorphous TiO2 Nanosheets Enabling High-efficiency Photo-induced Charge Transfer for Excellent SERS Activity. J. Am. Chem. Soc. 2019, 141, 5856–5862. 10.1021/jacs.9b00029. PubMed DOI

Wang X.; Shi W.; Jin Z.; Huang W.; Lin J.; Ma G.; Li S.; Guo L. Remarkable SERS Activity Observed from Amorphous ZnO Nanocages. Angew. Chem., Int. Ed. Engl. 2017, 56, 9851–9855. 10.1002/anie.201705187. PubMed DOI

Messinger B. J.; von Raben K. U.; Chang R. K.; Barber P. W. Local Fields at the Surface of Noble-Metal Microspheres. Phys. Rev. B 1981, 24, 649–657. 10.1103/PhysRevB.24.649. DOI

Bohren C. F.; Huffman D. R.. Absorption and Scattering of Light by Small Partices.; Wiley-Verlag, 1998; pp 1–530.

Swanson N. L.; Billard D. B. Multiple Scattering Efficiency and Optical Extinction. Phys. Rev. E 2000, 61, 4518–4522. 10.1103/PhysRevE.61.4518. PubMed DOI

Alessandri I. Enhancing Raman Scattering without Plasmons: Unprecedented Sensitivity Achieved by TiO2 Shell-Based Resonators. J. Am. Chem. Soc. 2013, 135, 5541–5544. 10.1021/ja401666p. PubMed DOI

Qi D.; Lu L.; Wang L.; Zhang J. Improved SERS Sensitivity on Plasmon-Free TiO2 Photonic Microarray by Enhancing Light-Matter Coupling. J. Am. Chem. Soc. 2014, 136, 9886–9889. 10.1021/ja5052632. PubMed DOI

Qiu B.; Xing M.; Yi Q.; Zhang J. Chiral Carbonaceous Nanotubes Modified with Titania Nanocrystals: Plasmon-Free and Recyclable SERS Sensitivity. Angew. Chem., Int. Ed. Engl. 2015, 54, 10643–10647. 10.1002/anie.201505319. PubMed DOI

Jain P. K. Plasmon-in-a-Box: On the Physical Nature of Few-Carrier Plasmon Resonances. J. Phys. Chem. Lett. 2014, 5, 3112–3119. 10.1021/jz501456t. PubMed DOI

Faucheaux J. A.; Stanton A. L. D.; Jain P. K. Plasmon Resonances of Semiconductor Nanocrystals: Physical Principles and New Opportunities. J. Phys. Chem. Lett. 2014, 5, 976–985. 10.1021/jz500037k. PubMed DOI

Lounis S. D.; Runnerstrom E. L.; Llordés A.; Milliron D. J. Defect Chemistry and Plasmon Physics of Colloidal Metal Oxide Nanocrystals. J. Phys. Chem. Lett. 2014, 5, 1564–1574. 10.1021/jz500440e. PubMed DOI

Luther J. M.; Jain P. K.; Ewers T.; Alivisatos A. P. Localized Surface Plasmon Resonances Arising from Free Carriers in Doped Quantum Dots. Nat. Mater. 2011, 10, 361–366. 10.1038/nmat3004. PubMed DOI

Li W.; Zamani R.; Rivera Gil P.; Pelaz B.; Ibáñez M.; Cadavid D.; Shavel A.; Alvarez-Puebla R. A.; Parak W. J.; Arbiol J.; et al. CuTe Nanocrystals: Shape and Size Control, Plasmonic Properties, and Use as SERS Probes and Photothermal Agents. J. Am. Chem. Soc. 2013, 135, 7098–7101. 10.1021/ja401428e. PubMed DOI

Li Y.; Bai H.; Zhai J.; Yi W.; Li J.; Yang H.; Xi G. Alternative to Noble Metal Substrates: Metallic and Plasmonic Ti3O5 Hierarchical Microspheres for Surface Enhanced Raman Spectroscopy. Anal. Chem. 2019, 91, 4496–4503. 10.1021/acs.analchem.8b05282. PubMed DOI

Liu W.; Bai H.; Li X.; Li W.; Zhai J.; Li J.; Xi G. Improved Surface-Enhanced Raman Spectroscopy Sensitivity on Metallic Tungsten Oxide by the Synergistic Effect of Surface Plasmon Resonance Coupling and Charge Transfer. J. Phys. Chem. Lett. 2018, 9, 4096–4100. 10.1021/acs.jpclett.8b01624. PubMed DOI

Hou X.; Luo X.; Fan X.; Peng Z.; Qiu T. Plasmon-Coupled Charge Transfer in WO3-x Semiconductor Nanoarrays: Toward Highly Uniform Silver-Comparable SERS Platforms. Phys. Chem. Chem. Phys. 2019, 21, 2611–2618. 10.1039/C8CP07305H. PubMed DOI

Livingstone R.; Zhou X. C.; Tamargo M. C.; Lombardi J. R.; Quagliano L. C.; Jean-Mary F. Surface Enhanced Raman Spectroscopy of Pyridine on CdSe/ZnBeSe Quantum Dots Crown by Molecular Beam Epitaxy. J. Phys. Chem. C 2010, 114, 17460–17464. 10.1021/jp105619m. DOI

Ji W.; Li L.; Guan J.; Mu M.; Song W.; Sun L.; Zhao B.; Ozaki Y. Hollow Multi-Shelled V2O5 Microstructures Integrating Multiple Synergistic Resonances for Enhanced Semiconductor SERS. Adv. Opt. Mater. 2021, 9, 2101866.10.1002/adom.202101866. DOI

Yang L.; Peng Y.; Yang Y.; Liu J.; Huang H.; Yu B.; Zhao J.; Lu Y.; Huang Z.; Li Z.; et al. A Novel Ultra-Sensitive Semiconductor SERS Substrate Boosted by the Coupled Resonance Effect. Adv. Sci. 2019, 6, 1900310.10.1002/advs.201900310. PubMed DOI PMC

Peng Y.; Lin C.; Long L.; Masaki T.; Tang M.; Yang L.; Liu J.; Huang Z.; Li Z.; Luo X.; et al. Charge-Transfer Resonance and Electromagnetic Enhancement Synergistically Enabling MXenes with Excellent SERS Sensitivity for SARS-CoV-2 S Protein Detection. Nano-Micro Lett. 2021, 13, 52.10.1007/s40820-020-00565-4. PubMed DOI PMC

Peng Y.; Lin C.; Li Y.; Gao Y.; Wang J.; He J.; Huang Z.; Liu J.; Luo X.; Yang Y. Identifying Infectiousness of SARS-CoV-2 by Ultra-Sensitive SnS2 SERS Biosensors with Capillary Effect. Matter 2022, 5, 694–709. 10.1016/j.matt.2021.11.028. PubMed DOI PMC

Musumeci A.; Gosztola D.; Schiller T.; Dimitrijevic N. M.; Mujica V.; Martin D.; Rajh T. SERS of Semiconducting Nanoparticies (TiO2 Hybrid Composites). J. Am. Chem. Soc. 2009, 131, 6040–6041. 10.1021/ja808277u. PubMed DOI

Hurst S. J.; Fry H. C.; Gosztola D. J.; Rajh T. Utilizing Chemical Raman Enhancement: A Route for Metal Oxide Support-Based Biodetection. J. Phys. Chem. C 2011, 115, 620–630. 10.1021/jp1096162. DOI

Tarakeshwar P.; Finkelstein-Shapiro D.; Hurst S. J.; Rajh T.; Mujica V. Surface-Enhanced Raman Scattering on Semiconducting Oxide Nanoparticles: Oxide Nature, Size, Solvent, and pH Effects. J. Phys. Chem. C 2011, 115, 8994–9004. 10.1021/jp202590e. DOI

Lee N.; Hummer D. R.; Sverjensky D. A.; Rajh T.; Hazen R. M.; Steele A.; Cody G. D. Speciation of l-DOPA on Nanorutile as a Function of pH and Surface Coverage Using Surface-Enhanced Raman Spectroscopy (SERS). Langmuir 2012, 28, 17322–17330. 10.1021/la303607a. PubMed DOI

Han X. X.; Köhler C.; Kozuch J.; Kuhlmann U.; Paasche L.; Sivanesan A.; Weidinger I. M.; Hildebrandt P. Potential-Dependent Surface-Enhanced Resonance Raman Spectroscopy at Nanostructured TiO2: A Case Study on Cytochrome b5. Small 2013, 9, 4175–4181. 10.1002/smll.201301070. PubMed DOI

Öner I. H.; Querebillo C. J.; David C.; Gernert U.; Walter C.; Driess M.; Leimkühler S.; Ly K. H.; Weidinger I. M. High Electromagnetic Field Enhancement of TiO2 Nanotube Electrodes. Angew. Chem., Int. Ed. Engl. 2018, 57, 7225–7229. 10.1002/anie.201802597. PubMed DOI

Chen L.; Tang J.; Ma H.; Jin S.; Xue X.; Han X. X.; Jung Y. M. High-Efficiency Charge Transfer on SERS-Active Semiconducting K2Ti6O13 Nanowires Enables Direct Transition of Photoinduced Electrons to Protein Redox Centers. Biosens. Bioelectron. 2021, 191, 113452.10.1016/j.bios.2021.113452. PubMed DOI

Murgida D. H.; Hildebrandt P. Disentangling Interfacial Redox Processes of Proteins by SERR Spectroscopy. Chem. Soc. Rev. 2008, 37, 937–945. 10.1039/b705976k. PubMed DOI

Murgida D. H.; Hildebrandt P. Electron-Transfer Processes of Cytochrome c at Interfaces. New Insights by Surface-Enhanced Resonance Raman Spectroscopy. Acc. Chem. Res. 2004, 37, 854–861. 10.1021/ar0400443. PubMed DOI

Lee K. E.; Gomez M. A.; Elouatik S.; Demopoulos G. P. Further Understanding of the Adsorption Mechanism of N719 Sensitizer on Anatase TiO2 Films for DSSC Applications Using Vibrational Spectroscopy and Confocal Raman Imaging. Langmuir 2010, 26, 9575–9583. 10.1021/la100137u. PubMed DOI

Qiu Z.; Zhang M.; Wu D.-Y.; Ding S.-Y.; Zuo Q.-Q.; Huang Y.-F.; Shen W.; Lin X.-D.; Tian Z.-Q.; Mao B.-W. Raman Spectroscopic Investigation on TiO2-N719 Dye Interfaces Using Ag@TiO2 Nanoparticles and Potential Correlation Strategies. ChemPhysChem 2013, 14, 2217–2224. 10.1002/cphc.201300381. PubMed DOI

Mao Z.; Ye Y.; Lv H.; Han X. X.; Park Y.; Zang L.; Zhao B.; Jung Y. M. Direct Dynamic Evidence of Charge Separation in a Dye-Sensitized Solar Cell Obtained under Operando Conditions by Raman Spectroscopy. Angew. Chem., Int. Ed. Engl. 2020, 59, 10780–10784. 10.1002/anie.201915824. PubMed DOI

Wen S.; Ma X.; Liu H.; Chen G.; Wang H.; Deng G.; Zhang Y.; Song W.; Zhao B.; Ozaki Y. Accurate Monitoring Platform for the Surface Catalysis of Nanozyme Validated by Surface-Enhanced Raman-Kinetics Model. Anal. Chem. 2020, 92, 11763–11770. 10.1021/acs.analchem.0c01886. PubMed DOI

Ma X.; Guo Y.; Jin J.; Zhao B.; Song W. Bi-functional Reduced Graphene Oxide/AgCo Composite Nanosheets: An Efficient Catalyst and SERS Substrate for Monitoring the Catalytic Reactions. RSC Adv. 2017, 7, 41962–41969. 10.1039/C7RA07216C. DOI

Yang L.; Yin D.; Shen Y.; Yang M.; Li X.; Han X.; Jiang X.; Zhao B. Mesoporous Semiconducting TiO2 with Rich Active Sites as a Remarkable Substrate for Surface-Enhanced Raman Scattering. Phys. Chem. Chem. Phys. 2017, 19, 18731–18738. 10.1039/C7CP03399K. PubMed DOI

Kiran V.; Sampath S. Enhanced Raman Spectroscopy of Molecules Adsorbed on Carbon-Doped TiO2 Obtained from Titanium Carbide: A Visible-Light-Assisted Renewable Substrate. ACS Appl. Mater. Interfaces 2012, 4, 3818–3828. 10.1021/am300349k. PubMed DOI

Finkelstein-Shapiro D.; Petrosko S. H.; Dimitrijevic N. M.; Gosztola D.; Gray K. A.; Rajh T.; Tarakeshwar P.; Mujica V. CO2 Preactivation in Photoinduced Reduction via Surface Functionalization of TiO2 Nanoparticles. J. Phys. Chem. Lett. 2013, 4, 475–479. 10.1021/jz3020327. PubMed DOI

Lombardi J. R. The Theory of Surface-Enhanced Raman Scattering on Semiconductor Nanoparticles: Toward the Optimization of SERS Sensors. Faraday Discuss. 2017, 205, 105–120. 10.1039/C7FD00138J. PubMed DOI

Ji W.; Song W.; Tanabe I.; Wang Y.; Zhao B.; Ozaki Y. Semiconductor-Enhanced Raman Scattering For Highly Robust SERS Sensing: The Case of Phosphate Analysis. Chem. Commun. 2015, 51, 7641–7644. 10.1039/C5CC02395E. PubMed DOI

Ji W.; Wang Y.; Tanabe I.; Han X.; Zhao B.; Ozaki Y. Semiconductor-Driven ″turn-off″ Surface-Enhanced Raman Scattering Spectroscopy: Application in Selective Determination of Chromium(vi) in Water. Chem. Sci. 2015, 6, 342–348. 10.1039/C4SC02618G. PubMed DOI PMC

Bontempi N.; Carletti L.; De Angelis C.; Alessandri I. Plasmon-Free SERS Detection of Environmental CO2 on TiO2 Surfaces. Nanoscale 2016, 8, 3226–3231. 10.1039/C5NR08380J. PubMed DOI

Alessandri I.; Vassalini I.; Bertuzzi M.; Bontempi N.; Memo M.; Gianoncelli A. RaMassays”: Synergistic Enhancement of Plasmon-Free Raman Scattering and Mass Spectrometry for Multimodal Analysis of Small Molecules. Sci. Rep. 2016, 6, 34521.10.1038/srep34521. PubMed DOI PMC

Kurouski D.; Dazzi A.; Zenobi R.; Centrone A. Infrared and Raman chemical imaging and spectroscopy at the nanoscale. Chem. Soc. Rev. 2020, 49, 3315–3347. 10.1039/C8CS00916C. PubMed DOI PMC

Blackie E. J.; Le Ru E. C.; Etchegoin P. G. Single-Molecule Surface-Enhanced Raman Spectroscopy of Nonresonant Molecules. J. Am. Chem. Soc. 2009, 131, 14466–14472. 10.1021/ja905319w. PubMed DOI

Fang Y.; Seong N.-H.; Dlott D. D. Measurement of the Distribution of Site Enhancements in Surface-Enhanced Raman Scattering. Science 2008, 321, 388–392. 10.1126/science.1159499. PubMed DOI

Wu D. Y.; Li J. F.; Ren B.; Tian Z. Q. Electrochemical Surface-Enhanced Raman Spectroscopy of Nanostructures. Chem. Soc. Rev. 2008, 37, 1025–1041. 10.1039/b707872m. PubMed DOI

Yeo B. S.; Schmid T.; Zhang W. H.; Zenobi R. A Strategy to Prevent Signal Losses, Analyte Decomposition, and Fluctuating Carbon Contamination Bands in Surface-Enhanced Raman Spectroscopy. Appl. Spectrosc. 2008, 62, 708–713. 10.1366/000370208784658165. PubMed DOI

Asiala S. M.; Schultz Z. D. Label-Free in situ Detection of Individual Macromolecular Assemblies by Surface Enhanced Raman Scattering. Chem. Commun. 2013, 49, 4340–4342. 10.1039/C2CC37268A. PubMed DOI PMC

Bell S. E. J.; Sirimuthu N. M. S. Quantitative Surface-Enhanced Raman Spectroscopy. Chem. Soc. Rev. 2008, 37, 1012–1024. 10.1039/b705965p. PubMed DOI

Zhang D. M.; Xie Y.; Deb S. K.; Davison V. J.; Ben-Amotz D. Isotope Edited Internal Standard Method for Quantitative Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2005, 77, 3563–3569. 10.1021/ac050338h. PubMed DOI

Shen W.; Lin X.; Jiang C. Y.; Li C. Y.; Lin H. X.; Huang J. T.; Wang S.; Liu G. K.; Yan X. M.; Zhong Q. L.; et al. Reliable Quantitative SERS Analysis Facilitated by Core-Shell Nanoparticles with Embedded Internal Standards. Angew. Chem., Int. Ed. Engl. 2015, 54, 7308–7312. 10.1002/anie.201502171. PubMed DOI

de Albuquerque C. D. L.; Sobral R. G.; Poppi R. J.; Brolo A. G. Digital Protocol for Chemical Analysis at Ultralow Concentrations by Surface-Enhanced Raman Scattering. Anal. Chem. 2018, 90, 1248–1254. 10.1021/acs.analchem.7b03968. PubMed DOI

Hong K. Y.; de Albuquerque C. D. L.; Poppi R. J.; Brolo A. G. Determination of Aqueous Antibiotic Solutions Using SERS Nanogratings. Anal. Chim. Acta 2017, 982, 148–155. 10.1016/j.aca.2017.05.025. PubMed DOI

Bohn J. E.; Le Ru E. C.; Etchegoin P. G. A Statistical Criterion for Evaluating the Single-Molecule Character of SERS Signals. J. Phys. Chem. C 2010, 114, 7330–7335. 10.1021/jp908990v. DOI

Sonntag M. D.; Klingsporn J. M.; Garibay L. K.; Roberts J. M.; Dieringer J. A.; Seideman T.; Scheidt K. A.; Jensen L.; Schatz G. C.; Van Duyne R. P. Single-Molecule Tip-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2012, 116, 478–483. 10.1021/jp209982h. DOI

Bhattarai A.; Joly A. G.; Hess W. P.; El-Khoury P. Z. Visualizing Electric Fields at Au(111) Step Edges via Tip-Enhanced Raman Scattering. Nano Lett. 2017, 17, 7131–7137. 10.1021/acs.nanolett.7b04027. PubMed DOI

Schmid T.; Yeo B. S.; Leong G.; Stadler J.; Zenobi R. Performing Tip-Enhanced Raman Spectroscopy in Liquids. J. Raman Spectrosc. 2009, 40, 1392–1399. 10.1002/jrs.2387. DOI

Watanabe K.; Palonpon A. F.; Smith N. I.; Chiu L. D.; Kasai A.; Hashimoto H.; Kawata S.; Fujita K. Structured Line Illumination Raman Microscopy. Nat. Commun. 2015, 6, 10095.10.1038/ncomms10095. PubMed DOI PMC

Chen H. K.; Wang S. Q.; Zhang Y. Q.; Yang Y.; Fang H.; Zhu S. W.; Yuan X. C. Structured Illumination for Wide-Field Raman Imaging of Cell Membranes. Opt. Commun. 2017, 402, 221–225. 10.1016/j.optcom.2017.06.021. DOI

Weber M. L.; Willets K. A. Correlated Super-Resolution Optical and Structural Studies of Surface-Enhanced Raman Scattering Hot Spots in Silver Colloid Aggregates. J. Phys. Chem. Lett. 2011, 2, 1766–1770. 10.1021/jz200784e. DOI

Olson A. P.; Ertsgaard C. T.; Elliott S. N.; Lindquist N. C. Super-Resolution Chemical Imaging with Plasmonic Substrates. ACS Photonics 2016, 3, 329–336. 10.1021/acsphotonics.5b00647. DOI

Procházka M.Surface-Enhanced Raman Spectroscopy - Bioanalytical, Biomolecular and Medical Applications; Springer International Publishing, 2016; pp 1–221.

Treffer R.; Deckert V. Recent Advances in Single-Molecule Sequencing. Curr. Opin. Biotechnol. 2010, 21, 4–11. 10.1016/j.copbio.2010.02.009. PubMed DOI

Najjar S.; Talaga D.; Schue L.; Coffinier Y.; Szunerits S.; Boukherroub R.; Servant L.; Rodriguez V.; Bonhommeau S. Tip-Enhanced Raman Spectroscopy of Combed Double-Stranded DNA Bundles. J. Phys. Chem. C 2014, 118, 1174–1181. 10.1021/jp410963z. DOI

Venkatesan B. M.; Bashir R. Nanopore Sensors for Nucleic Acid Analysis. Nat. Nanotechnol. 2011, 6, 615–624. 10.1038/nnano.2011.129. PubMed DOI

Chen C.; Li Y.; Kerman S.; Neutens P.; Willems K.; Cornelissen S.; Lagae L.; Stakenborg T.; Van Dorpe P. High Spatial Resolution Nanoslit SERS for Single-Molecule Nucleobase Sensing. Nat. Commun. 2018, 9, 1733.10.1038/s41467-018-04118-7. PubMed DOI PMC

Pashaee F.; Tabatabaei M.; Caetano F. A.; Ferguson S. S. G.; Lagugne-Labarthet F. Tip-Enhanced Raman Spectroscopy: Plasmid-Free vs. Plasmid-Embedded DNA. Analyst 2016, 141, 3251–3258. 10.1039/C6AN00350H. PubMed DOI

Kurouski D.; Deckert-Gaudig T.; Deckert V.; Lednev I. K. Structure and Composition of Insulin Fibril Surfaces Probed by TERS. J. Am. Chem. Soc. 2012, 134, 13323–13329. 10.1021/ja303263y. PubMed DOI PMC

Deckert-Gaudig T.; Kurouski D.; Hedegaard M. A. B.; Singh P.; Lednev I. K.; Deckert V. Spatially Resolved Spectroscopic Differentiation of Hydrophilic and Hydrophobic Domains on Individual Insulin Amyloid Fibrils. Sci. Rep. 2016, 6, 33575.10.1038/srep33575. PubMed DOI PMC

Bonhommeau S.; Talaga D.; Hunel J.; Cullin C.; Lecomte S. Tip-Enhanced Raman Spectroscopy to Distinguish Toxic Oligomers from Aβ1-42 Fibrils at the Nanometer Scale. Angew. Chem., Int. Ed. Engl. 2017, 56, 1771–1774. 10.1002/anie.201610399. PubMed DOI

Lipiec E.; Perez-Guaita D.; Kaderli J.; Wood B. R.; Zenobi R. Direct Nanospectroscopic Verification of the Amyloid Aggregation Pathway. Angew. Chem., Int. Ed. Engl. 2018, 57, 8519–8524. 10.1002/anie.201803234. PubMed DOI

Tabatabaei M.; Caetano F. A.; Pashee F.; Ferguson S. S. G.; Lagugne-Labarthet F. Tip-Enhanced Raman Spectroscopy of Amyloid Beta at Neuronal spines. Analyst 2017, 142, 4415–4421. 10.1039/C7AN00744B. PubMed DOI

Kurouski D.; Deckert-Gaudig T.; Deckert V.; Lednev I. K. Surface Characterization of Insulin Protofilaments and Fibril Polymorphs Using Tip-Enhanced Raman Spectroscopy (TERS). Biophys. J. 2014, 106, 263–271. 10.1016/j.bpj.2013.10.040. PubMed DOI PMC

Bao P. D.; Huang T. Q.; Liu X. M.; Wu T. Q. Surface-Enhanced Raman Spectroscopy of Insect Nuclear Polyhedrosis Virus. J. Raman Spectrosc. 2001, 32, 227–230. 10.1002/jrs.665. DOI

Cialla D.; Deckert-Gaudig T.; Budich C.; Laue M.; Moller R.; Naumann D.; Deckert V.; Popp J. Raman to the Limit: Tip-Enhanced Raman Spectroscopic Investigations of a Single Tobacco Mosaic Virus. J. Raman Spectrosc. 2009, 40, 240–243. 10.1002/jrs.2123. DOI

Yang J. L.; Wang H. J.; Zhang H.; Tian Z. Q.; Li J. F. Probing Hot Electron Behaviors by Surface-Enhanced Raman Spectroscopy. Cell. Rep. Phys. Sci. 2020, 1, 100184.10.1016/j.xcrp.2020.100184. DOI

Li J. F.; Huang Y. F.; Ding Y.; Yang Z. L.; Li S. B.; Zhou X. S.; Fan F. R.; Zhang W.; Zhou Z. Y.; Wu D. Y.; et al. Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Nature 2010, 464, 392–395. 10.1038/nature08907. PubMed DOI

Wang Y. H.; Wei J.; Radjenovic P.; Tian Z. Q.; Li J. F. In Situ Analysis of Surface Catalytic Reactions Using Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Anal. Chem. 2019, 91, 1675–1685. 10.1021/acs.analchem.8b05499. PubMed DOI

Zhang Z.; Merk V.; Hermanns A.; Unger W. E. S.; Kneipp J. Role of Metal Cations in Plasmon-Catalyzed Oxidation: A Case Study of p-Aminothiophenol Dimerization. ACS Catal. 2017, 7, 7803–7809. 10.1021/acscatal.7b02700. DOI

Wang J. L.; Ando R. A.; Camargo P. H. C. Controlling the Selectivity of the Surface Plasmon Resonance Mediated Oxidation of p-Aminothiophenol on Au Nanoparticles by Charge Transfer from UV-excited TiO2. Angew. Chem., Int. Ed. Engl. 2015, 54, 6909–6912. 10.1002/anie.201502077. PubMed DOI

Xie W.; Schlucker S. Hot Electron-Induced Reduction of Small Molecules on Photorecycling Metal Surfaces. Nat. Commun. 2015, 6, 7570.10.1038/ncomms8570. PubMed DOI PMC

Cortes E.; Xie W.; Cambiasso J.; Jermyn A. S.; Sundararaman R.; Narang P.; Schlucker S.; Maier S. A. Plasmonic Hot Electron Transport Drives Nano-Localized Chemistry. Nat. Commun. 2017, 8, 14880.10.1038/ncomms14880. PubMed DOI PMC

Brandt N. C.; Keller E. L.; Frontiera R. R. Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry. J. Phys. Chem. Lett. 2016, 7, 3179–3185. 10.1021/acs.jpclett.6b01453. PubMed DOI

Karaballi R. A.; Nel A.; Krishnan S.; Blackburn J.; Brosseau C. L. Development of an Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS) Aptasensor for Direct Detection of DNA Hybridization. Phys. Chem. Chem. Phys. 2015, 17, 21356–21363. 10.1039/C4CP05077K. PubMed DOI

Lee T.; Mohammadniaei M.; Zhang H.; Yoon J.; Choi H. K.; Guo S. J.; Guo P. X.; Choi J. W. Single Functionalized pRNA/Gold Nanoparticle for Ultrasensitive MicroRNA Detection Using Electrochemical Surface-Enhanced Raman Spectroscopy. Adv. Sci. 2020, 7, 1902477.10.1002/advs.201902477. PubMed DOI PMC

Hu Y. L.; Wu C. J.; Huang S. Q.; Luo X. L.; Yuan R.; Yang X. A Novel SERS Substrate with High Reusability for Sensitive Detection of miRNA 21. Talanta 2021, 228, 122240.10.1016/j.talanta.2021.122240. PubMed DOI

Goodall B. L.; Robinson A. M.; Brosseau C. L. Electrochemical-Surface Enhanced Raman Spectroscopy (E-SERS) of Uric Acid: A Potential Rapid Diagnostic Method for Early Preeclampsia Detection. Phys. Chem. Chem. Phys. 2013, 15, 1382–1388. 10.1039/C2CP42596C. PubMed DOI

Hernandez S.; Perales-Rondon J. V.; Heras A.; Colina A. Determination of Uric Acid in Synthetic Urine by Using Electrochemical Surface Oxidation Enhanced Raman Scattering. Anal. Chim. Acta 2019, 1085, 61–67. 10.1016/j.aca.2019.07.057. PubMed DOI

Huang C. Y.; Hsiao H. C. Integrated EC-SERS Chip with Uniform Nanostructured EC-SERS Active Working Electrode for Rapid Detection of Uric Acid. Sensors 2020, 20, 7066.10.3390/s20247066. PubMed DOI PMC

Lynk T. P.; Sit C. S.; Brosseau C. L. Electrochemical Surface-Enhanced Raman Spectroscopy as a Platform for Bacterial Detection and Identification. Anal. Chem. 2018, 90, 12639–12646. 10.1021/acs.analchem.8b02806. PubMed DOI

Do H.; Kwon S. R.; Fu K. Y.; Morales-Soto N.; Shrout J. D.; Bohn P. W. Electrochemical Surface-Enhanced Raman Spectroscopy of Pyocyanin Secreted by Pseudomonas aeruginosa Communities. Langmuir 2019, 35, 7043–7049. 10.1021/acs.langmuir.9b00184. PubMed DOI PMC

Hassanain W. A.; Izake E. L.; Ayoko G. A. Spectroelectrochemical Nanosensor for the Determination of Cystatin C in Human Blood. Anal. Chem. 2018, 90, 10843–10850. 10.1021/acs.analchem.8b02121. PubMed DOI

Huang S. C.; Bao Y. F.; Wu S. S.; Huang T. X.; Sartin M. M.; Wang X.; Ren B. Electrochemical Tip-Enhanced Raman Spectroscopy: An in Situ Nanospectroscopy for Electrochemistry. Annu. Rev. Phys. Chem. 2021, 72, 213–234. 10.1146/annurev-physchem-061020-053442. PubMed DOI

Kurouski D.; Mattei M.; Van Duyne R. P. Probing Redox Reactions at the Nanoscale with Electrochemical Tip-Enhanced Raman Spectroscopy. Nano Lett. 2015, 15, 7956–7962. 10.1021/acs.nanolett.5b04177. PubMed DOI

Mattei M.; Kang G.; Goubert G.; Chulhai D. V.; Schatz G. C.; Jensen L.; Van Duyne R. P. Tip-Enhanced Raman Voltammetry: Coverage Dependence and Quantitative Modeling. Nano Lett. 2017, 17, 590–596. 10.1021/acs.nanolett.6b04868. PubMed DOI

Zeng Z. C.; Huang S. C.; Wu D. Y.; Meng L. Y.; Li M. H.; Huang T. X.; Zhong J. H.; Wang X.; Yang Z. L.; Ren B. Electrochemical Tip-Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2015, 137, 11928–11931. 10.1021/jacs.5b08143. PubMed DOI

Huang S. C.; Ye J. Z.; Shen X. R.; Zhao Q. Q.; Zeng Z. C.; Li M. H.; Wu D. Y.; Wang X.; Ren B. Electrochemical Tip-Enhanced Raman Spectroscopy with Improved Sensitivity Enabled by a Water Immersion Objective. Anal. Chem. 2019, 91, 11092–11097. 10.1021/acs.analchem.9b01701. PubMed DOI

Sabanes N. M.; Ohto T.; Andrienko D.; Nagata Y.; Domke K. F. Electrochemical TERS Elucidates Potential-Induced Molecular Reorientation of Adenine/Au(111). Angew. Chem., Int. Ed. Engl. 2017, 56, 9796–9801. 10.1002/anie.201704460. PubMed DOI

Touzalin T.; Joiret S.; Maisonhaute E.; Lucas I. T. Complex Electron Transfer Pathway at a Microelectrode Captured by in Situ Nanospectroscopy. Anal. Chem. 2017, 89, 8974–8980. 10.1021/acs.analchem.7b01542. PubMed DOI

Touzalin T.; Joiret S.; Lucas I. T.; Maisonhaute E. Electrochemical Tip-Enhanced Raman Spectroscopy Imaging with 8 nm Lateral Resolution. Electrochem. Commun. 2019, 108, 106557.10.1016/j.elecom.2019.106557. DOI

Kumar N.; Wondergem C. S.; Wain A. J.; Weckhuysen B. M. In Situ Nanoscale Investigation of Catalytic Reactions in the Liquid Phase Using Zirconia-Protected Tip-Enhanced Raman Spectroscopy Probes. J. Phys. Chem. Lett. 2019, 10, 1669–1675. 10.1021/acs.jpclett.8b02496. PubMed DOI PMC

Wang R.; Kurouski D. Elucidation of Tip-Broadening Effect in Tip-Enhanced Raman Spectroscopy (TERS): A Cause of Artifacts or Potential for 3D TERS. J. Phys. Chem. C 2018, 122, 24334–24340. 10.1021/acs.jpcc.8b09455. DOI

Karabeber H.; Huang R. M.; Iacono P.; Samii J. M.; Pitter K.; Holland E. C.; Kircher M. F. Guiding Brain Tumor Resection Using Surface-Enhanced Raman Scattering Nanoparticles and a Hand-Held Raman Scanner. ACS Nano 2014, 8, 9755–9766. 10.1021/nn503948b. PubMed DOI PMC

Han L. M.; Duan W. J.; Li X. W.; Wang C.; Jin Z. Y.; Zhai Y. T.; Cao C.; Chen L.; Xu W. J.; Liu Y.; et al. Surface-Enhanced Resonace Raman Scattering - Guided Brain Tumor Surgery Showing Prognostic Benefit in Rat Models. ACS Appl. Mater. Interfaces 2019, 11, 15241–15250. 10.1021/acsami.9b00227. PubMed DOI

Jin Z. Y.; Yue Q.; Duan W. J.; Sui A.; Zhao B. T.; Deng Y. H.; Zhai Y. T.; Zhang Y. W.; Sun T.; Zhang G. P.; et al. Intelligent SERS Navigation System Guiding Brain Tumor Surgery by Intraoperatively Delineating the Metabolic Acidosis. Adv. Sci. 2022, 9, e210493510.1002/advs.202270043. PubMed DOI PMC

Duan W. J.; Yue Q.; Liu Y.; Zhang Y. F.; Guo Q. H.; Wang C.; Yin S. J.; Fan D. D.; Xu W. J.; Zhuang J. X.; et al. A pH Ratiometrically Responsive Surface Enhanced Resonance Raman Scattering Probe for Tumor Acidic Margin Delineation and Image-Guided Surgery. Chem. Sci. 2020, 11, 4397–4402. 10.1039/D0SC00844C. PubMed DOI PMC

Zavaleta C. L.; Garai E.; Liu J. T. C.; Sensarn S.; Mandella M. J.; Van de Sompel D.; Friedland S.; Van Dam J.; Contag C. H.; Gambhir S. S. A Raman-Based Endoscopic Strategy for Multiplexed Molecular Imaging. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 10062–10063. 10.1073/pnas.1211309110. PubMed DOI PMC

Garai E.; Sensarn S.; Zavaleta C. L.; Van de Sompel D.; Loewke N. O.; Mandella M. J.; Gambhir S. S.; Contag C. H. High-Sensitivity, Real-Time, Ratiometric Imaging of Surface-Enhanced Raman Scattering Nanoparticles with a Clinically Translatable Raman Endoscope Device. J. Biomed. Opt. 2013, 18, 096008.10.1117/1.JBO.18.9.096008. PubMed DOI PMC

Garai E.; Sensarn S.; Zavaleta C. L.; Loewke N. O.; Rogalla S.; Mandella M. J.; Felt S. A.; Friedland S.; Liu J. T. C.; Gambhir S. S.; et al. A Real-Time Clinical Endoscopic System for Intraluminal, Multiplexed Imaging of Surface-Enhanced Raman Scattering Nanoparticles. PLoS One 2015, 10, e012318510.1371/journal.pone.0123185. PubMed DOI PMC

Wang Y. W.; Kang S.; Khan A.; Bao P. Q.; Liu J. T. C. In vivo Multiplexed Molecular Imaging of Esophageal Cancer via Spectral Endoscopy of Topically Applied SERS Nanoparticles. Biomed. Opt. Express 2015, 6, 3714–3723. 10.1364/BOE.6.003714. PubMed DOI PMC

Lu G.; De Keersmaecker H.; Su L.; Kenens B.; Rocha S.; Fron E.; Chen C.; Van Dorpe P.; Mizuno H.; Hofkens J.; et al. Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides. Adv. Mater. 2014, 26, 5124–5128. 10.1002/adma.201401237. PubMed DOI

Sharma N.; Takeshita N.; Ho K. Y. Raman Spectroscopy for the Endoscopic Diagnosis of Esophageal, Gastric, and Colonic Diseases. Clin. Endosc. 2016, 49, 404–407. 10.5946/ce.2016.100. PubMed DOI PMC

Zhang Y. Y.; Mi X.; Tan X. Y.; Xiang R. Recent Progress on Liquid Biopsy Analysis using Surface-Enhanced Raman Spectroscopy. Theranostics 2019, 9, 491–525. 10.7150/thno.29875. PubMed DOI PMC

Shanmugasundaram K. B.; Li J. R.; Sina A. I.; Wuethrich A.; Trau M. Toward Precision Oncology: SERS Microfluidic Systems for Multiplex Biomarker Analysis in Liquid Biopsy. Mater. Adv. 2022, 3, 1459–1471. 10.1039/D1MA00848J. DOI

Sha M. Y.; Xu H. X.; Natan M. J.; Cromer R. Surface-Enhanced Raman Scattering Tags for Rapid and Homogeneous Detection of Circulating Tumor Cells in the Presence of Human Whole Blood. J. Am. Chem. Soc. 2008, 130, 17214–17215. 10.1021/ja804494m. PubMed DOI PMC

Wang X.; Qian X. M.; Beitler J. J.; Chen Z. G.; Khuri F. R.; Lewis M. M.; Shin H. J. C.; Nie S. M.; Shin D. M. Detection of Circulating Tumor Cells in Human Peripheral Blood Using Surface-Enhanced Raman Scattering Nanoparticles. Cancer Res. 2011, 71, 1526–1532. 10.1158/0008-5472.CAN-10-3069. PubMed DOI PMC

Shi W.; Paproski R. J.; Moore R.; Zemp R. Detection of Circulating Tumor Cells Using Targeted Surface-Enhanced Raman Scattering Nanoparticles and Magnetic Enrichment. J. Biomed. Opt. 2014, 19, 056014.10.1117/1.JBO.19.5.056014. PubMed DOI

Nima Z. A.; Mahmood M.; Xu Y.; Mustafa T.; Watanabe F.; Nedosekin D. A.; Juratli M. A.; Fahmi T.; Galanzha E. I.; Nolan J. P.; et al. Circulating Tumor Cell Identification by Functionalized Silver-Gold Nanorods with Multicolor, Super-Enhanced SERS and Photothermal Resonances. Sci. Rep. 2015, 4, 4752.10.1038/srep04752. PubMed DOI PMC

Bhamidipati M.; Cho H. Y.; Lee K. B.; Fabris L. SERS-Based Quantification of Biomarker Expression at the Single Cell Level Enabled by Gold Nanostars and Truncated Aptamers. Bioconjugate Chem. 2018, 29, 2970–2981. 10.1021/acs.bioconjchem.8b00397. PubMed DOI

Reza K. K.; Dey S.; Wuethrich A.; Wang J.; Behren A.; Antaw F.; Wang Y. L.; Ibn Sina A.; Trau M. In Situ Single Cell Proteomics Reveals Circulating Tumor Cell Heterogeneity during Treatment. ACS Nano 2021, 15, 11231–11243. 10.1021/acsnano.0c10008. PubMed DOI

Cho H. Y.; Hossain M. K.; Lee J. H.; Han J.; Lee H. J.; Kim K. J.; Kim J. H.; Lee K. B.; Choi J. W. Selective Isolation and Noninvasive Analysis of Circulating Cancer Stem Cells Through Raman Imaging. Biosens. Bioelectron. 2018, 102, 372–382. 10.1016/j.bios.2017.11.049. PubMed DOI

Wilson R. E.; O’Connor R.; Gallops C. E.; Kwizera E. A.; Noroozi B.; Morshed B. I.; Wang Y. M.; Huang X. H. Immunomagnetic Capture and Multiplexed Surface Marker Detection of Circulating Tumor Cells with Magnetic Multicolor Surface-Enhanced Raman Scattering Nanotags. ACS Appl. Mater. Interfaces 2020, 12, 47220–47232. 10.1021/acsami.0c12395. PubMed DOI PMC

Wood B. R.; Bailo E.; Khiavi M. A.; Tilley L.; Deed S.; Deckert-Gaudig T.; McNaughton D.; Deckert V. Tip-Enhanced Raman Scattering (TERS) from Hemozoin Crystals within a Sectioned Erythrocyte. Nano Lett. 2011, 11, 1868–1873. 10.1021/nl103004n. PubMed DOI

Xiao L. F.; Bailey K. A.; Wang H.; Schultz Z. D. Probing Membrane Receptor-Ligand Specificity with Surface- and Tip-Enhanced Raman Scattering. Anal. Chem. 2017, 89, 9091–9099. 10.1021/acs.analchem.7b01796. PubMed DOI PMC

Treffer R.; Bohme R.; Deckert-Gaudig T.; Lau K.; Tiede S.; Lin X. M.; Deckert V. Advances in TERS (Tip-Enhanced Raman scattering) for Biochemical Applications. Biochem. Soc. Trans. 2012, 40, 609–614. 10.1042/BST20120033. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...