Toward a New Era of SERS and TERS at the Nanometer Scale: From Fundamentals to Innovative Applications
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article, Review
PubMed
36745738
PubMed Central
PMC9952515
DOI
10.1021/acs.chemrev.2c00316
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Review MeSH
Surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS) have opened a variety of exciting research fields. However, although a vast number of applications have been proposed since the two techniques were first reported, none has been applied to real practical use. This calls for an update in the recent fundamental and application studies of SERS and TERS. Thus, the goals and scope of this review are to report new directions and perspectives of SERS and TERS, mainly from the viewpoint of combining their mechanism and application studies. Regarding the recent progress in SERS and TERS, this review discusses four main topics: (1) nanometer to subnanometer plasmonic hotspots for SERS; (2) Ångström resolved TERS; (3) chemical mechanisms, i.e., charge-transfer mechanism of SERS and semiconductor-enhanced Raman scattering; and (4) the creation of a strong bridge between the mechanism studies and applications.
See more in PubMed
Fleischmann M.; Hendra P. J.; Mcquillan A. J. Raman-Spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett. 1974, 26, 163–166. 10.1016/0009-2614(74)85388-1. DOI
Albrecht M. G.; Creighton J. A. Anomalously Intense Raman-Spectra of Pyridine at a Silver Electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217. 10.1021/ja00457a071. DOI
Jeanmaire D. L.; Van Duyne R. P. Surface Raman Spectroelectrochemistry: Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. J. Electroanal. Chem. 1977, 84, 1–20. 10.1016/S0022-0728(77)80224-6. DOI
Stöckle R. M.; Suh Y. D.; Deckert V.; Zenobi R. Nanoscale Chemical Analysis by Tip-enhanced Raman Spectroscopy. Chem. Phys. Lett. 2000, 318, 131–136. 10.1016/S0009-2614(99)01451-7. DOI
Anderson M. S. Locally Enhanced Raman Spectroscopy with an Atomic Force Microscope. Appl. Phys. Lett. 2000, 76, 3130–3132. 10.1063/1.126546. DOI
Hayazawa N.; Inouye Y.; Sekkat Z.; Kawata S. Metallized Tip Amplification of Near-field Raman Scattering. Opt. Commun. 2000, 183, 333–336. 10.1016/S0030-4018(00)00894-4. DOI
Langer J.; Jimenez de Aberasturi D.; Aizpurua J.; Alvarez-Puebla R. A.; Auguié B.; Baumberg J. J.; Bazan G. C.; Bell S. E.; Boisen A.; Brolo A. G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117. 10.1021/acsnano.9b04224. PubMed DOI PMC
Zong C.; Xu M.; Xu L. J.; Wei T.; Ma X.; Zheng X. S.; Hu R.; Ren B. Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chem. Rev. 2018, 118, 4946–4980. 10.1021/acs.chemrev.7b00668. PubMed DOI
Xu K.; Zhou R.; Takei K.; Hong M. Toward Flexible Surface-Enhanced Raman Scattering (SERS) Sensors for Point-of-Care Diagnostics. Adv. Sci. 2019, 6, 1900925.10.1002/advs.201900925. PubMed DOI PMC
Jiang Y. F.; Sun D. W.; Pu H. B.; Wei Q. Y. Surface Enhanced Raman Spectroscopy (SERS): A Novel Reliable Technique for Rapid Detection of Common Harmful Chemical Residues. Trends Food Sci. Technol. 2018, 75, 10–22. 10.1016/j.tifs.2018.02.020. DOI
Fan M.; Andrade G. F. S.; Brolo A. G. A Review on Recent Advances in the Applications of Surface-Enhanced Raman Scattering in Analytical Chemistry. Anal. Chim. Acta 2020, 1097, 1–29. 10.1016/j.aca.2019.11.049. PubMed DOI
Bell S. E. J.; Charron G.; Cortes E.; Kneipp J.; de la Chapelle M. L.; Langer J.; Prochazka M.; Tran V.; Schlucker S. Towards Reliable and Quantitative Surface-Enhanced Raman Scattering (SERS): From Key Parameters to Good Analytical Practice. Angew. Chem., Int. Ed. Engl. 2020, 59, 5454–5462. 10.1002/anie.201908154. PubMed DOI PMC
Garcia-Rico E.; Alvarez-Puebla R. A.; Guerrini L. Direct Surface-Enhanced Raman Scattering (SERS) Spectroscopy of Nucleic Acids: From Fundamental Studies to Real-Life Applications. Chem. Soc. Rev. 2018, 47, 4909–4923. 10.1039/C7CS00809K. PubMed DOI
Tang H. B.; Zhu C. H.; Meng G. W.; Wu N. Q. Review-Surface-Enhanced Raman Scattering Sensors for Food Safety and Environmental Monitoring. J. Electrochem. Soc. 2018, 165, B3098–B3118. 10.1149/2.0161808jes. DOI
Baumberg J. J.; Aizpurua J.; Mikkelsen M. H.; Smith D. R. Extreme Nanophotonics from Ultrathin Metallic Gaps. Nat. Mater. 2019, 18, 668–678. 10.1038/s41563-019-0290-y. PubMed DOI
Haran G.; Chuntonov L. Artificial Plasmonic Molecules and Their Interaction with Real Molecules. Chem. Rev. 2018, 118, 5539–5580. 10.1021/acs.chemrev.7b00647. PubMed DOI
Itoh T.; Yamamoto Y. S. Between Plasmonics and Surface-enhanced Resonant Raman Spectroscopy: Toward Single-Molecule Strong Coupling at a Hotspot. Nanoscale 2021, 13, 1566–1580. 10.1039/D0NR07344J. PubMed DOI
Zhang H.; Duan S.; Radjenovic P. M.; Tian Z.-Q.; Li J.-F. Core-Shell Nanostructure-Enhanced Raman Spectroscopy for Surface Catalysis. Acc. Chem. Res. 2020, 53, 729–739. 10.1021/acs.accounts.9b00545. PubMed DOI
Hess C. New Advances in Using Raman Spectroscopy for the Characterization of Catalysts and Catalytic Reactions. Chem. Soc. Rev. 2021, 50, 3519–3564. 10.1039/D0CS01059F. PubMed DOI
Li Z. D.; Kurouski D. Nanoscale Structural Characterization of Plasmon-driven Reactions. Nanophotonics 2021, 10, 1657–1673. 10.1515/nanoph-2020-0647. DOI
Su H. S.; Feng H. S.; Wu X.; Sun J. J.; Ren B. Recent Advances in Plasmon-Enhanced Raman Spectroscopy for Catalytic Reactions on Bifunctional Metallic Nanostructures. Nanoscale 2021, 13, 13962–13975. 10.1039/D1NR04009J. PubMed DOI
Chen H.; Das A.; Bi L.; Choi N.; Moon J. I.; Wu Y.; Park S.; Choo J. Recent Advances in Surface-enhanced Raman Scattering-Based Microdevices for Point-of-Care Diagnosis of Viruses and Bacteria. Nanoscale 2020, 12, 21560–21570. 10.1039/D0NR06340A. PubMed DOI
Tahir M. A.; Dina N. E.; Cheng H.; Valev V. K.; Zhang L. Surface-Enhanced Raman Spectroscopy for Bioanalysis and Diagnosis. Nanoscale 2021, 13, 11593–11634. 10.1039/D1NR00708D. PubMed DOI
Ding S. Y.; You E. M.; Tian Z. Q.; Moskovits M. Electromagnetic Theories of Surface-Enhanced Raman Spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076. 10.1039/C7CS00238F. PubMed DOI
Itoh T.; Yamamoto Y. S.; Ozaki Y. Plasmon-Enhanced Spectroscopy of Absorption and Spontaneous Emissions Explained Using Cavity Quantum Optics. Chem. Soc. Rev. 2017, 46, 3904–3921. 10.1039/C7CS00155J. PubMed DOI
Yamamoto Y. S.; Itoh T. Why and How Do the Shapes of Surface-Enhanced Raman Scattering Spectra Change? Recent Progress from Mechanistic Studies. J. Raman Spectrosc. 2016, 47, 78–88. 10.1002/jrs.4874. DOI
Yamamoto Y. S.; Ozaki Y.; Itoh T. Recent Progress and Frontiers in the Electromagnetic Mechanism of Surface-Enhanced Raman Scattering. J. Photochem. Photobiol. C: Photochem. Rev. 2014, 21, 81–104. 10.1016/j.jphotochemrev.2014.10.001. DOI
Dovzhenko D. S.; Ryabchuk S. V.; Rakovich Y. P.; Nabiev I. R. Light-Matter Interaction in the Strong Coupling Regime: Configurations, Conditions, and Applications. Nanoscale 2018, 10, 3589–3605. 10.1039/C7NR06917K. PubMed DOI
Zhu W.; Esteban R.; Borisov A. G.; Baumberg J. J.; Nordlander P.; Lezec H. J.; Aizpurua J.; Crozier K. B. Quantum Mechanical Effects in Plasmonic Structures with Subnanometre Gaps. Nat. Commun. 2016, 7, 11495.10.1038/ncomms11495. PubMed DOI PMC
Huang Y. F.; Wu D. Y.; Zhu H. P.; Zhao L. B.; Liu G. K.; Ren B.; Tian Z. Q. Surface-Enhanced Raman Spectroscopic Study of p-Aminothiophenol. Phys. Chem. Chem. Phys. 2012, 14, 8485–8497. 10.1039/c2cp40558j. PubMed DOI
Payton J. L.; Morton S. M.; Moore J. E.; Jensen L. A Hybrid Atomistic Electrodynamics-quantum Mechanical Approach for Simulating Surface-Enhanced Raman Scattering. Acc. Chem. Res. 2014, 47, 88–99. 10.1021/ar400075r. PubMed DOI
Demirel G.; Usta H.; Yilmaz M.; Celik M.; Alidagi H. A.; Buyukserin F. Surface-Enhanced Raman Spectroscopy (SERS): An Adventure from Plasmonic Metals to Organic Semiconductors as SERS Platforms. J. Mater. Chem. C 2018, 6, 5314–5335. 10.1039/C8TC01168K. DOI
Ji W.; Zhao B.; Ozaki Y. Semiconductor Materials in Analytical Applications of Surface-Enhanced Raman Scattering. J. Raman Spectrosc. 2016, 47, 51–58. 10.1002/jrs.4854. DOI
Wang H.; Liu Y.; Rao G.; Wang Y.; Du X.; Hu A.; Hu Y.; Gong C.; Wang X.; Xiong J. Coupling Enhancement Mechanisms, Materials, and Strategies for Surface-Enhanced Raman Scattering Devices. Analyst 2021, 146, 5008–5032. 10.1039/D1AN00624J. PubMed DOI
Shvalya V.; Filipic G.; Zavasnik J.; Abdulhalim I.; Cvelbar U. Surface-enhanced Raman Spectroscopy for Chemical and Biological Sensing Using Nanoplasmonics: The Relevance of Interparticle Spacing and Surface Morphology. Appl. Phys. Rev. 2020, 7, 031307.10.1063/5.0015246. DOI
Hang Y.; Boryczka J.; Wu N. Visible-light and Near-infrared Fluorescence and Surface-enhanced Raman Scattering Point-of-Care Sensing and Bio-imaging: A Review. Chem. Soc. Rev. 2022, 51, 329–375. 10.1039/C9CS00621D. PubMed DOI PMC
Naqvi S.; Zhang Y.; Ahmed S.; Abdulraheem M. I.; Hu J.; Tahir M. N.; Raghavan V. Applied Surface Enhanced Raman Spectroscopy in Plant Hormones Detection, Annexation of Advanced Technologies: A review. Talanta 2022, 236, 122823.10.1016/j.talanta.2021.122823. PubMed DOI
Ding S.-Y.; Yi J.; Li J.-F.; Ren B.; Wu D.-Y.; Panneerselvam R.; Tian Z.-Q. Nanostructure-based Plasmon-Enhanced Raman Spectroscopy for Surface Analysis of Materials. Nat. Rev. Mater. 2016, 1, 16021.10.1038/natrevmats.2016.21. DOI
Li J.-F.; Zhang Y.-J.; Ding S.-Y.; Panneerselvam R.; Tian Z.-Q. Core-Shell Nanoparticle-Enhanced Raman Spectroscopy. Chem. Rev. 2017, 117, 5002–5069. 10.1021/acs.chemrev.6b00596. PubMed DOI
Zhang Z. L.; Xu P.; Yang X. Z.; Liang W. J.; Sun M. T. Surface Plasmon-Driven Photocatalysis in Ambient, Aqueous and High-Vacuum Monitored by SERS and TERS. J. Photochem. Photobiol. C-Photochem. Rev. 2016, 27, 100–112. 10.1016/j.jphotochemrev.2016.04.001. DOI
Moskovits M. Surface-Enhanced Spectroscopy. Rev. Mod. Phys. 1985, 57, 783–826. 10.1103/RevModPhys.57.783. DOI
Campion A.; Kambhampati P. Surface-Enhanced Raman Scattering. Chem. Soc. Rev. 1998, 27, 241–250. 10.1039/a827241z. DOI
Zrimsek A. B.; Chiang N.; Mattei M.; Zaleski S.; McAnally M. O.; Chapman C. T.; Henry A. I.; Schatz G. C.; Van Duyne R. P. Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy. Chem. Rev. 2017, 117, 7583–7613. 10.1021/acs.chemrev.6b00552. PubMed DOI
Nie S.; Emory S. R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 1997, 275, 1102–1106. 10.1126/science.275.5303.1102. PubMed DOI
Kneipp K.; Wang Y.; Kneipp H.; Perelman L. T.; Itzkan I.; Dasari R.; Feld M. S. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667–1670. 10.1103/PhysRevLett.78.1667. DOI
Gruenke N. L.; Cardinal M. F.; McAnally M. O.; Frontiera R. R.; Schatz G. C.; Van Duyne R. P. Ultrafast and Nonlinear Surface-Enhanced Raman Spectroscopy. Chem. Soc. Rev. 2016, 45, 2263–2290. 10.1039/C5CS00763A. PubMed DOI
Le Ru E. C.; Etchegoin P. G.. Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects. Elsevier, 2009; pp 1–663.
Moskovits M. Surface-Roughness and Enhanced Intensity of Raman-scattering by Molecules Adsorbed on Metals. J. Chem. Phys. 1978, 69, 4159–4161. 10.1063/1.437095. DOI
Xu H. X.; Bjerneld E. J.; Kall M.; Borjesson L. Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering. Phys. Rev. Lett. 1999, 83, 4357–4360. 10.1103/PhysRevLett.83.4357. DOI
Xu H.; Aizpurua J.; Kall M.; Apell P. Electromagnetic Contributions to Single-Molecule Sensitivity in Surface-Enhanced Raman Scattering. Phys. Rev. E 2000, 62, 4318–4324. 10.1103/PhysRevE.62.4318. PubMed DOI
Yoshida K.; Itoh T.; Tamaru H.; Biju V.; Ishikawa M.; Ozaki Y. Quantitative Evaluation of Electromagnetic Enhancement in Surface-Enhanced Resonance Raman Scattering from Plasmonic Properties and Morphologies of Individual Ag Nanostructures. Phys. Rev. B 2010, 81, 115406.10.1103/PhysRevB.81.115406. DOI
Dubey A.; Mishra R.; Cheng C. W.; Kuang Y. P.; Gwo S.; Yen T. J. Demonstration of a Superior Deep-UV Surface-Enhanced Resonance Raman Scattering (SERRS) Substrate and Single-Base Mutation Detection in Oligonucleotides. J. Am. Chem. Soc. 2021, 143, 19282–19286. 10.1021/jacs.1c09762. PubMed DOI
Lombardi J. R.; Birke R. L.; Lu T. H.; Xu J. Charge-Transfer Theory of Surface Enhanced Raman Spectroscopy: Herzberg-Teller Contributions. J. Chem. Phys. 1986, 84, 4174–4180. 10.1063/1.450037. DOI
Otto A.; Mrozek I.; Grabhorn H.; Akemann W. Surface-Enhanced Raman Scattering. J. Phys.-Condens. Matter 1992, 4, 1143–1212. 10.1088/0953-8984/4/5/001. DOI
Arenas J. F.; Soto J.; Tocon I. L.; Fernandez D. J.; Otero J. C.; Marcos J. I. The Role of Charge-Transfer States of the Metal-adsorbate Complex in Surface-Enhanced Raman scattering. J. Chem. Phys. 2002, 116, 7207–7216. 10.1063/1.1450542. DOI
Benz F.; Schmidt M. K.; Dreismann A.; Chikkaraddy R.; Zhang Y.; Demetriadou A.; Carnegie C.; Ohadi H.; De Nijs B.; Esteban R.; et al. Single-Molecule Optomechanics in “Picocavities. Science 2016, 354, 726–729. 10.1126/science.aah5243. PubMed DOI
Wessel J. Surface-Enhanced Optical Microscopy. J. Opt. Soc. Am. B 1985, 2, 1538–1541. 10.1364/JOSAB.2.001538. DOI
Pettinger B.; Picardi G.; Schuster R.; Ertl G. Surface Enhanced Raman Spectroscopy: Towards Single Molecule Spectroscopy. Electrochem. 2000, 68, 942–949. 10.5796/electrochemistry.68.942. DOI
Verma P. Tip-Enhanced Raman Spectroscopy: Technique and Recent Advances. Chem. Rev. 2017, 117, 6447–6466. 10.1021/acs.chemrev.6b00821. PubMed DOI
Wang X.; Huang S. C.; Huang T. X.; Su H. S.; Zhong J. H.; Zeng Z. C.; Li M. H.; Ren B. Tip-Enhanced Raman spectroscopy for Surfaces and Interfaces. Chem. Soc. Rev. 2017, 46, 4020–4041. 10.1039/C7CS00206H. PubMed DOI
Zhang R.; Zhang Y.; Dong Z. C.; Jiang S.; Zhang C.; Chen L. G.; Zhang L.; Liao Y.; Aizpurua J.; Luo Y.; et al. Chemical Mapping of a Single Molecule by Plasmon-Enhanced Raman Scattering. Nature 2013, 498, 82–86. 10.1038/nature12151. PubMed DOI
Wang D. S.; Kerker M. Enhanced Raman Scattering by Molecules Adsorbed at the Surface of Colloidal Spheroids. Phys. Rev. B 1981, 24, 1777–1790. 10.1103/PhysRevB.24.1777. DOI
Aravind P. K.; Nitzan A.; Metiu H. The Interaction between Electromagnetic Resonances and its Role in Spectroscopic Studies of Molecules Adsorbed on Colloidal Particles or Metal Spheres. Surf. Sci. 1981, 110, 189–204. 10.1016/0039-6028(81)90595-1. DOI
Inoue M.; Ohtaka K. Surface Enhanced Raman-Scattering by Metal Spheres. 1. Cluster Effect. J. Phys. Soc. Jpn. 1983, 52, 3853–3864. 10.1143/JPSJ.52.3853. DOI
Bohren C. F.; Huffman D. R.. Absorption and Scattering of Light by Small Particles; Wiley, 1983; pp 1–530.
Fox M.Quantum Optics: An Introduction; Oxford University Press, 2006; pp 1–378.
Andreani L. C.; Panzarini G.; Gerard J. M. Strong-Coupling Regime for Quantum Boxes in Pillar Microcavities: Theory. Phys. Rev. B 1999, 60, 13276–13279. 10.1103/PhysRevB.60.13276. DOI
Itoh T.; Yamamoto Y. S. Reproduction of Surface-Enhanced Resonant Raman Scattering and Fluorescence Spectra of a Strong Coupling System Composed of a Single Silver Nanoparticle Dimer and a Few Dye Molecules. J. Chem. Phys. 2018, 149, 244701.10.1063/1.5061816. PubMed DOI
Savage K. J.; Hawkeye M. M.; Esteban R.; Borisov A. G.; Aizpurua J.; Baumberg J. J. Revealing the Quantum Regime in Tunnelling Plasmonics. Nature 2012, 491, 574–577. 10.1038/nature11653. PubMed DOI
Zhu W.; Crozier K. B. Quantum Mechanical Limit to Plasmonic Enhancement as Observed by Surface-Enhanced Raman Scattering. Nat. Commun. 2014, 5, 5228.10.1038/ncomms6228. PubMed DOI
Itoh T.; Iga M.; Tamaru H.; Yoshida K.; Biju V.; Ishikawa M. Quantitative Evaluation of Blinking in Surface Enhanced Resonance Raman Scattering and Fluorescence by Electromagnetic Mechanism. J. Chem. Phys. 2012, 136, 024703.10.1063/1.3675567. PubMed DOI
Jensen L.; Aikens C. M.; Schatz G. C. Electronic Structure Methods for Studying Surface-Enhanced Raman Scattering. Chem. Soc. Rev. 2008, 37, 1061–1073. 10.1039/b706023h. PubMed DOI
Dirac P. A. M. The Quantum Theory of the Emission and Absorption of Radiation. Proc. R. Soc. London A: Math. Phys. Eng. Sci. 1927, 114, 243–265. 10.1098/rspa.1927.0039. DOI
Born M.; Oppenheimer J. R. Zur Quantentheorie der Molekeln. Ann. Phys. 1927, 389, 457–484. 10.1002/andp.19273892002. DOI
Allemand C. D. Depolarization Ratio Measurements in Raman Spectrometry. Appl. Spectrosc. 1970, 24, 348–353. 10.1366/000370270774371552. DOI
Albrecht A. C. Theory of Raman Intensities. J. Chem. Phys. 1961, 34, 1476–1484. 10.1063/1.1701032. DOI
Watanabe H.; Hayazawa N.; Inouye Y.; Kawata S. DFT Vibrational Calculations of Rhodamine 6G Adsorbed on Silver: Analysis of Tip-Enhanced Raman Spectroscopy. J. Phys. Chem. B 2005, 109, 5012–5020. 10.1021/jp045771u. PubMed DOI
Zhou Q.; Li X.; Fan Q.; Zhang X.; Zheng J. Charge Transfer between Metal Nanoparticles Interconnected with a Functionalized Molecule Probed by Surface-Enhanced Raman Spectroscopy. Angew. Chem., Int. Ed. Engl. 2006, 45, 3970–3973. 10.1002/anie.200504419. PubMed DOI
Osawa M.; Matsuda N.; Yoshii K.; Uchida I. Charge-Transfer Resonance Raman Process in Surface-Enhanced Raman-Scattering from p-Aminothiophenol Adsorbed on Silver- Herzberg-Teller contribution. J. Phys. Chem. 1994, 98, 12702–12707. 10.1021/j100099a038. DOI
Brolo A. G.; Irish D. E.; Lipkowski J. Surface-Enhanced Raman Spectra of Pyridine and Pyrazine Adsorbed on a Au(210) Single-Crystal Electrode. J. Phys. Chem. B 1997, 101, 3906–3909. 10.1021/jp970340f. DOI
Centeno S. P.; Lopez-Tocon I.; Arenas J. F.; Soto J.; Otero J. C. Selection Rules of the Charge Transfer Mechanism of Surface-Enhanced Raman Scattering: The Effect of the Adsorption on the Relative Intensities of Pyrimidine Bonded to Silver Nanoclusters. J. Phys. Chem. B 2006, 110, 14916–14922. 10.1021/jp0621373. PubMed DOI
Zhao L.; Jensen L.; Schatz G. C. Pyridine-Ag20 cluster: A Model System for Studying Surface-Enhanced Raman Scattering. J. Am. Chem. Soc. 2006, 128, 2911–2919. 10.1021/ja0556326. PubMed DOI
Lombardi J. R.; Birke R. L. A Unified Approach to Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2008, 112, 5605–5617. 10.1021/jp800167v. DOI
Halas N. J.; Lal S.; Chang W. S.; Link S.; Nordlander P. Plasmons in Strongly Coupled Metallic Nanostructures. Chem. Rev. 2011, 111, 3913–3961. 10.1021/cr200061k. PubMed DOI
Nam J. M.; Oh J. W.; Lee H.; Suh Y. D. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles. Acc. Chem. Res. 2016, 49, 2746–2755. 10.1021/acs.accounts.6b00409. PubMed DOI
Li G.-C.; Zhang Q.; Maier S. A.; Lei D. Plasmonic Particle-on-Film Nanocavities: A Versatile Platform for Plasmon-Enhanced Spectroscopy and Photochemistry. Nanophotonics 2018, 7, 1865–1889. 10.1515/nanoph-2018-0162. DOI
Simoncelli S.; Roller E. M.; Urban P.; Schreiber R.; Turberfield A. J.; Liedl T.; Lohmuller T. Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas. ACS Nano 2016, 10, 9809–9815. 10.1021/acsnano.6b05276. PubMed DOI
Zhan P.; Wen T.; Wang Z. G.; He Y.; Shi J.; Wang T.; Liu X.; Lu G.; Ding B. DNA Origami Directed Assembly of Gold Bowtie Nanoantennas for Single-Molecule Surface-Enhanced Raman Scattering. Angew. Chem., Int. Ed. Engl. 2018, 57, 2846–2850. 10.1002/anie.201712749. PubMed DOI
Garai M.; Gao N.; Xu Q.-H. Single-Particle Spectroscopic Studies on Two-Photon Photoluminescence of Coupled Au Nanorod Dimers. J. Phys. Chem. C 2018, 122, 23102–23110. 10.1021/acs.jpcc.8b07094. DOI
Xiang Q.; Li Z.; Zheng M.; Liu Q.; Chen Y.; Yang L.; Jiang T.; Duan H. Sensitive SERS Detection at the Single-Particle Level Based on Nanometer-Separated Mushroom-Shaped Plasmonic Dimers. Nanotechnology 2018, 29, 105301.10.1088/1361-6528/aaa691. PubMed DOI
Tian Y.; Shuai Z.; Shen J.; Zhang L.; Chen S.; Song C.; Zhao B.; Fan Q.; Wang L. Plasmonic Heterodimers with Binding Site-Dependent Hot Spot for Surface-Enhanced Raman Scattering. Small 2018, 14, e180066910.1002/smll.201800669. PubMed DOI
Qiu J.; Xie M.; Lyu Z.; Gilroy K. D.; Liu H.; Xia Y. General Approach to the Synthesis of Heterodimers of Metal Nanoparticles through Site-Selected Protection and Growth. Nano Lett. 2019, 19, 6703–6708. 10.1021/acs.nanolett.9b03167. PubMed DOI
Tiwari S.; Khandelwal U.; Sharma V.; Kumar G. V. P. Single Molecule Surface Enhanced Raman Scattering in a Single Gold Nanoparticle-Driven Thermoplasmonic Tweezer. J. Phys. Chem. Lett. 2021, 12, 11910–11918. 10.1021/acs.jpclett.1c03450. PubMed DOI
Sugano K.; Maruoka K.; Ikegami K.; Uesugi A.; Isono Y. Dynamic Surface-Enhanced Raman Spectroscopy of DNA Oligomer with a Single Hotspot from a Gold Nanoparticle Dimer. Opt. Lett. 2022, 47, 373–376. 10.1364/OL.441580. PubMed DOI
Itoh T.; Yoshikawa H.; Yoshida K.; Biju V.; Ishikawa M. Evaluation of Electromagnetic Enhancement of Surface Enhanced Hyper Raman Scattering Using Plasmonic Properties of Binary Active Sites in Single Ag Nanoaggregates. J. Chem. Phys. 2009, 130, 214706.10.1063/1.3146788. PubMed DOI
Brown L. V.; Sobhani H.; Lassiter J. B.; Nordlander P.; Halas N. J. Heterodimers: Plasmonic Properties of Mismatched Nanoparticle Pairs. ACS Nano 2010, 4, 819–832. 10.1021/nn9017312. PubMed DOI
Ye J.; Wen F.; Sobhani H.; Lassiter J. B.; Van Dorpe P.; Nordlander P.; Halas N. J. Plasmonic Nanoclusters: Near Field Properties of the Fano Resonance Interrogated with SERS. Nano Lett. 2012, 12, 1660–1667. 10.1021/nl3000453. PubMed DOI
Yoshida K.-I.; Itoh T.; Biju V.; Ishikawa M.; Ozaki Y. Experimental Evaluation of the Twofold Electromagnetic Enhancement Theory of Surface-Enhanced Resonance Raman Scattering. Phys. Rev. B 2009, 79, 085419.10.1103/PhysRevB.79.085419. DOI
Itoh T.; Yamamoto Y. S.; Kitahama Y.; Balachandran J. One-Dimensional Plasmonic Hotspots Located Between Silver Nanowire Dimers Evaluated by Surface-Enhanced Resonance Raman scattering. Phys. Rev. B 2017, 95, 115441.10.1103/PhysRevB.95.115441. DOI
Itoh T.; Yamamoto Y. S.; Balachandran J. Propagation Mechanism of Surface Plasmons Coupled with Surface-Enhanced Resonant Raman Scattering Light through a One-Dimensional Hotspot along a Silver Nanowire Dimer Junction. Phys. Rev. B 2021, 103, 245425.10.1103/PhysRevB.103.245425. DOI
Fang Y. R.; Wei H.; Hao F.; Nordlander P.; Xu H. X. Remote-Excitation Surface-Enhanced Raman Scattering Using Propagating Ag Nanowire Plasmons. Nano Lett. 2009, 9, 2049–2053. 10.1021/nl900321e. PubMed DOI
Hutchison J. A.; Centeno S. P.; Odaka H.; Fukumura H.; Hofkens J.; Uji I. H. Subdiffraction Limited, Remote Excitation of Surface Enhanced Raman Scattering. Nano Lett. 2009, 9, 995–1001. 10.1021/nl8030696. PubMed DOI
Itoh T.; Yamamoto Y. S. Recent Topics on Single-Molecule Fluctuation Analysis Using Blinking in Surface-Enhanced Resonance Raman Scattering: Clarification by the Electromagnetic Mechanism. Analyst 2016, 141, 5000–5009. 10.1039/C6AN00936K. PubMed DOI
Li Y.; Hu H.; Jiang W.; Shi J.; Halas N. J.; Nordlander P.; Zhang S.; Xu H. Duplicating Plasmonic Hotspots by Matched Nanoantenna Pairs for Remote Nanogap Enhanced Spectroscopy. Nano Lett. 2020, 20, 3499–3505. 10.1021/acs.nanolett.0c00434. PubMed DOI
Aravind P. K.; Metiu H. The Effects of the Interaction between Resonances in the Electromagnetic Response of a Sphere-Plane Structure - Applications to Surface Enhanced Spectroscopy. Surf. Sci. 1983, 124, 506–528. 10.1016/0039-6028(83)90806-3. DOI
Nordlander P.; Prodan E. Plasmon Hybridization in Nanoparticles Near Metallic Surfaces. Nano Lett. 2004, 4, 2209–2213. 10.1021/nl0486160. DOI
Le F.; Lwin N. Z.; Steele J. M.; Kall M.; Halas N. J.; Nordlander P. Plasmons in the Metallic Nanoparticle - Film System as a Tunable Impurity Problem. Nano Lett. 2005, 5, 2009–2013. 10.1021/nl0515100. PubMed DOI
Ciraci C.; Hill R. T.; Mock J. J.; Urzhumov Y.; Fernandez-Dominguez A. I.; Maier S. A.; Pendry J. B.; Chilkoti A.; Smith D. R. Probing the Ultimate Limits of Plasmonic Enhancement. Science 2012, 337, 1072–1074. 10.1126/science.1224823. PubMed DOI PMC
Benz F.; Chikkaraddy R.; Salmon A.; Ohadi H.; de Nijs B.; Mertens J.; Carnegie C.; Bowman R. W.; Baumberg J. J. SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape. J. Phys. Chem. Lett. 2016, 7, 2264–2269. 10.1021/acs.jpclett.6b00986. PubMed DOI PMC
Carnegie C.; Griffiths J.; de Nijs B.; Readman C.; Chikkaraddy R.; Deacon W. M.; Zhang Y.; Szabo I.; Rosta E.; Aizpurua J.; et al. Room-Temperature Optical Picocavities below 1 nm(3) Accessing Single-Atom Geometries. J. Phys. Chem. Lett. 2018, 9, 7146–7151. 10.1021/acs.jpclett.8b03466. PubMed DOI
Shin H. H.; Yeon G. J.; Choi H. K.; Park S. M.; Lee K. S.; Kim Z. H. Frequency-Domain Proof of the Existence of Atomic-Scale SERS Hot-Spots. Nano Lett. 2018, 18, 262–271. 10.1021/acs.nanolett.7b04052. PubMed DOI
Yu Y.; Xiao T.-H.; Wu Y.; Li W.; Zeng Q.-G.; Long L.; Li Z.-Y. Roadmap for Single-Molecule Surface-Enhanced Raman Spectroscopy. Adv. Photonics 2020, 2, 014002.10.1117/1.AP.2.1.014002. DOI
Huang J. A.; Mousavi M. Z.; Giovannini G.; Zhao Y.; Hubarevich A.; Soler M. A.; Rocchia W.; Garoli D.; De Angelis F. Multiplexed Discrimination of Single Amino Acid Residues in Polypeptides in a Single SERS Hot Spot. Angew. Chem., Int. Ed. Engl. 2020, 59, 11423–11431. 10.1002/anie.202000489. PubMed DOI
Fan J. A.; Wu C.; Bao K.; Bao J.; Bardhan R.; Halas N. J.; Manoharan V. N.; Nordlander P.; Shvets G.; Capasso F. Self-Assembled Plasmonic Nanoparticle Clusters. Science 2010, 328, 1135–1138. 10.1126/science.1187949. PubMed DOI
Zhang Y.; Zhen Y. R.; Neumann O.; Day J. K.; Nordlander P.; Halas N. J. Coherent Anti-Stokes Raman Scattering with Single-Molecule Sensitivity Using a Plasmonic Fano Resonance. Nat. Commun. 2014, 5, 4424.10.1038/ncomms5424. PubMed DOI
Kleinman S. L.; Sharma B.; Blaber M. G.; Henry A. I.; Valley N.; Freeman R. G.; Natan M. J.; Schatz G. C.; Van Duyne R. P. Structure Enhancement Factor Relationships in Single Gold Nanoantennas by Surface-Enhanced Raman Excitation Spectroscopy. J. Am. Chem. Soc. 2013, 135, 301–308. 10.1021/ja309300d. PubMed DOI
Chen J.; Gan F.; Wang Y.; Li G. Plasmonic Sensing and Modulation Based on Fano Resonances. Adv. Opt. Mater. 2018, 6, 1701152.10.1002/adom.201701152. DOI
Rahmani M.; Luk’yanchuk B.; Hong M. Fano Resonance in Novel Plasmonic Nanostructures. Laser Photon. Rev. 2013, 7, 329–349. 10.1002/lpor.201200021. DOI
Luk’yanchuk B.; Zheludev N. I.; Maier S. A.; Halas N. J.; Nordlander P.; Giessen H.; Chong C. T. The Fano Resonance in Plasmonic Nanostructures and Metamaterials. Nat. Mater. 2010, 9, 707–715. 10.1038/nmat2810. PubMed DOI
Michaels A. M.; Nirmal M.; Brus L. E. Surface Enhanced Raman Spectroscopy of Individual Rhodamine 6G Molecules on Large Ag Nanocrystals. J. Am. Chem. Soc. 1999, 121, 9932–9939. 10.1021/ja992128q. DOI
Constantino C. J. L.; Lemma T.; Antunes P. A.; Aroca R. Single-Molecule Detection Using Surface-Enhanced Resonance Raman Scattering and Langmuir-Blodgett Monolayers. Anal. Chem. 2001, 73, 3674–3678. 10.1021/ac0101961. PubMed DOI
Weiss A.; Haran G. Time-Dependent Single-Molecule Raman Scattering as a Probe of Surface Dynamics. J. Phys. Chem. B 2001, 105, 12348–12354. 10.1021/jp0126863. DOI
Habuchi S.; Cotlet M.; Gronheid R.; Dirix G.; Michiels J.; Vanderleyden J.; De Schryver F. C.; Hofkens J. Single-Molecule Surface Enhanced Resonance Raman Spectroscopy of the Enhanced Green Fluorescent Protein. J. Am. Chem. Soc. 2003, 125, 8446–8447. 10.1021/ja0353311. PubMed DOI
Ward D. R.; Grady N. K.; Levin C. S.; Halas N. J.; Wu Y.; Nordlander P.; Natelson D. Electromigrated Nanoscale Gaps for Surface-Enhanced Raman Spectroscopy. Nano Lett. 2007, 7, 1396–1400. 10.1021/nl070625w. PubMed DOI
Le Ru E. C.; Meyer M.; Etchegoin P. G. Proof of Single-Molecule Sensitivity in Surface Enhanced Raman Scattering (SERS) by Means of a Two-Analyte Technique. J. Phys. Chem. B 2006, 110, 1944–1948. 10.1021/jp054732v. PubMed DOI
Dieringer J. A.; Lettan R. B. 2nd; Scheidt K. A.; Van Duyne R. P. A Frequency Domain Existence Proof of Single-Molecule Surface-Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2007, 129, 16249–16256. 10.1021/ja077243c. PubMed DOI
Stranahan S. M.; Willets K. A. Super-Resolution Optical Imaging of Single-Molecule SERS Hot Spots. Nano Lett. 2010, 10, 3777–3784. 10.1021/nl102559d. PubMed DOI
Kitahama Y.; Tanaka Y.; Itoh T.; Ozaki Y. Power-Law Statistics in Blinking SERS of Thiacyanine Adsorbed on a Single Silver Nanoaggregate. Phys. Chem. Chem. Phys. 2010, 12, 7457–7460. 10.1039/c000824a. PubMed DOI
Etchegoin P. G.; Le Ru E. C. Resolving Single Molecules in Surface-Enhanced Raman Scattering within the Inhomogeneous Broadening of Raman Peaks. Anal. Chem. 2010, 82, 2888–2892. 10.1021/ac9028888. PubMed DOI
Kim N. H.; Hwang W.; Baek K.; Rohman M. R.; Kim J.; Kim H. W.; Mun J.; Lee S. Y.; Yun G.; Murray J.; et al. Smart SERS Hot Spots: Single Molecules Can Be Positioned in a Plasmonic Nanojunction Using Host-Guest Chemistry. J. Am. Chem. Soc. 2018, 140, 4705–4711. 10.1021/jacs.8b01501. PubMed DOI
Willets K. A. Super-Resolution Imaging of SERS Hot Spots. Chem. Soc. Rev. 2014, 43, 3854–3864. 10.1039/C3CS60334B. PubMed DOI
Titus E. J.; Weber M. L.; Stranahan S. M.; Willets K. A. Super-Resolution SERS Imaging Beyond the Single-Molecule Limit: An Isotope-Edited Approach. Nano Lett. 2012, 12, 5103–5110. 10.1021/nl3017779. PubMed DOI
Olson A. P.; Spies K. B.; Browning A. C.; Soneral P. A. G.; Lindquist N. C. Chemically Imaging Bacteria with Super-Resolution SERS on Ultra-Thin Silver Substrates. Sci. Rep. 2017, 7, 9135.10.1038/s41598-017-08915-w. PubMed DOI PMC
Wang M.; Chen M.; Zhanghao K.; Zhang X.; Jing Z.; Gao J.; Zhang M. Q.; Jin D.; Dai Z.; Xi P.; et al. Polarization-Based Super-Resolution Imaging of Surface-Enhanced Raman Scattering Nanoparticles with Orientational Information. Nanoscale 2018, 10, 19757–19765. 10.1039/C8NR04808H. PubMed DOI
de Albuquerque C. D. L.; Schultz Z. D. Super-resolution Surface-Enhanced Raman Scattering Imaging of Single Particles in Cells. Anal. Chem. 2020, 92, 9389–9398. 10.1021/acs.analchem.0c01864. PubMed DOI PMC
Galloway C. M.; Etchegoin P. G.; Le Ru E. C. Ultrafast Nonradiative Decay Rates on Metallic Surfaces by Comparing Surface-Enhanced Raman and Fluorescence Signals of Single Molecules. Phys. Rev. Lett. 2009, 103, 063003.10.1103/PhysRevLett.103.063003. PubMed DOI
Xu H.; Wang X. H.; Persson M. P.; Xu H. Q.; Kall M.; Johansson P. Unified Treatment of Fluorescence and Raman Scattering Processes Near Metal Surfaces. Phys. Rev. Lett. 2004, 93, 243002.10.1103/PhysRevLett.93.243002. PubMed DOI
Johansson P.; Xu H.; Käll M. Surface-Enhanced Raman Scattering and Fluorescence Near Metal Nanoparticles. Phys. Rev. B 2005, 72, 035427.10.1103/PhysRevB.72.035427. DOI
Xu H.; Kall M. Surface-Plasmon-Enhanced Optical Forces in Silver Nanoaggregates. Phys. Rev. Lett. 2002, 89, 246802.10.1103/PhysRevLett.89.246802. PubMed DOI
Shimizu K. T.; Neuhauser R. G.; Leatherdale C. A.; Empedocles S. A.; Woo W. K.; Bawendi M. G. Blinking Statistics in Single Semiconductor Nanocrystal Quantum Dots. Phys. Rev. B 2001, 63, 205316.10.1103/PhysRevB.63.205316. DOI
Kitahama Y.; Nishiyama Y.; Ozaki Y. Blinking Surface-Enhanced Raman Scattering and Fluorescence From a Single Silver Nanoaggregate Simultaneously Analyzed by Bi-Color Intensity Ratios and a Truncated Power Law. J. Phys. Chem. C 2018, 122, 22106–22113. 10.1021/acs.jpcc.8b06920. DOI
Lindquist N. C.; Brolo A. G. Ultra-High-Speed Dynamics in Surface-Enhanced Raman Scattering. J. Phys. Chem. C 2021, 125, 7523–7532. 10.1021/acs.jpcc.0c11150. DOI
Zong C.; Chen C. J.; Wang X.; Hu P.; Liu G. K.; Ren B. Single-Molecule Level Rare Events Revealed by Dynamic Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2020, 92, 15806–15810. 10.1021/acs.analchem.0c02936. PubMed DOI
Barrow S. J.; Kasera S.; Rowland M. J.; del Barrio J.; Scherman O. A. Cucurbituril-Based Molecular Recognition. Chem. Rev. 2015, 115, 12320–12406. 10.1021/acs.chemrev.5b00341. PubMed DOI
Ai Q.; Zhou J.; Guo J.; Pandey P.; Liu S.; Fu Q.; Liu Y.; Deng C.; Chang S.; Liang F.; et al. Observing Dynamic Molecular Changes at Single-Molecule Level in a Cucurbituril Based Plasmonic Molecular Junction. Nanoscale 2020, 12, 17103–17112. 10.1039/D0NR03360J. PubMed DOI
Taylor R. W.; Lee T. C.; Scherman O. A.; Esteban R.; Aizpurua J.; Huang F. M.; Baumberg J. J.; Mahajan S. Precise Subnanometer Plasmonic Junctions for SERS within Gold Nanoparticle Assemblies Using Cucurbit[n]uril ″Glue″. ACS Nano 2011, 5, 3878–3887. 10.1021/nn200250v. PubMed DOI
Taylor R. W.; Coulston R. J.; Biedermann F.; Mahajan S.; Baumberg J. J.; Scherman O. A. In situ SERS Monitoring of Photochemistry within a Nanojunction Reactor. Nano Lett. 2013, 13, 5985–5990. 10.1021/nl403164c. PubMed DOI PMC
Sigle D. O.; Kasera S.; Herrmann L. O.; Palma A.; de Nijs B.; Benz F.; Mahajan S.; Baumberg J. J.; Scherman O. A. Observing Single Molecules Complexing with Cucurbit[7]uril through Nanogap Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. Lett. 2016, 7, 704–710. 10.1021/acs.jpclett.5b02535. PubMed DOI
Lee H. K.; Lee Y. H.; Koh C. S. L.; Phan-Quang G. C.; Han X.; Lay C. L.; Sim H. Y. F.; Kao Y. C.; An Q.; Ling X. Y. Designing Surface-Enhanced Raman Scattering (SERS) Platforms beyond Hotspot Engineering: Emerging Opportunities in Analyte Manipulations and Hybrid Materials. Chem. Soc. Rev. 2019, 48, 731–756. 10.1039/C7CS00786H. PubMed DOI
Brus L. Noble Metal Nanocrystals: Plasmon Electron Transfer Photochemistry and Single-Molecule Raman Spectroscopy. Acc. Chem. Res. 2008, 41, 1742–1749. 10.1021/ar800121r. PubMed DOI
Choi H. K.; Lee K. S.; Shin H. H.; Koo J. J.; Yeon G. J.; Kim Z. H. Single-Molecule Surface-Enhanced Raman Scattering as a Probe of Single-Molecule Surface Reactions: Promises and Current Challenges. Acc. Chem. Res. 2019, 52, 3008–3017. 10.1021/acs.accounts.9b00358. PubMed DOI
Xie W.; Schlucker S. Surface-Enhanced Raman Spectroscopic Detection of Molecular Chemo- and Plasmo-Catalysis on Noble Metal Nanoparticles. Chem. Commun. 2018, 54, 2326–2336. 10.1039/C7CC07951F. PubMed DOI
Lombardi J. R.; Birke R. L.; Haran G. Single Molecule SERS Spectral Blinking and Vibronic Coupling. J. Phys. Chem. C 2011, 115, 4540–4545. 10.1021/jp111345u. DOI
Itoh T.; Hashimoto K.; Biju V.; Ishikawa M.; Wood B. R.; Ozaki Y. Elucidation of Interaction between Metal-Fee Tetraphenylporphine and Surface Ag Atoms through Temporal Fluctuation of Surface-Enhanced Resonance Raman Scattering and Background-Light Emission. J. Phys. Chem. B 2006, 110, 9579–9585. 10.1021/jp0609939. PubMed DOI
Mukherjee S.; Libisch F.; Large N.; Neumann O.; Brown L. V.; Cheng J.; Lassiter J. B.; Carter E. A.; Nordlander P.; Halas N. J. Hot Electrons Do the Impossible: Plasmon-Induced Dissociation of H2 on Au. Nano Lett. 2013, 13, 240–247. 10.1021/nl303940z. PubMed DOI
Yu S.; Wilson A. J.; Kumari G.; Zhang X.; Jain P. K. Opportunities and Challenges of Solar-Energy-Driven Carbon Dioxide to Fuel Conversion with Plasmonic Catalysts. ACS Energy Lett. 2017, 2, 2058–2070. 10.1021/acsenergylett.7b00640. DOI
Ingram D. B.; Linic S. Water Splitting on Composite Plasmonic-Metal/Semiconductor Photoelectrodes: Evidence for Selective Plasmon-Induced Formation of Charge Carriers Near the Semiconductor Surface. J. Am. Chem. Soc. 2011, 133, 5202–5205. 10.1021/ja200086g. PubMed DOI
Oshikiri T.; Ueno K.; Misawa H. Plasmon-Induced Ammonia Synthesis through Nitrogen Photofixation with Visible Light Irradiation. Angew. Chem., Int. Ed. Engl. 2014, 53, 9802–9805. 10.1002/anie.201404748. PubMed DOI
Christopher P.; Xin H.; Linic S. Visible-Light-Enhanced Catalytic Oxidation Reactions on Plasmonic Silver Nanostructures. Nat. Chem. 2011, 3, 467–472. 10.1038/nchem.1032. PubMed DOI
Zhan C.; Chen X. J.; Huang Y. F.; Wu D. Y.; Tian Z. Q. Plasmon-Mediated Chemical Reactions on Nanostructures Unveiled by Surface-Enhanced Raman Spectroscopy. Acc. Chem. Res. 2019, 52, 2784–2792. 10.1021/acs.accounts.9b00280. PubMed DOI
Li S.; Miao P.; Zhang Y.; Wu J.; Zhang B.; Du Y.; Han X.; Sun J.; Xu P. Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis. Adv. Mater. 2021, 33, e200008610.1002/adma.202000086. PubMed DOI
Cai Z. F.; Merino J. P.; Fang W.; Kumar N.; Richardson J. O.; De Feyter S.; Zenobi R. Molecular-Level Insights on Reactive Arrangement in On-Surface Photocatalytic Coupling Reactions Using Tip-Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2022, 144, 538–546. 10.1021/jacs.1c11263. PubMed DOI
Huang Y. F.; Wang W.; Guo H. Y.; Zhan C.; Duan S.; Zhan D.; Wu D. Y.; Ren B.; Tian Z. Q. Microphotoelectrochemical Surface-Enhanced Raman Spectroscopy: Toward Bridging Hot-Electron Transfer with a Molecular Reaction. J. Am. Chem. Soc. 2020, 142, 8483–8489. 10.1021/jacs.0c02523. PubMed DOI
de Nijs B.; Benz F.; Barrow S. J.; Sigle D. O.; Chikkaraddy R.; Palma A.; Carnegie C.; Kamp M.; Sundararaman R.; Narang P.; et al. Plasmonic Tunnel Junctions for Single-Molecule Redox Chemistry. Nat. Commun. 2017, 8, 994.10.1038/s41467-017-00819-7. PubMed DOI PMC
Szczerbinski J.; Gyr L.; Kaeslin J.; Zenobi R. Plasmon-Driven Photocatalysis Leads to Products Known from E-beam and X-ray-Induced Surface Chemistry. Nano Lett. 2018, 18, 6740–6749. 10.1021/acs.nanolett.8b02426. PubMed DOI
Ferrari A. C.; Basko D. M. Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene. Nat. Nanotechnol. 2013, 8, 235–246. 10.1038/nnano.2013.46. PubMed DOI
Itoh T.; Yamamoto Y. S.; Biju V.; Tamaru H.; Wakida S.-I. Fluctuating Single sp2 Carbon Clusters at Single Hotspots of Silver Nanoparticle Dimers Investigated by Surface-Enhanced Resonance Raman Scattering. AIP Advances 2015, 5, 127113.10.1063/1.4937936. DOI
Hertzog M.; Wang M.; Mony J.; Borjesson K. Strong Light-Matter Interactions: A New Direction within Chemistry. Chem. Soc. Rev. 2019, 48, 937–961. 10.1039/C8CS00193F. PubMed DOI PMC
Ribeiro R. F.; Martinez-Martinez L. A.; Du M.; Campos-Gonzalez-Angulo J.; Yuen-Zhou J. Polariton Chemistry: Controlling Molecular Dynamics with Optical Cavities. Chem. Sci. 2018, 9, 6325–6339. 10.1039/C8SC01043A. PubMed DOI PMC
Ebbesen T. W. Hybrid Light-Matter States in a Molecular and Material Science Perspective. Acc. Chem. Res. 2016, 49, 2403–2412. 10.1021/acs.accounts.6b00295. PubMed DOI
Galego J.; Garcia-Vidal F. J.; Feist J. Suppressing Photochemical Reactions with Quantized Light Fields. Nat. Commun. 2016, 7, 13841.10.1038/ncomms13841. PubMed DOI PMC
Shi X.; Ueno K.; Oshikiri T.; Sun Q.; Sasaki K.; Misawa H. Enhanced Water Splitting under Modal Strong Coupling Conditions. Nat. Nanotechnol. 2018, 13, 953–958. 10.1038/s41565-018-0208-x. PubMed DOI
Torma P.; Barnes W. L. Strong Coupling between Surface Plasmon Polaritons and Emitters: A Review. Rep. Prog. Phys. 2015, 78, 013901.10.1088/0034-4885/78/1/013901. PubMed DOI
Le Ru E. C.; Etchegoin P. G.; Grand J.; Felidj N.; Aubard J.; Levi G. Mechanisms of Spectral Profile Modification in Surface-Enhanced Fluorescence. J. Phys. Chem. C 2007, 111, 16076–16079. 10.1021/jp076003g. DOI
Kneipp K.; Wang Y.; Kneipp H.; Itzkan I. I.; Dasari R. R.; Feld M. S. Population Pumping of Excited Vibrational States by Spontaneous Surface-Enhanced Raman Scattering. Phys. Rev. Lett. 1996, 76, 2444–2447. 10.1103/PhysRevLett.76.2444. PubMed DOI
Maher R. C.; Galloway C. M.; Le Ru E. C.; Cohen L. F.; Etchegoin P. G. Vibrational Pumping in Surface Enhanced Raman Scattering (SERS). Chem. Soc. Rev. 2008, 37, 965–79. 10.1039/b707870f. PubMed DOI
Wei H.; Yan X.; Niu Y.; Li Q.; Jia Z.; Xu H. Plasmon-Exciton Interactions: Spontaneous Emission and Strong Coupling. Adv. Funct. Mater. 2021, 31, 2100889.10.1002/adfm.202100889. DOI
Wu X.; Gray S. K.; Pelton M. Quantum-Dot-Induced Transparency in a Nanoscale Plasmonic Resonator. Opt. Express 2010, 18, 23633–23645. 10.1364/OE.18.023633. PubMed DOI
Itoh T.; Yamamoto Y. S.; Tamaru H.; Biju V.; Wakida S.-i.; Ozaki Y. Single-Molecular Surface-Enhanced Resonance Raman Scattering as a Quantitative Probe of Local Electromagnetic Field: The Case of Strong Coupling between Plasmonic and Excitonic Resonance. Phys. Rev. B 2014, 89, 195436.10.1103/PhysRevB.89.195436. DOI
Itoh T.; Yamamoto Y. S.; Okamoto T. Anti-crossing Property of Strong Coupling System of Silver Nanoparticle Dimers Coated with Thin Dye Molecular Films Analyzed by Electromagnetism. J. Chem. Phys. 2020, 152, 054710.10.1063/1.5133875. PubMed DOI
Wersall M.; Cuadra J.; Antosiewicz T. J.; Balci S.; Shegai T. Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons. Nano Lett. 2017, 17, 551–558. 10.1021/acs.nanolett.6b04659. PubMed DOI
Neuman T.; Aizpurua J.; Esteban R. Quantum Theory of Surface-Enhanced Resonant Raman Scattering (SERRS) of Molecules in Strongly Coupled Plasmon-Exciton Systems. Nanophotonics 2020, 9, 295–308. 10.1515/nanoph-2019-0336. DOI
Rossi T. P.; Shegai T.; Erhart P.; Antosiewicz T. J. Strong Plasmon-Molecule Coupling at the Nanoscale Revealed by First-Principles Modeling. Nat. Commun. 2019, 10, 3336.10.1038/s41467-019-11315-5. PubMed DOI PMC
Ruppin R. Optical-Absorption of a Coated Sphere above a Substrate. Physica A 1991, 178, 195–205. 10.1016/0378-4371(91)90080-V. DOI
Murata N.; Hata R.; Ishihara H. Crossover between Energy Transparency Resonance and Rabi Splitting in Antenna-Molecule Coupled Systems. J. Phys. Chem. C 2015, 119, 25493–25498. 10.1021/acs.jpcc.5b08590. DOI
Zengin G.; Gschneidtner T.; Verre R.; Shao L.; Antosiewicz T. J.; Moth-Poulsen K.; Käll M.; Shegai T. Evaluating Conditions for Strong Coupling between Nanoparticle Plasmons and Organic Dyes Using Scattering and Absorption Spectroscopy. J. Phys. Chem. C 2016, 120, 20588–20596. 10.1021/acs.jpcc.6b00219. DOI
Chikkaraddy R.; de Nijs B.; Benz F.; Barrow S. J.; Scherman O. A.; Rosta E.; Demetriadou A.; Fox P.; Hess O.; Baumberg J. J. Single-Molecule Strong Coupling at Room Temperature in Plasmonic Nanocavities. Nature 2016, 535, 127–130. 10.1038/nature17974. PubMed DOI PMC
Pelton M.; Storm S. D.; Leng H. Strong Coupling of Emitters to Single Plasmonic Nanoparticles: Exciton-Induced Transparency and Rabi Splitting. Nanoscale 2019, 11, 14540–14552. 10.1039/C9NR05044B. PubMed DOI
Zengin G.; Johansson G.; Johansson P.; Antosiewicz T. J.; Kall M.; Shegai T. Approaching the Strong Coupling Limit in Single Plasmonic Nanorods Interacting with J-aggregates. Sci. Rep. 2013, 3, 3074.10.1038/srep03074. PubMed DOI PMC
Zengin G.; Wersall M.; Nilsson S.; Antosiewicz T. J.; Kall M.; Shegai T. Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions. Phys. Rev. Lett. 2015, 114, 157401.10.1103/PhysRevLett.114.157401. PubMed DOI
Munkhbat B.; Wersall M.; Baranov D. G.; Antosiewicz T. J.; Shegai T. Suppression of Photo-Oxidation of Organic Chromophores by Strong Coupling to Plasmonic Nanoantennas. Sci. Adv. 2018, 4, eaas955210.1126/sciadv.aas9552. PubMed DOI PMC
Li N.; Han Z.; Huang Y.; Liang K.; Wang X.; Wu F.; Qi X.; Shang Y.; Yu L.; Ding B. Strong Plasmon-Exciton Coupling in Bimetallic Nanorings and Nanocuboids. J. Mater. Chem. C 2020, 8, 7672–7678. 10.1039/D0TC01837F. DOI
Zhang W.; You J. B.; Liu J.; Xiong X.; Li Z.; Png C. E.; Wu L.; Qiu C. W.; Zhou Z. K. Steering Room-Temperature Plexcitonic Strong Coupling: A Diexcitonic Perspective. Nano Lett. 2021, 21, 8979–8986. 10.1021/acs.nanolett.1c02248. PubMed DOI
Liu R.; Zhou Z. K.; Yu Y. C.; Zhang T.; Wang H.; Liu G.; Wei Y.; Chen H.; Wang X. H. Strong Light-Matter Interactions in Single Open Plasmonic Nanocavities at the Quantum Optics Limit. Phys. Rev. Lett. 2017, 118, 237401.10.1103/PhysRevLett.118.237401. PubMed DOI
Nagasawa F.; Takase M.; Murakoshi K. Raman Enhancement via Polariton States Produced by Strong Coupling between a Localized Surface Plasmon and Dye Excitons at Metal Nanogaps. J. Phys. Chem. Lett. 2014, 5, 14–19. 10.1021/jz402243a. PubMed DOI
Huang J.; Traverso A. J.; Yang G.; Mikkelsen M. H. Real-Time Tunable Strong Coupling: From Individual Nanocavities to Metasurfaces. ACS Photonics 2019, 6, 838–843. 10.1021/acsphotonics.8b01743. DOI
Schlather A. E.; Large N.; Urban A. S.; Nordlander P.; Halas N. J. Near-Field Mediated Plexcitonic Coupling and Giant Rabi Splitting in Individual Metallic Dimers. Nano Lett. 2013, 13, 3281–3286. 10.1021/nl4014887. PubMed DOI
Santhosh K.; Bitton O.; Chuntonov L.; Haran G. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun. 2016, 7, 11823.10.1038/ncomms11823. PubMed DOI PMC
Roller E. M.; Argyropoulos C.; Hogele A.; Liedl T.; Pilo-Pais M. Plasmon-Exciton Coupling Using DNA Templates. Nano Lett. 2016, 16, 5962–5966. 10.1021/acs.nanolett.6b03015. PubMed DOI
Gross H.; Hamm J. M.; Tufarelli T.; Hess O.; Hecht B. Near-Field Strong Coupling of Single Quantum Dots. Sci. Adv. 2018, 4, eaar490610.1126/sciadv.aar4906. PubMed DOI PMC
Luo Y.; Wang Y.; Liu M.; Zhu H.; Chen O.; Zou S.; Zhao J. Colloidal Assembly of Au-Quantum Dot-Au Sandwiched Nanostructures with Strong Plasmon-Exciton Coupling. J. Phys. Chem. Lett. 2020, 11, 2449–2456. 10.1021/acs.jpclett.0c00110. PubMed DOI
Bitton O.; Gupta S. N.; Houben L.; Kvapil M.; Krapek V.; Sikola T.; Haran G. Vacuum Rabi Splitting of a Dark Plasmonic Cavity Mode Revealed by Fast Electrons. Nat. Commun. 2020, 11, 487.10.1038/s41467-020-14364-3. PubMed DOI PMC
Leng H.; Szychowski B.; Daniel M. C.; Pelton M. Strong Coupling and Induced Transparency at Room Temperature with Single Quantum Dots and Gap Plasmons. Nat. Commun. 2018, 9, 4012.10.1038/s41467-018-06450-4. PubMed DOI PMC
Chen X.; Chen Y. H.; Qin J.; Zhao D.; Ding B.; Blaikie R. J.; Qiu M. Mode Modification of Plasmonic Gap Resonances Induced by Strong Coupling with Molecular Excitons. Nano Lett. 2017, 17, 3246–3251. 10.1021/acs.nanolett.7b00858. PubMed DOI
Ojambati O. S.; Chikkaraddy R.; Deacon W. D.; Horton M.; Kos D.; Turek V. A.; Keyser U. F.; Baumberg J. J. Quantum Electrodynamics at Room Temperature Coupling a Single Vibrating Molecule with a Plasmonic Nanocavity. Nat. Commun. 2019, 10, 1049.10.1038/s41467-019-08611-5. PubMed DOI PMC
Katzen J. M.; Tserkezis C.; Cai Q.; Li L. H.; Kim J. M.; Lee G.; Yi G. R.; Hendren W. R.; Santos E. J. G.; Bowman R. M.; et al. Strong Coupling of Carbon Quantum Dots in Plasmonic Nanocavities. ACS Appl. Mater. Interfaces 2020, 12, 19866–19873. 10.1021/acsami.0c03312. PubMed DOI
Li L.; Wang L.; Du C.; Guan Z.; Xiang Y.; Wu W.; Ren M.; Zhang X.; Tang A.; Cai W.; Xu J. Ultrastrong Coupling of CdZnS/ZnS Quantum Dots to Bonding Breathing Plasmons of Aluminum Metal-Insulator-Metal Nanocavities in Near-Ultraviolet Spectrum. Nanoscale 2020, 12, 3112–3120. 10.1039/C9NR08048A. PubMed DOI
Cade N. I.; Ritman-Meer T.; Richards D. Strong Coupling of Localized Plasmons and Molecular Excitons in Nanostructured Silver Films. Phys. Rev. B 2009, 79, 241404(R)10.1103/PhysRevB.79.241404. DOI
Kato F.; Minamimoto H.; Nagasawa F.; Yamamoto Y. S.; Itoh T.; Murakoshi K. Active Tuning of Strong Coupling States between Dye Excitons and Localized Surface Plasmons via Electrochemical Potential Control. ACS Photonics 2018, 5, 788–796. 10.1021/acsphotonics.7b00841. DOI
Itoh T.; Yamamoto Y. S.; Okamoto T. Absorption Cross-Section Spectroscopy of a Single Strong-Coupling System between Plasmon and Molecular Exciton Resonance Using a Single Silver Nanoparticle Dimer Generating Surface-Enhanced Resonant Raman Scattering. Phys. Rev. B 2019, 99, 235409.10.1103/PhysRevB.99.235409. DOI
Itoh T.; Yamamoto Y. S.; Tamaru H.; Biju V.; Murase N.; Ozaki Y. Excitation Laser Energy Dependence of Surface-Enhanced Fluorescence Showing Plasmon-Induced Ultrafast Electronic Dynamics in Dye Molecules. Phys. Rev. B 2013, 87, 235408.10.1103/PhysRevB.87.235408. DOI
Bergfield J. P.; Hendrickson J. R. Signatures of Plexcitonic States in Molecular Electroluminescence. Sci. Rep. 2018, 8, 2314.10.1038/s41598-018-19382-2. PubMed DOI PMC
Tian G.; Luo Y. Electroluminescence of Molecules in a Scanning Tunneling Microscope: Role of Tunneling Electrons and Surface Plasmons. Phys. Rev. B 2011, 84, 205419.10.1103/PhysRevB.84.205419. PubMed DOI
Cho C. H.; Aspetti C. O.; Park J.; Agarwal R. Silicon Coupled with Plasmon Nanocavity Generates Bright Visible Hot-Luminescence. Nat. Photonics 2013, 7, 285–289. 10.1038/nphoton.2013.25. PubMed DOI PMC
Cho C. H.; Aspetti C. O.; Turk M. E.; Kikkawa J. M.; Nam S. W.; Agarwal R. Tailoring Hot-Exciton Emission and Lifetimes in Semiconducting Nanowires via Whispering-Gallery Nanocavity Plasmons. Nat. Mater. 2011, 10, 669–675. 10.1038/nmat3067. PubMed DOI
Bingi J.; S V.; Warrier A. R.; Vijayan C. Plasmonically Tunable Blue-Shifted Emission from Coumarin 153 in Ag Nanostructure Random Media: A Demonstration of Fast Dynamic Surface-Enhanced Fluorescence. Plasmonics 2014, 9, 349–355. 10.1007/s11468-013-9631-x. DOI
Aspetti C. O.; Cho C. H.; Agarwal R.; Agarwal R. Studies of Hot Photoluminescence in Plasmonically Coupled Silicon via Variable Energy Excitation and Temperature-Dependent Spectroscopy. Nano Lett. 2014, 14, 5413–5422. 10.1021/nl502606q. PubMed DOI PMC
Gökbulut B.; Topcu G.; Demir M. M.; Inci M. N. Plasmon-Induced Spectral Tunability of Perovskite Nanowires. Opt. Mater. 2021, 122, 111702.10.1016/j.optmat.2021.111702. DOI
Dong Z. C.; Zhang X. L.; Gao H. Y.; Luo Y.; Zhang C.; Chen L. G.; Zhang R.; Tao X.; Zhang Y.; Yang J. L.; et al. Generation of Molecular Hot Electroluminescence by Resonant Nanocavity Plasmons. Nat. Photonics 2010, 4, 50–54. 10.1038/nphoton.2009.257. DOI
Chen G.; Li X. G.; Zhang Z. Y.; Dong Z. C. Molecular Hot Electroluminescence Due to Strongly Enhanced Spontaneous Emission Rates in a Plasmonic Nanocavity. Nanoscale 2015, 7, 2442–2449. 10.1039/C4NR06519K. PubMed DOI
Chong M. C.; Sosa-Vargas L.; Bulou H.; Boeglin A.; Scheurer F.; Mathevet F.; Schull G. Ordinary and Hot Electroluminescence from Single-Molecule Devices: Controlling the Emission Color by Chemical Engineering. Nano Lett. 2016, 16, 6480–6484. 10.1021/acs.nanolett.6b02997. PubMed DOI
Tian X.-J.; Kong F.-F.; Yu Y.-J.; Jing S.-H.; Zhang X.-B.; Liao Y.; Zhang Y.; Zhang Y.; Dong Z.-C. Plasmon-Enhanced S-2 Electroluminescence from the High-Lying Excited State of a Single Porphyrin Molecule. Appl. Phys. Lett. 2020, 117, 243301.10.1063/5.0027291. DOI
Crim F. F. Bond-Selected Chemistry: Vibrational State Control of Photodissociation and Bimolecular Reaction. J. Phys. Chem. 1996, 100, 12725–12734. 10.1021/jp9604812. DOI
Laubereau A.; Kaiser W. Vibrational Dynamics of Liquids and Solids Investigated by Picosecond Light Pulses. Rev. Mod. Phys. 1978, 50, 607–665. 10.1103/RevModPhys.50.607. DOI
Haslett T. L.; Tay L.; Moskovits M. Can Surface-Enhanced Raman Scattering Serve as a Channel for Strong Optical Pumping?. J. Chem. Phys. 2000, 113, 1641–1646. 10.1063/1.481952. DOI
Brolo A. G.; Sanderson A. C.; Smith A. P. Ratio of the Surface-Enhanced Anti-Stokes Scattering to the Surface-Enhanced Stokes-Raman Scattering for Molecules Adsorbed on a Silver Electrode. Phys. Rev. B 2004, 69, 045424.10.1103/PhysRevB.69.045424. DOI
Maher R. C.; Etchegoin P. G.; Le Ru E. C.; Cohen L. F. A Conclusive Demonstration of Vibrational Pumping under Surface Enhanced Raman Scattering Conditions. J. Phys. Chem. B 2006, 110, 11757–11760. 10.1021/jp060306d. PubMed DOI
Maher R. C.; Cohen L. F.; Le Ru E. C.; Etchegoin P. G. On the Experimental Estimation of Surface Enhanced Raman Scattering (SERS) Cross Sections by Vibrational Pumping. J. Phys. Chem. B 2006, 110, 19469–19478. 10.1021/jp0626521. PubMed DOI
Etchegoin P. G.; Le Ru E. C.; Maher R. C.; Cohen L. F. Enhancement Factor Averaging and the Photostability of Probes in SERS Vibrational Pumping. Phys. Chem. Chem. Phys. 2007, 9, 4923–4929. 10.1039/b706395d. PubMed DOI
Galloway C. M.; Le Ru E. C.; Etchegoin P. G. Single-Molecule Vibrational Pumping in SERS. Phys. Chem. Chem. Phys. 2009, 11, 7372–7380. 10.1039/b904638k. PubMed DOI
Kozich V.; Werncke W. The Vibrational Pumping Mechanism in Surface-Enhanced Raman Scattering: A Subpicosecond Time-Resolved Study. J. Phys. Chem. C 2010, 114, 10484–10488. 10.1021/jp101219e. DOI
Roelli P.; Galland C.; Piro N.; Kippenberg T. J. Molecular Cavity Optomechanics as a Theory of Plasmon-Enhanced Raman Scattering. Nat. Nanotechnol. 2016, 11, 164–169. 10.1038/nnano.2015.264. PubMed DOI
Pozzi E. A.; Zrimsek A. B.; Lethiec C. M.; Schatz G. C.; Hersam M. C.; Van Duyne R. P. Evaluating Single-Molecule Stokes and Anti-Stokes SERS for Nanoscale Thermometry. J. Phys. Chem. C 2015, 119, 21116–21124. 10.1021/acs.jpcc.5b08054. DOI
Schmidt M. K.; Esteban R.; Benz F.; Baumberg J. J.; Aizpurua J. Linking Classical and Molecular Optomechanics Descriptions of SERS. Faraday Discuss. 2017, 205, 31–65. 10.1039/C7FD00145B. PubMed DOI
Schmidt M. K.; Esteban R.; Gonzalez-Tudela A.; Giedke G.; Aizpurua J. Quantum Mechanical Description of Raman Scattering from Molecules in Plasmonic Cavities. ACS Nano 2016, 10, 6291–6298. 10.1021/acsnano.6b02484. PubMed DOI
Zhang Y.; Esteban R.; Boto R. A.; Urbieta M.; Arrieta X.; Shan C.; Li S.; Baumberg J. J.; Aizpurua J. Addressing Molecular Optomechanical Effects in Nanocavity-Enhanced Raman Scattering Beyond the Single Plasmonic Mode. Nanoscale 2021, 13, 1938–1954. 10.1039/D0NR06649D. PubMed DOI
Crampton K. T.; Fast A.; Potma E. O.; Apkarian V. A. Junction Plasmon Driven Population Inversion of Molecular Vibrations: A Picosecond Surface-Enhanced Raman Spectroscopy Study. Nano Lett. 2018, 18, 5791–5796. 10.1021/acs.nanolett.8b02438. PubMed DOI
Ward D. R.; Corley D. A.; Tour J. M.; Natelson D. Vibrational and Electronic Heating in Nanoscale Junctions. Nat. Nanotechnol. 2011, 6, 33–38. 10.1038/nnano.2010.240. PubMed DOI
Ayars E. J.; Hallen H. D.; Jahncke C. L. Electric Field Gradient Effects in Raman Spectroscopy. Phys. Rev. Lett. 2000, 85, 4180–4183. 10.1103/PhysRevLett.85.4180. PubMed DOI
Duan S.; Tian G.; Ji Y.; Shao J.; Dong Z.; Luo Y. Theoretical Modeling of Plasmon-Enhanced Raman Images of a Single Molecule with Subnanometer Resolution. J. Am. Chem. Soc. 2015, 137, 9515–9518. 10.1021/jacs.5b03741. PubMed DOI
Sass J. K.; Neff H.; Moskovits M.; Holloway S. Electric-Field Gradient Effects on the Spectroscopy of Adsorbed Molecules. J. Phys. Chem. 1981, 85, 621–623. 10.1021/j150606a002. DOI
Moskovits M.; DiLella D. P. Surface Enhanced Raman Spectroscopy of Benzene and Benzene-d6 Adsorbed on Silver. J. Chem. Phys. 1980, 73, 6068–6075. 10.1063/1.440142. DOI
Moskovits M.; DiLella D. P. Intense Quadrupole Transitions in the Spectra of Molecules Near Metal Surfaces. J. Chem. Phys. 1982, 77, 1655–1660. 10.1063/1.444008. DOI
Takase M.; Ajiki H.; Mizumoto Y.; Komeda K.; Nara M.; Nabika H.; Yasuda S.; Ishihara H.; Murakoshi K. Selection-Rule Breakdown in Plasmon-Induced Electronic Excitation of an Isolated Single-Walled Carbon Nanotube. Nat. Photonics 2013, 7, 550–554. 10.1038/nphoton.2013.129. DOI
Aikens C. M.; Madison L. R.; Schatz G. C. The Effect of Field Gradient on SERS. Nat. Photonics 2013, 7, 508–510. 10.1038/nphoton.2013.153. DOI
Jorio A.; Mueller N. S.; Reich S. Symmetry-Derived Selection Rules for Plasmon-Enhanced Raman Scattering. Phys. Rev. B 2017, 95, 155409.10.1103/PhysRevB.95.155409. DOI
Kim H. Y.; Kim D. S. Selection Rule Engineering of Forbidden Transitions of a Hydrogen Atom Near a Nanogap. Nanophotonics 2018, 7, 229–236. 10.1515/nanoph-2017-0037. DOI
Neuman T.; Esteban R.; Casanova D.; Garcia-Vidal F. J.; Aizpurua J. Coupling of Molecular Emitters and Plasmonic Cavities beyond the Point-Dipole Approximation. Nano Lett. 2018, 18, 2358–2364. 10.1021/acs.nanolett.7b05297. PubMed DOI
Liu P.; Chulhai D. V.; Jensen L. Single-Molecule Imaging Using Atomistic Near-Field Tip-Enhanced Raman Spectroscopy. ACS Nano 2017, 11, 5094–5102. 10.1021/acsnano.7b02058. PubMed DOI
Chen X.; Liu P.; Hu Z.; Jensen L. High-Resolution Tip-Enhanced Raman Scattering Probes Sub-Molecular Density Changes. Nat. Commun. 2019, 10, 2567.10.1038/s41467-019-10618-x. PubMed DOI PMC
Rivera N.; Kaminer I.; Zhen B.; Joannopoulos J. D.; Soljacic M. Shrinking Light to Allow Forbidden Transitions on the Atomic Scale. Science 2016, 353, 263–269. 10.1126/science.aaf6308. PubMed DOI
Zhang Y.; Dong Z.-C.; Aizpurua J. Theoretical Treatment of Single-Molecule Scanning Raman Picoscopy in Strongly Inhomogeneous Near Fields. J. Raman Spectrosc. 2021, 52, 296–309. 10.1002/jrs.5991. DOI
Wang X.; Huang S.; Hu S.; Yan S.; Ren B. Fundamental Understanding and Applications of Plasmon-Enhanced Raman Spectroscopy. Nat. Rev. Phys. 2020, 2, 253–271. 10.1038/s42254-020-0171-y. DOI
Gersten J. I. The Effect of Surface Roughness on Surface Enhanced Raman Scattering. J. Chem. Phys. 1980, 72, 5779–5780. 10.1063/1.439002. DOI
Kolhatkar G.; Plathier J.; Ruediger A. Nanoscale Investigation of Materials, Chemical Reactions, and Biological Systems by Tip Enhanced Raman Spectroscopy-A Review. J. Mater. Chem. C 2018, 6, 1307–1319. 10.1039/C7TC05688E. DOI
Zhang Y.; Yang B.; Ghafoor A.; Zhang Y.; Zhang Y. F.; Wang R. P.; Yang J. L.; Luo Y.; Dong Z. C.; Hou J. G. Visually Constructing the Chemical Structure of a Single Molecule by Scanning Raman Picoscopy. Nat. Sci. Rev. 2019, 6, 1169–1175. 10.1093/nsr/nwz180. PubMed DOI PMC
Lee J.; Crampton K. T.; Tallarida N.; Apkarian V. A. Visualizing Vibrational Normal Modes of a Single Molecule with Atomically Confined Light. Nature 2019, 568, 78–82. 10.1038/s41586-019-1059-9. PubMed DOI
Jaculbia R. B.; Imada H.; Miwa K.; Iwasa T.; Takenaka M.; Yang B.; Kazuma E.; Hayazawa N.; Taketsugu T.; Kim Y. Single-Molecule Resonance Raman Effect in a Plasmonic Nanocavity. Nat. Nanotechnol. 2020, 15, 105–110. 10.1038/s41565-019-0614-8. PubMed DOI
Aizpurua J.; Apell S. P.; Berndt R. Role of Tip Shape in Light Emission from the Scanning Tunneling Microscope. Phys. Rev. B 2000, 62, 2065–2073. 10.1103/PhysRevB.62.2065. DOI
Wang Y. H.; Zheng S.; Yang W. M.; Zhou R. Y.; He Q. F.; Radjenovic P.; Dong J. C.; Li S.; Zheng J.; Yang Z. L.; et al. In situ Raman Spectroscopy Reveals the Structure and Dissociation of Interfacial Water. Nature 2021, 600, 81–85. 10.1038/s41586-021-04068-z. PubMed DOI
Wang R. P.; Yang B.; Fu Q.; Zhang Y.; Zhu R.; Dong X. R.; Zhang Y.; Wang B.; Yang J. L.; Luo Y.; et al. Raman Detection of Bond Breaking and Making of a Chemisorbed Up-Standing Single Molecule at Single-Bond Level. J. Phys. Chem. Lett. 2021, 12, 1961–1968. 10.1021/acs.jpclett.1c00074. PubMed DOI
Xu J. Y.; Zhu X.; Tan S. J.; Zhang Y.; Li B.; Tian Y. Z.; Shan H.; Cui X. F.; Zhao A. D.; Dong Z. C.; et al. Determining Structural and Chemical Heterogeneities of Surface Species at the Single-Bond Limit. Science 2021, 371, 818–822. 10.1126/science.abd1827. PubMed DOI
Hell S. W.; Wichmann J. Breaking the Diffraction Resolution Limit by Stimulated Emission: Stimulated-Emission-Depletion Fluorescence Microscopy. Opt. Lett. 1994, 19, 780–782. 10.1364/OL.19.000780. PubMed DOI
Moerner W. E.; Kador L. Optical Detection and Spectroscopy of Single Molecules in a Solid. Phys. Rev. Lett. 1989, 62, 2535.10.1103/PhysRevLett.62.2535. PubMed DOI
Betzig E. Proposed Method for Molecular Optical Imaging. Opt. Lett. 1995, 20, 237–239. 10.1364/OL.20.000237. PubMed DOI
Kazuma E.; Jung J.; Ueba H.; Trenary M.; Kim Y. Real-Space and Real-Time Observation of a Plasmon-Induced Chemical Reaction of a Single Molecule. Science 2018, 360, 521–526. 10.1126/science.aao0872. PubMed DOI
Zhong J.; Jin X.; Meng L.; Wang X.; Su H.-S.; Yang Z.; Williams C. T.; Ren B. Probing the Electronic and Catalytic Properties of a Bimetallic Surface with 3 nm Resolution. Nat. Nanotechnol. 2017, 12, 132.10.1038/nnano.2016.241. PubMed DOI
Su H. S.; Feng H. S.; Zhao Q. Q.; Zhang X. G.; Sun J. J.; He Y.; Huang S. C.; Huang T. X.; Zhong J. H.; Wu D. Y.; et al. Probing the Local Generation and Diffusion of Active Oxygen Species on a Pd/Au Bimetallic Surface by Tip-Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2020, 142, 1341–1347. 10.1021/jacs.9b10512. PubMed DOI
Gadelha A. C.; Ohlberg D. A.; Rabelo C.; Neto E. G.; Vasconcelos T. L.; Campos J. L.; Lemos J. S.; Ornelas V.; Miranda D.; Nadas R.; et al. Localization of Lattice Dynamics in Low-Angle Twisted Bilayer Graphene. Nature 2021, 590, 405–409. 10.1038/s41586-021-03252-5. PubMed DOI
Sheng S. X.; Wu J. B.; Cong X.; Li W. B.; Gou J.; Zhong Q.; Cheng P.; Tan P. H.; Chen L.; Wu K. H. Vibrational Properties of a Monolayer Silicene Sheet Studied by Tip-Enhanced Raman Spectroscopy. Phys. Rev. Lett. 2017, 119, 196803.10.1103/PhysRevLett.119.196803. PubMed DOI
He Z.; Han Z. H.; Kizer M.; Linhardt R. J.; Wang X.; Sinyukov A. M.; Wang J. Z.; Deckert V.; Sokolov A. V.; Hu J.; et al. Tip-Enhanced Raman Imaging of Single-Stranded DNA with Single Base Resolution. J. Am. Chem. Soc. 2019, 141, 753–757. 10.1021/jacs.8b11506. PubMed DOI
Deckert Gaudig T.; Kämmer E.; Deckert V. Tracking of Nanoscale Structural Variations on a Single Amyloid Fibril with Tip-Enhanced Raman Scattering. J. Biophotonics 2012, 5, 215–219. 10.1002/jbio.201100142. PubMed DOI
Zhang R.; Zhang X. B.; Wang H. F.; Zhang Y.; Jiang S.; Hu C. R.; Zhang Y.; Luo Y.; Dong Z. C. Distinguishing Individual DNA Bases In a Network by Non Resonant Tip Enhanced Raman Scattering. Angew. Chem., Int. Ed. Engl. 2017, 56, 5561–5564. 10.1002/anie.201702263. PubMed DOI
Abbe E. Beiträge zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung. Arch. Mikroskop. Anatom. 1873, 9, 413–468. 10.1007/BF02956173. DOI
Liu Y.; Zhang X. Metamaterials: A New Frontier of Science and Technology. Chem. Soc. Rev. 2011, 40, 2494–2507. 10.1039/c0cs00184h. PubMed DOI
Barnes W. L.; Dereux A.; Ebbesen T. W. Surface Plasmon Subwavelength Optics. Nature 2003, 424, 824–830. 10.1038/nature01937. PubMed DOI
Pohl D. W.; Denk W.; Lanz M. Optical Stethoscopy: Image Recording with Resolution λ/20. Appl. Phys. Lett. 1984, 44, 651–653. 10.1063/1.94865. DOI
Lewis A.; Isaacson M.; Harootunian A.; Muray A. Development of a 500 Å Spatial Resolution Light Microscope: I. Light is Efficiently Transmitted Through λ/16 Diameter Apertures. Ultramicroscopy 1984, 13, 227–231. 10.1016/0304-3991(84)90201-8. DOI
Zhang W. H.; Fang Z. Y.; Zhu X. Near-Field Raman Spectroscopy with Aperture Tips. Chem. Rev. 2017, 117, 5095–5109. 10.1021/acs.chemrev.6b00337. PubMed DOI
Hermann R. J.; Gordon M. J. Nanoscale Optical Microscopy and Spectroscopy Using Near-Field Probes. Annu. Rev. Chem. Biomol. Eng. 2018, 9, 365–387. 10.1146/annurev-chembioeng-060817-084150. PubMed DOI
Anderson N.; Hartschuh A.; Cronin S.; Novotny L. Nanoscale Vibrational Analysis of Single-Walled Carbon Nanotubes. J. Am. Chem. Soc. 2005, 127, 2533–2537. 10.1021/ja045190i. PubMed DOI
Ichimura T.; Fujii S.; Verma P.; Yano T.; Inouye Y.; Kawata S. Subnanometric Near-Field Raman Investigation in the Vicinity of a Metallic Nanostructure. Phys. Rev. Lett. 2009, 102, 186101.10.1103/PhysRevLett.102.186101. PubMed DOI
Steidtner J.; Pettinger B. Tip-Enhanced Raman Spectroscopy and Microscopy on Single Dye Molecules with 15 nm Resolution. Phys. Rev. Lett. 2008, 100, 236101.10.1103/PhysRevLett.100.236101. PubMed DOI
Stadler J.; Schmid T.; Zenobi R. Nanoscale Chemical Imaging Using Top-Illumination Tip-Enhanced Raman Spectroscopy. Nano Lett. 2010, 10, 4514–4520. 10.1021/nl102423m. PubMed DOI
Yano T.-A.; Verma P.; Saito Y.; Ichimura T.; Kawata S. Pressure-Assisted Tip-Enhanced Raman Imaging at a Resolution of a Few Nanometres. Nat. Photonics 2009, 3, 473–477. 10.1038/nphoton.2009.74. DOI
Treffer R.; Lin X.; Bailo E.; Deckert-Gaudig T.; Deckert V. Distinction of Nucleobases-a Tip-Enhanced Raman Approach. Beilstein. J. Nanotechnol. 2011, 2, 628–637. 10.3762/bjnano.2.66. PubMed DOI PMC
Yang B.; Chen G.; Ghafoor A.; Zhang Y. F.; Zhang Y.; Zhang Y.; Luo Y.; Yang J. L.; Sandoghdar V.; Aizpurua J.; et al. Sub-Nanometre Resolution in Single-Molecule Photoluminescence Imaging. Nat. Photonics 2020, 14, 693–699. 10.1038/s41566-020-0677-y. DOI
Zhu J. Z.; Chen G.; Ijaz T.; Li X. G.; Dong Z. C. Influence of an Atomistic Protrusion at the Tip Apex on Enhancing Molecular Emission in Tunnel Junctions: A Theoretical Study. J. Chem. Phys. 2021, 154, 214706.10.1063/5.0048440. PubMed DOI
Urbieta M.; Barbry M.; Zhang Y.; Koval P.; Sánchez-Portal D.; Zabala N.; Aizpurua J. Atomic-Scale Lightning Rod Effect in Plasmonic Picocavities: A Classical View to a Quantum Effect. ACS Nano 2018, 12, 585–595. 10.1021/acsnano.7b07401. PubMed DOI
Rendell R.; Scalapino D. Surface Plasmons Confined by Microstructures on Tunnel Junctions. Phys. Rev. B 1981, 24, 3276.10.1103/PhysRevB.24.3276. DOI
Becker S. F.; Esmann M.; Yoo K.; Gross P.; Vogelgesang R.; Park N.; Lienau C. Gap-Plasmon-Enhanced Nanofocusing Near-Field Microscopy. ACS Photonics 2016, 3, 223–232. 10.1021/acsphotonics.5b00438. DOI
Marchesin F.; Koval P.; Barbry M.; Aizpurua J.; Sanchez-Portal D. Plasmonic Response of Metallic Nanojunctions Driven by Single Atom Motion: Quantum Transport Revealed in Optics. ACS Photonics 2016, 3, 269–277. 10.1021/acsphotonics.5b00609. DOI
Barbry M.; Koval P.; Marchesin F.; Esteban R.; Borisov A. G.; Aizpurua J.; Sánchez-Portal D. Atomistic Near-Field Nanoplasmonics: Reaching Atomic-Scale Resolution in Nanooptics. Nano Lett. 2015, 15, 3410–3419. 10.1021/acs.nanolett.5b00759. PubMed DOI
Li W.; Zhou Q.; Zhang P.; Chen X. W. Bright optical eigenmode of 1 nm 3 mode volume. Phys. Rev. Lett. 2021, 126, 257401.10.1103/PhysRevLett.126.257401. PubMed DOI
Luo Y.; Fernandez-Dominguez A.; Wiener A.; Maier S. A.; Pendry J. Surface Plasmons and Nonlocality: A Simple Model. Phys. Rev. Lett. 2013, 111, 093901.10.1103/PhysRevLett.111.093901. PubMed DOI
Atkin J. M.; Raschke M. B. Optical Spectroscopy Goes Intramolecular. Nature 2013, 498, 44–45. 10.1038/498044a. PubMed DOI
Li X.; Xiao D.; Zhang Z. Landau Damping of Quantum Plasmons in Metal Nanostructures. New J. Phys. 2013, 15, 023011.10.1088/1367-2630/15/2/023011. DOI
Kale M. J.; Christopher P. Plasmons at the Interface. Science 2015, 349, 587–588. 10.1126/science.aac8522. PubMed DOI
Khurgin J.; Tsai W. Y.; Tsai D. P.; Sun G. Landau Damping and Limit to Field Confinement and Enhancement in Plasmonic Dimers. ACS Photonics 2017, 4, 2871–2880. 10.1021/acsphotonics.7b00860. DOI
Gonçalves P.; Christensen T.; Rivera N.; Jauho A.-P.; Mortensen N. A.; Soljačić M. Plasmon-Emitter Interactions at the Nanoscale. Nat. Commun. 2020, 11, 1–13. 10.1038/s41467-019-13820-z. PubMed DOI PMC
Tserkezis C.; Mortensen N. A.; Wubs M. How Nonlocal Damping Reduces Plasmon-Enhanced Fluorescence in Ultranarrow Gaps. Phys. Rev. B 2017, 96, 085413.10.1103/PhysRevB.96.085413. DOI
Alcaraz Iranzo D.; Nanot S.; Dias E. J.; Epstein I.; Peng C.; Efetov D. K.; Lundeberg M. B.; Parret R.; Osmond J.; Hong J. Y.; et al. Probing the Ultimate Plasmon Confinement Limits with a van der Waals Heterostructure. Science 2018, 360, 291–295. 10.1126/science.aar8438. PubMed DOI
Duan S.; Tian G.; Luo Y. Theory for Modeling of High Resolution Resonant and Nonresonant Raman Images. Chem. Theory Comput. 2016, 12, 4986–4995. 10.1021/acs.jctc.6b00592. PubMed DOI
Kawata S.; Verma P. Optical Nano-Imaging of Materials: Peeping Through Tip-Enhanced Raman Scattering. CHIMIA Inter J. Chem. 2006, 60, 770–776. 10.2533/chimia.2006.770. DOI
Meng L.; Yang Z.; Chen J.; Sun M. Effect of Electric Field Gradient on Sub-Nanometer Spatial Resolution of Tip-Enhanced Raman Spectroscopy. Sci. Rep. 2015, 5, 9240.10.1038/srep09240. PubMed DOI PMC
Liu P.; Chen X.; Ye H.; Jensen L. Resolving Molecular Structures with High-Resolution Tip-Enhanced Raman Scattering Images. ACS Nano 2019, 13, 9342–9351. 10.1021/acsnano.9b03980. PubMed DOI
Zhang C.; Chen B. Q.; Li Z. Y. Optical Origin of Subnanometer Resolution in Tip-Enhanced Raman Mapping. J. Phys. Chem. C 2015, 119, 11858–11871. 10.1021/acs.jpcc.5b02653. DOI
Latorre F.; Kupfer S.; Bocklitz T.; Kinzel D.; Trautmann S.; Gräfe S.; Deckert V. Spatial Resolution of Tip-Enhanced Raman Spectroscopy-DFT Assessment of the Chemical Effect. Nanoscale 2016, 8, 10229–10239. 10.1039/C6NR00093B. PubMed DOI
Long D. A.; The Raman effect: A Unified Treatment of the Theory of Raman Scattering by Molecules; Wiley Chichester, 2002; pp 1–584.
McHale J. L.Molecular spectroscopy; CRC Press, 2017; pp 1–475.
Jiang S.; Zhang Y.; Zhang R.; Hu C. R.; Liao M. H.; Luo Y.; Yang J. L.; Dong Z. C.; Hou J. G. Distinguishing Adjacent Molecules on a Surface Using Plasmon-Enhanced Raman Scattering. Nat. Nanotechnol. 2015, 10, 865–869. 10.1038/nnano.2015.170. PubMed DOI
Jiang S.; Zhang X. B.; Zhang Y.; Hu C. R.; Zhang R.; Zhang Y.; Liao Y.; Smith Z. J.; Dong Z. C.; Hou J. G. Subnanometer-Resolved Chemical Imaging via Multivariate Analysis of Tip-Enhanced Raman Maps. Light. Sci. Appl. 2017, 6, e1709810.1038/lsa.2017.98. PubMed DOI PMC
Chiang N.; Chen X.; Goubert G.; Chulhai D. V.; Chen X.; Pozzi E. A.; Jiang N.; Hersam M. C.; Seideman T.; Jensen L.; et al. Conformational Contrast of Surface-Mediated Molecular Switches Yields Ångstrom-Scale Spatial Resolution in Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy. Nano Lett. 2016, 16, 7774–7778. 10.1021/acs.nanolett.6b03958. PubMed DOI
Li L.; Schultz J. F.; Mahapatra S.; Liu X.; Shaw C.; Zhang X.; Hersam M. C.; Jiang N. Angstrom-Scale Spectroscopic Visualization of Interfacial Interactions in an Organic/Borophene Vertical Heterostructure. J. Am. Chem. Soc. 2021, 143, 15624–15634. 10.1021/jacs.1c04380. PubMed DOI
Huang T.; Cong X.; Wu S.; Lin K.; Yao X.; He Y. H.; Wu J. B.; Bao Y. F.; Huang S. C.; Wang X.; et al. Probing the Edge-Related Properties of Atomically Thin MoS2 at Nanoscale. Nat. Commun. 2019, 10, 5544.10.1038/s41467-019-13486-7. PubMed DOI PMC
Liu S.; Hammud A.; Wolf M.; Kumagai T. Atomic Point Contact Raman Spectroscopy of a Si(111)-7 × 7 Surface. Nano Lett. 2021, 21, 4057–4061. 10.1021/acs.nanolett.1c00998. PubMed DOI PMC
Liu S.; Cirera B.; Sun Y.; Hamada I.; Müller M.; Hammud A.; Wolf M.; Kumagai T. Dramatic Enhancement of Tip-Enhanced Raman Scattering Mediated by Atomic Point Contact Formation. Nano Lett. 2020, 20, 5879–5884. 10.1021/acs.nanolett.0c01791. PubMed DOI PMC
Zhang Y.; Zhang R.; Jiang S.; Zhang Y.; Dong Z. C. Probing Adsorption Configurations of Small Molecules on Surfaces by Single Molecule Tip Enhanced Raman Spectroscopy. ChemPhysChem 2019, 20, 37–41. 10.1002/cphc.201800861. PubMed DOI
Lee J.; Tallarida N.; Chen X.; Jensen L.; Apkarian V. A. Microscopy with a Single-Molecule Scanning Electrometer. Sci. Adv. 2018, 4, eaat547210.1126/sciadv.aat5472. PubMed DOI PMC
Li C.; Duan S.; Wen B.; Li S.; Kathiresan M.; Xie L.; Chen S.; Anema J. R.; Mao B.; Luo Y.; et al. Observation of Inhomogeneous Plasmonic Field Distribution in a Nanocavity. Nat. Nanotechnol. 2020, 15, 922–926. 10.1038/s41565-020-0753-y. PubMed DOI
Zhang Y.; Zhang Y.; Dong Z. C. Scanning Raman picoscopy: Ångström-Resolved Tip-Enhanced Raman Spectromicroscopy. Chin. J. Chem. Phys. 2021, 34, 1–14. 10.1063/1674-0068/cjcp2102027. DOI
Zhang C.; Gao B.; Chen L. G.; Meng Q. S.; Yang H.; Zhang R.; Tao X.; Gao H. Y.; Liao Y.; Dong Z. C. Fabrication of Silver Tips for Scanning Tunneling Microscope Induced Luminescence. Rev. Sci. Instrum. 2011, 82, 083101.10.1063/1.3617456. PubMed DOI
Ghafoor A.; Yang B.; Yu Y. J.; Zhang Y. F.; Zhang X. B.; Chen G.; Zhang Y.; Zhang Y.; Dong Z. C. Site-Dependent TERS Study of a Porphyrin Molecule on Ag (100) at 7 K. Chin. J. Chem. Phys. 2019, 32, 287–291. 10.1063/1674-0068/cjcp1812280. DOI
Li H.; Zhang Y. F.; Zhang X. B.; Farrukh A.; Zhang Y.; Zhang Y.; Dong Z. C. Probing the Deformation of [12] Cycloparaphenylene Molecular Nanohoops Adsorbed on Metal Surfaces by Tip-Enhanced Raman Spectroscopy. J. Chem. Phys. 2020, 153, 244201.10.1063/5.0033383. PubMed DOI
Kneipp K. Surface-Enhanced Raman Scattering. Phys. Today 2007, 60, 40–46. 10.1063/1.2812122. DOI
Otto A. The ’Chemical’ (Electronic) Contribution to Surface-Enhanced Raman Scattering. J. Raman Spectrosc. 2005, 36, 497–509. 10.1002/jrs.1355. DOI
Valley N.; Greeneltch N.; Van Duyne R. P.; Schatz G. C. A Look at the Origin and Magnitude of the Chemical Contribution to the Enhancement Mechanism of Surface-Enhanced Raman Spectroscopy (SERS): Theory and Experiment. J. Phys. Chem. Lett. 2013, 4, 2599–2604. 10.1021/jz4012383. DOI
Morton S. M.; Jensen L. Understanding the Molecule-Surface Chemical Coupling in SERS. J. Am. Chem. Soc. 2009, 131, 4090–4098. 10.1021/ja809143c. PubMed DOI
Jensen L.; Zhao L. L.; Schatz G. C. Size-Dependence of the Enhanced Raman Scattering of Pyridine Adsorbed on Agn (n = 2–8, 20) Clusters. J. Phys. Chem. C 2007, 111, 4756–4764. 10.1021/jp067634y. DOI
Lombardi J. R.; Birke R. L. A Unified View of Surface-Enhanced Raman Scattering. Acc. Chem. Res. 2009, 42, 734–742. 10.1021/ar800249y. PubMed DOI
Ma H.; Chen Y.; Wang H.; Wang X.; Zhang X.; Han X.; He C.; Zhao B. Charge-Transfer Effect on Surface-Enhanced Raman Spectroscopy in Ag/PTCA: Herzberg-Teller Selection Rules. J. Phys. Chem. C 2017, 121, 25788–25794. 10.1021/acs.jpcc.7b07281. DOI
Chenal C.; Birke R. L.; Lombardi J. R. Determination of the Degree of Charge-Transfer Contributions to Surface-Enhanced Raman Spectroscopy. ChemPhysChem 2008, 9, 1617–1623. 10.1002/cphc.200800221. PubMed DOI
Ji W.; Xue X. X.; Ruan W. D.; Wang C. X.; Ji N.; Chen L.; Li Z. S.; Song W.; Zhao B.; Lombardi J. R. Scanned Chemical Enhancement of Surface-enhanced Raman Scattering Using a Charge-Transfer Complex. Chem. Commun. 2011, 47, 2426–2428. 10.1039/C0CC03697H. PubMed DOI
Ji W.; Kitahama Y.; Xue X. X.; Zhao B.; Ozaki Y. Generation of Pronounced Resonance Profile of Charge-Transfer Contributions to Surface-Enhanced Raman Scattering. J. Phys. Chem. C 2012, 116, 2515–2520. 10.1021/jp209947p. DOI
Ji W.; Kitahama Y.; Han X. X.; Xue X. X.; Ozaki Y.; Zhao B. pH-Dependent SERS by Semiconductor-Controlled Charge-Transfer Contribution. J. Phys. Chem. C 2012, 116, 24829–24836. 10.1021/jp308805n. DOI
Sun L.; Bai F. Q.; Zhang H. X. Theoretical Investigation of Chemically Enhanced Mechanism of SERS Spectroscopy for Ag/MPH/TiO2 System. Acta Phys.-Chim. Sin. 2011, 27, 1335–1340. 10.3866/PKU.WHXB20110602. DOI
Rajh T.; Chen L. X.; Lukas K.; Liu T.; Thurnauer M. C.; Tiede D. M. Surface Restructuring of Nanoparticles: An Efficient Route for Ligand-Metal Oxide Crosstalk. J. Phys. Chem. B 2002, 106, 10543–10552. 10.1021/jp021235v. DOI
Alvarez-Puebla R. A.; Liz-Marzán L. M. SERS Detection of Small Inorganic Molecules and Ions. Angew. Chem., Int. Ed. Engl. 2012, 51, 11214–11223. 10.1002/anie.201204438. PubMed DOI
Ji W.; Li L.; Zhang Y.; Wang X.; Ozaki Y. Recent Advances in Surface-Enhanced Raman Scattering-Based Sensors for the Detection of Inorganic Ions: Sensing Mechanism and Beyond. J. Raman Spectrosc. 2021, 52, 468–481. 10.1002/jrs.5975. DOI
Guerrini L.; Alvarez-Puebla R. A. Surface-Enhanced Raman Scattering Sensing of Transition Metal Ions in Waters. ACS Omega 2021, 6, 1054–1063. 10.1021/acsomega.0c05261. PubMed DOI PMC
Tsoutsi D.; Guerrini L.; Hermida-Ramon J. M.; Giannini V.; Liz-Marzán L. M.; Wei A.; Alvarez-Puebla R. A. Simultaneous SERS Detection of Copper and Cobalt at Ultratrace Levels. Nanoscale 2013, 5, 5841–5846. 10.1039/c3nr01518a. PubMed DOI
Ling X.; Zhang J. First-Layer Effect in Graphene-Enhanced Raman Scattering. Small 2010, 6, 2020–2025. 10.1002/smll.201000918. PubMed DOI
Ling X.; Zhang J. Interference Phenomenon in Graphene-Enhanced Raman Scattering. J. Phys. Chem. C 2011, 115, 2835–2840. 10.1021/jp111502n. DOI
Lee Y. K.; Jung C. H.; Park J.; Seo H.; Somorjai G. A.; Park J. Y. Surface Plasmon-Driven Hot Electron Flow Probed with Metal-Semiconductor Nanodiodes. Nano Lett. 2011, 11, 4251–4255. 10.1021/nl2022459. PubMed DOI
Lee S. J.; Moskovits M. Visualizing Chromatographic Separation of Metal Ions on a Surface-Enhanced Raman Active Medium. Nano Lett. 2011, 11, 145–150. 10.1021/nl1031309. PubMed DOI
Liu Z.; Ai J.; Kumar P.; You E.; Zhou X.; Liu X.; Tian Z.; Bouř P.; Duan Y.; Han L.; et al. Enantiomeric Discrimination by Surface-Enhanced Raman Scattering-Chiral Anisotropy of Chiral Nanostructured Gold Films. Angew. Chem., Int. Ed. Engl. 2020, 59, 15226–15231. 10.1002/anie.202006486. PubMed DOI
Wang Y.; Yu Z.; Ji W.; Tanaka Y.; Sui H.; Zhao B.; Ozaki Y. Enantioselective Discrimination of Alcohols by Hydrogen Bonding: A SERS Study. Angew. Chem., Int. Ed. Engl. 2014, 53, 13866–13870. 10.1002/anie.201407642. PubMed DOI
Wang Y.; Zhao X.; Yu Z.; Xu Z.; Zhao B.; Ozaki Y. A Chiral-Label-Free SERS Strategy for the Synchronous Chiral Discrimination and Identification of Small Aromatic Molecules. Angew. Chem., Int. Ed. Engl. 2020, 59, 19079–19086. 10.1002/anie.202007771. PubMed DOI
Wang Y.; Liu J.; Zhao X.; Yang C.; Ozaki Y.; Xu Z.; Zhao B.; Yu Z. A Chiral Signal-Amplified Sensor for Enantioselective Discrimination of Amino Acids Based on Charge Transfer-Induced SERS. Chem. Commun. 2019, 55, 9697–9700. 10.1039/C9CC04665H. PubMed DOI
Wang Y.; Liu J.; Ozaki Y.; Xu Z.; Zhao B. Effect of TiO2 on Altering Direction of Interfacial Charge Transfer in a TiO2-Ag-MPY-FePc System by SERS. Angew. Chem., Int. Ed. Engl. 2019, 58, 8172–8176. 10.1002/anie.201900589. PubMed DOI
Wang X.; Zhao B.; Li P.; Han X. X.; Ozaki Y. Charge Transfer at the TiO2/N3/Ag Interface Monitored by Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2017, 121, 5145–5153. 10.1021/acs.jpcc.7b00153. DOI
Wang X.; Li P.; Han X. X.; Kitahama Y.; Zhao B.; Ozaki Y. An Enhanced Degree of Charge Transfer in Dye-Sensitized Solar Cells with a ZnO-TiO2/N3/Ag Structure as Revealed by Surface-Enhanced Raman Scattering. Nanoscale 2017, 9, 15303–15313. 10.1039/C7NR03839A. PubMed DOI
Hayashi S.; Koh R.; Ichiyama Y.; Yamamoto K. Evidence for Surface-Enhanced Raman Scattering on Nonmetallic Surfaces: Copper Phthalocyanine Molecules on GaP Small Particles. Phys. Rev. Lett. 1988, 60, 1085–1088. 10.1103/PhysRevLett.60.1085. PubMed DOI
Loo B. H. Observation of the Surface Enhanced Raman Scattering Effect from the Semiconductor—Electrolyte Interface. J. Electroanal. Chem. Interfacial Electrochem. 1982, 136, 209–213. 10.1016/0022-0728(82)87037-X. DOI
Yamada H.; Yamamoto Y. Surface Enhanced Raman Scattering (SERS) of Chemisorbed Species on Various Kinds of Metals and Semiconductors. Surf. Sci. 1983, 134, 71–90. 10.1016/0039-6028(83)90312-6. DOI
Zhang P.; Wang Y.; He T.; Zhang B.; Wang X.; Xin H.; Liu F.-c. SERS of Pyridine, 1,4-Dioxane and 1-Ethyl-3-methyl-2-thiacyanine Iodide Adsorbed on Alfa-Fe2O3 Colloids. Chem. Phys. Lett. 1988, 153, 215–222. 10.1016/0009-2614(88)85215-1. DOI
Alessandri I.; Lombardi J. R. Enhanced Raman Scattering with Dielectrics. Chem. Rev. 2016, 116, 14921–14981. 10.1021/acs.chemrev.6b00365. PubMed DOI
Wang Y.-X.; Wang Y.-F.; Gao Y.; Sun Z.-H.; Zhao C.; Hu H.-L.; Xu W.-Q.; Wang Z.-C.; Zhao B. Surface Enhanced Raman Spectroscopy of 4-Mercaptopyridine Molecules on Pb3O4 Nanoparticles. Chem. Res. Chin. Univ. 2006, 22, 388–389. 10.1016/S1005-9040(06)60123-2. DOI
Wang Y.; Hu H.; Jing S.; Wang Y.; Sun Z.; Zhao B.; Zhao C.; Lombardi J. R. Enhanced Raman Scattering as a Probe for 4-Mercaptopyridine Surface-Modified Copper Oxide Nanocrystals. Anal. Sci. 2007, 23, 787–791. 10.2116/analsci.23.787. PubMed DOI
Wang Y.; Sun Z.; Wang Y.; Hu H.; Zhao B.; Xu W.; Lombardi J. R. Surface-enhanced Raman Scattering on Mercaptopyridine-Capped US Microclusters. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2007, 66, 1199–1203. 10.1016/j.saa.2006.06.008. PubMed DOI
Wang Y.; Zhang J.; Jia H.; Li M.; Zeng J.; Yang B.; Zhao B.; Xu W.; Lombardi J. R. Mercaptopyridine Surface-Functionalized CdTe Quantum Dots with Enhanced Raman Scattering Properties. J. Phys. Chem. C 2008, 112, 996–1000. 10.1021/jp077467h. DOI
Wang Y.; Ruan W.; Zhang J.; Yang B.; Xu W.; Zhao B.; Lombardi J. R. Direct Observation of Surface-Enhanced Raman Scattering in ZnO Nanocrystals. J. Raman Spectrosc. 2009, 40, 1072–1077. 10.1002/jrs.2241. DOI
Wang Y. F.; Sun Z. H.; Hu H. L.; Jing S. Y.; Zhao B.; Xu W. Q.; Zhao C.; Lombardi J. R. Raman Scattering Study of Molecules Adsorbed on ZnS Nanocrystals. J. Raman Spectrosc. 2007, 38, 34–38. 10.1002/jrs.1570. DOI
Ling X.; Xie L. M.; Fang Y.; Xu H.; Zhang H. L.; Kong J.; Dresselhaus M. S.; Zhang J.; Liu Z. F. Can Graphene be Used as a Substrate for Raman Enhancement?. Nano Lett. 2010, 10, 553–561. 10.1021/nl903414x. PubMed DOI
Xue X.; Ji W.; Mao Z.; Li Z.; Ruan W.; Zhao B.; Lombardi J. R. Effects of Mn Doping on Surface Enhanced Raman Scattering Properties of TiO2 Nanoparticles. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2012, 95, 213–217. 10.1016/j.saa.2012.04.101. PubMed DOI
Xue X.; Ji W.; Mao Z.; Ruan W.; Zhao B.; Ma S.; Lombardi J. R. Study of Enhanced Raman Scattering for Molecules Adsorbed on Cu-doped TiO2 Nanoparticles. Sci. Sin. Chim. 2011, 41, 398–402. 10.1360/032010-679. DOI
Xue X.; Ruan W.; Yang L.; Ji W.; Xie Y.; Chen L.; Song W.; Zhao B.; Lombardi J. R. Surface-Enhanced Raman Scattering of Molecules Adsorbed on Co-doped ZnO Nanoparticles. J. Raman Spectrosc. 2012, 43, 61–64. 10.1002/jrs.2988. DOI
Xue X. X.; Ji W.; Mao Z.; Li Z. S.; Guo Z. N.; Zhao B.; Zhao C. SERS Study of Co-doped TiO2 Nanoparticles. Chem. Res. Chin. Univ. 2013, 29, 751–754. 10.1007/s40242-013-3051-5. DOI
Xue X. X.; Ji W.; Mao Z.; Zhao C.; Zhao B.; Lombardi J. R. Simultaneous Enhancement of Phonons Modes with Molecular Vibrations Due to Mg Doping of a TiO2 Substrate. RSC Adv. 2013, 3, 20891–20895. 10.1039/c3ra43780a. DOI
Yang L.; Jiang X.; Yang M. Improvement of Surface-Enhanced Raman Scattering Performance for Broad Band Gap Semiconductor Nanomaterial (TiO2): Strategy of Metal doping. Appl. Phys. Lett. 2011, 99, 111114.10.1063/1.3638467. DOI
Ling X.; Moura L. G.; Pimenta M. A.; Zhang J. Charge-Transfer Mechanism in Graphene-Enhanced Raman Scattering. J. Phys. Chem. C 2012, 116, 25112–25118. 10.1021/jp3088447. DOI
Ling X.; Wu J.; Xu W.; Zhang J. Probing the Effect of Molecular Orientation on the Intensity of Chemical Enhancement Using Graphene-Enhanced Raman Spectroscopy. Small 2012, 8, 1365–1372. 10.1002/smll.201102223. PubMed DOI
Ling X.; Zhang J. Investigation of the Adsorption Behavior of PbPc on Graphene by Raman Spectroscopy. Acta Phys.-Chim. Sin. 2012, 28, 2355–2362. 10.3866/PKU.WHXB201208242. DOI
Ling X.; Wu J.; Xie L.; Zhang J. Graphene-Thickness-Dependent Graphene-Enhanced Raman Scattering. J. Phys. Chem. C 2013, 117, 2369–2376. 10.1021/jp310564d. DOI
Huang S.; Ling X.; Liang L.; Song Y.; Fang W.; Zhang J.; Kong J.; Meunier V.; Dresselhaus M. S. Molecular Selectivity of Graphene-Enhanced Raman Scattering. Nano Lett. 2015, 15, 2892–2901. 10.1021/nl5045988. PubMed DOI
Han X. X.; Ji W.; Zhao B.; Ozaki Y. Semiconductor-Enhanced Raman Scattering: Active Nanomaterials and Applications. Nanoscale 2017, 9, 4847–4861. 10.1039/C6NR08693D. PubMed DOI
Ji W.; Han X. X.; Zhao B.. Charge-Transfer-Induced Enhancement of Raman Scattering Based on Semiconductors. In Recent Developments in Plasmon-Supported Raman Spectroscopy: 45 Years of Enhanced Raman Signals; World Scientific Publishing Europe Ltd., 2018; pp 451–482.
Yang B.; Jin S.; Guo S.; Park Y.; Chen L.; Zhao B.; Jung Y. M. Recent Development of SERS Technology: Semiconductor-Based Study. ACS Omega 2019, 4, 20101–20108. 10.1021/acsomega.9b03154. PubMed DOI PMC
Wang X.; Guo L. SERS Activity of Semiconductors: Crystalline and Amorphous Nanomaterials. Angew. Chem., Int. Ed. Engl. 2020, 59, 4231–4239. 10.1002/anie.201913375. PubMed DOI
Ji W.; Li L.; Song W.; Wang X.; Zhao B.; Ozaki Y. Enhanced Raman Scattering by ZnO Superstructures: Synergistic Effect of Charge Transfer and Mie Resonances. Angew. Chem., Int. Ed. Engl. 2019, 58, 14452–14456. 10.1002/anie.201907283. PubMed DOI
Rodriguez I.; Shi L.; Lu X.; Korgel B. A.; Alvarez-Puebla R. A.; Meseguer F. Silicon Nanoparticles as Raman Scattering Enhancers. Nanoscale 2014, 6, 5666–5670. 10.1039/C4NR00593G. PubMed DOI
Lombardi J. R.; Birke R. L. Theory of Surface-Enhanced Raman Scattering in Semiconductors. J. Phys. Chem. C 2014, 118, 11120–11130. 10.1021/jp5020675. DOI
Song G.; Gong W.; Cong S.; Zhao Z. Ultrathin Two-Dimensional Nanostructures: Surface Defects for Morphology-Driven Enhanced Semiconductor SERS. Angew. Chem., Int. Ed. Engl. 2021, 60, 5505–5511. 10.1002/anie.202015306. PubMed DOI
Zheng Z.; Cong S.; Gong W.; Xuan J.; Li G.; Lu W.; Geng F.; Zhao Z. Semiconductor SERS Enhancement Enabled by Oxygen Incorporation. Nat. Commun. 2017, 8, 1993.10.1038/s41467-017-02166-z. PubMed DOI PMC
Song G.; Cong S.; Zhao Z. Defect Engineering in Semiconductor-Based SERS. Chem. Sci. 2022, 13, 1210–1224. 10.1039/D1SC05940H. PubMed DOI PMC
Cong S.; Yuan Y.; Chen Z.; Hou J.; Yang M.; Su Y.; Zhang Y.; Li L.; Li Q.; Geng F.; et al. Noble Metal-Comparable SERS Enhancement from Semiconducting Metal Oxides by Making Oxygen Vacancies. Nat. Commun. 2015, 6, 7800.10.1038/ncomms8800. PubMed DOI PMC
Wang X.; Shi W.; Wang S.; Zhao H.; Lin J.; Yang Z.; Chen M.; Guo L. Two-dimensional Amorphous TiO2 Nanosheets Enabling High-efficiency Photo-induced Charge Transfer for Excellent SERS Activity. J. Am. Chem. Soc. 2019, 141, 5856–5862. 10.1021/jacs.9b00029. PubMed DOI
Wang X.; Shi W.; Jin Z.; Huang W.; Lin J.; Ma G.; Li S.; Guo L. Remarkable SERS Activity Observed from Amorphous ZnO Nanocages. Angew. Chem., Int. Ed. Engl. 2017, 56, 9851–9855. 10.1002/anie.201705187. PubMed DOI
Messinger B. J.; von Raben K. U.; Chang R. K.; Barber P. W. Local Fields at the Surface of Noble-Metal Microspheres. Phys. Rev. B 1981, 24, 649–657. 10.1103/PhysRevB.24.649. DOI
Bohren C. F.; Huffman D. R.. Absorption and Scattering of Light by Small Partices.; Wiley-Verlag, 1998; pp 1–530.
Swanson N. L.; Billard D. B. Multiple Scattering Efficiency and Optical Extinction. Phys. Rev. E 2000, 61, 4518–4522. 10.1103/PhysRevE.61.4518. PubMed DOI
Alessandri I. Enhancing Raman Scattering without Plasmons: Unprecedented Sensitivity Achieved by TiO2 Shell-Based Resonators. J. Am. Chem. Soc. 2013, 135, 5541–5544. 10.1021/ja401666p. PubMed DOI
Qi D.; Lu L.; Wang L.; Zhang J. Improved SERS Sensitivity on Plasmon-Free TiO2 Photonic Microarray by Enhancing Light-Matter Coupling. J. Am. Chem. Soc. 2014, 136, 9886–9889. 10.1021/ja5052632. PubMed DOI
Qiu B.; Xing M.; Yi Q.; Zhang J. Chiral Carbonaceous Nanotubes Modified with Titania Nanocrystals: Plasmon-Free and Recyclable SERS Sensitivity. Angew. Chem., Int. Ed. Engl. 2015, 54, 10643–10647. 10.1002/anie.201505319. PubMed DOI
Jain P. K. Plasmon-in-a-Box: On the Physical Nature of Few-Carrier Plasmon Resonances. J. Phys. Chem. Lett. 2014, 5, 3112–3119. 10.1021/jz501456t. PubMed DOI
Faucheaux J. A.; Stanton A. L. D.; Jain P. K. Plasmon Resonances of Semiconductor Nanocrystals: Physical Principles and New Opportunities. J. Phys. Chem. Lett. 2014, 5, 976–985. 10.1021/jz500037k. PubMed DOI
Lounis S. D.; Runnerstrom E. L.; Llordés A.; Milliron D. J. Defect Chemistry and Plasmon Physics of Colloidal Metal Oxide Nanocrystals. J. Phys. Chem. Lett. 2014, 5, 1564–1574. 10.1021/jz500440e. PubMed DOI
Luther J. M.; Jain P. K.; Ewers T.; Alivisatos A. P. Localized Surface Plasmon Resonances Arising from Free Carriers in Doped Quantum Dots. Nat. Mater. 2011, 10, 361–366. 10.1038/nmat3004. PubMed DOI
Li W.; Zamani R.; Rivera Gil P.; Pelaz B.; Ibáñez M.; Cadavid D.; Shavel A.; Alvarez-Puebla R. A.; Parak W. J.; Arbiol J.; et al. CuTe Nanocrystals: Shape and Size Control, Plasmonic Properties, and Use as SERS Probes and Photothermal Agents. J. Am. Chem. Soc. 2013, 135, 7098–7101. 10.1021/ja401428e. PubMed DOI
Li Y.; Bai H.; Zhai J.; Yi W.; Li J.; Yang H.; Xi G. Alternative to Noble Metal Substrates: Metallic and Plasmonic Ti3O5 Hierarchical Microspheres for Surface Enhanced Raman Spectroscopy. Anal. Chem. 2019, 91, 4496–4503. 10.1021/acs.analchem.8b05282. PubMed DOI
Liu W.; Bai H.; Li X.; Li W.; Zhai J.; Li J.; Xi G. Improved Surface-Enhanced Raman Spectroscopy Sensitivity on Metallic Tungsten Oxide by the Synergistic Effect of Surface Plasmon Resonance Coupling and Charge Transfer. J. Phys. Chem. Lett. 2018, 9, 4096–4100. 10.1021/acs.jpclett.8b01624. PubMed DOI
Hou X.; Luo X.; Fan X.; Peng Z.; Qiu T. Plasmon-Coupled Charge Transfer in WO3-x Semiconductor Nanoarrays: Toward Highly Uniform Silver-Comparable SERS Platforms. Phys. Chem. Chem. Phys. 2019, 21, 2611–2618. 10.1039/C8CP07305H. PubMed DOI
Livingstone R.; Zhou X. C.; Tamargo M. C.; Lombardi J. R.; Quagliano L. C.; Jean-Mary F. Surface Enhanced Raman Spectroscopy of Pyridine on CdSe/ZnBeSe Quantum Dots Crown by Molecular Beam Epitaxy. J. Phys. Chem. C 2010, 114, 17460–17464. 10.1021/jp105619m. DOI
Ji W.; Li L.; Guan J.; Mu M.; Song W.; Sun L.; Zhao B.; Ozaki Y. Hollow Multi-Shelled V2O5 Microstructures Integrating Multiple Synergistic Resonances for Enhanced Semiconductor SERS. Adv. Opt. Mater. 2021, 9, 2101866.10.1002/adom.202101866. DOI
Yang L.; Peng Y.; Yang Y.; Liu J.; Huang H.; Yu B.; Zhao J.; Lu Y.; Huang Z.; Li Z.; et al. A Novel Ultra-Sensitive Semiconductor SERS Substrate Boosted by the Coupled Resonance Effect. Adv. Sci. 2019, 6, 1900310.10.1002/advs.201900310. PubMed DOI PMC
Peng Y.; Lin C.; Long L.; Masaki T.; Tang M.; Yang L.; Liu J.; Huang Z.; Li Z.; Luo X.; et al. Charge-Transfer Resonance and Electromagnetic Enhancement Synergistically Enabling MXenes with Excellent SERS Sensitivity for SARS-CoV-2 S Protein Detection. Nano-Micro Lett. 2021, 13, 52.10.1007/s40820-020-00565-4. PubMed DOI PMC
Peng Y.; Lin C.; Li Y.; Gao Y.; Wang J.; He J.; Huang Z.; Liu J.; Luo X.; Yang Y. Identifying Infectiousness of SARS-CoV-2 by Ultra-Sensitive SnS2 SERS Biosensors with Capillary Effect. Matter 2022, 5, 694–709. 10.1016/j.matt.2021.11.028. PubMed DOI PMC
Musumeci A.; Gosztola D.; Schiller T.; Dimitrijevic N. M.; Mujica V.; Martin D.; Rajh T. SERS of Semiconducting Nanoparticies (TiO2 Hybrid Composites). J. Am. Chem. Soc. 2009, 131, 6040–6041. 10.1021/ja808277u. PubMed DOI
Hurst S. J.; Fry H. C.; Gosztola D. J.; Rajh T. Utilizing Chemical Raman Enhancement: A Route for Metal Oxide Support-Based Biodetection. J. Phys. Chem. C 2011, 115, 620–630. 10.1021/jp1096162. DOI
Tarakeshwar P.; Finkelstein-Shapiro D.; Hurst S. J.; Rajh T.; Mujica V. Surface-Enhanced Raman Scattering on Semiconducting Oxide Nanoparticles: Oxide Nature, Size, Solvent, and pH Effects. J. Phys. Chem. C 2011, 115, 8994–9004. 10.1021/jp202590e. DOI
Lee N.; Hummer D. R.; Sverjensky D. A.; Rajh T.; Hazen R. M.; Steele A.; Cody G. D. Speciation of l-DOPA on Nanorutile as a Function of pH and Surface Coverage Using Surface-Enhanced Raman Spectroscopy (SERS). Langmuir 2012, 28, 17322–17330. 10.1021/la303607a. PubMed DOI
Han X. X.; Köhler C.; Kozuch J.; Kuhlmann U.; Paasche L.; Sivanesan A.; Weidinger I. M.; Hildebrandt P. Potential-Dependent Surface-Enhanced Resonance Raman Spectroscopy at Nanostructured TiO2: A Case Study on Cytochrome b5. Small 2013, 9, 4175–4181. 10.1002/smll.201301070. PubMed DOI
Öner I. H.; Querebillo C. J.; David C.; Gernert U.; Walter C.; Driess M.; Leimkühler S.; Ly K. H.; Weidinger I. M. High Electromagnetic Field Enhancement of TiO2 Nanotube Electrodes. Angew. Chem., Int. Ed. Engl. 2018, 57, 7225–7229. 10.1002/anie.201802597. PubMed DOI
Chen L.; Tang J.; Ma H.; Jin S.; Xue X.; Han X. X.; Jung Y. M. High-Efficiency Charge Transfer on SERS-Active Semiconducting K2Ti6O13 Nanowires Enables Direct Transition of Photoinduced Electrons to Protein Redox Centers. Biosens. Bioelectron. 2021, 191, 113452.10.1016/j.bios.2021.113452. PubMed DOI
Murgida D. H.; Hildebrandt P. Disentangling Interfacial Redox Processes of Proteins by SERR Spectroscopy. Chem. Soc. Rev. 2008, 37, 937–945. 10.1039/b705976k. PubMed DOI
Murgida D. H.; Hildebrandt P. Electron-Transfer Processes of Cytochrome c at Interfaces. New Insights by Surface-Enhanced Resonance Raman Spectroscopy. Acc. Chem. Res. 2004, 37, 854–861. 10.1021/ar0400443. PubMed DOI
Lee K. E.; Gomez M. A.; Elouatik S.; Demopoulos G. P. Further Understanding of the Adsorption Mechanism of N719 Sensitizer on Anatase TiO2 Films for DSSC Applications Using Vibrational Spectroscopy and Confocal Raman Imaging. Langmuir 2010, 26, 9575–9583. 10.1021/la100137u. PubMed DOI
Qiu Z.; Zhang M.; Wu D.-Y.; Ding S.-Y.; Zuo Q.-Q.; Huang Y.-F.; Shen W.; Lin X.-D.; Tian Z.-Q.; Mao B.-W. Raman Spectroscopic Investigation on TiO2-N719 Dye Interfaces Using Ag@TiO2 Nanoparticles and Potential Correlation Strategies. ChemPhysChem 2013, 14, 2217–2224. 10.1002/cphc.201300381. PubMed DOI
Mao Z.; Ye Y.; Lv H.; Han X. X.; Park Y.; Zang L.; Zhao B.; Jung Y. M. Direct Dynamic Evidence of Charge Separation in a Dye-Sensitized Solar Cell Obtained under Operando Conditions by Raman Spectroscopy. Angew. Chem., Int. Ed. Engl. 2020, 59, 10780–10784. 10.1002/anie.201915824. PubMed DOI
Wen S.; Ma X.; Liu H.; Chen G.; Wang H.; Deng G.; Zhang Y.; Song W.; Zhao B.; Ozaki Y. Accurate Monitoring Platform for the Surface Catalysis of Nanozyme Validated by Surface-Enhanced Raman-Kinetics Model. Anal. Chem. 2020, 92, 11763–11770. 10.1021/acs.analchem.0c01886. PubMed DOI
Ma X.; Guo Y.; Jin J.; Zhao B.; Song W. Bi-functional Reduced Graphene Oxide/AgCo Composite Nanosheets: An Efficient Catalyst and SERS Substrate for Monitoring the Catalytic Reactions. RSC Adv. 2017, 7, 41962–41969. 10.1039/C7RA07216C. DOI
Yang L.; Yin D.; Shen Y.; Yang M.; Li X.; Han X.; Jiang X.; Zhao B. Mesoporous Semiconducting TiO2 with Rich Active Sites as a Remarkable Substrate for Surface-Enhanced Raman Scattering. Phys. Chem. Chem. Phys. 2017, 19, 18731–18738. 10.1039/C7CP03399K. PubMed DOI
Kiran V.; Sampath S. Enhanced Raman Spectroscopy of Molecules Adsorbed on Carbon-Doped TiO2 Obtained from Titanium Carbide: A Visible-Light-Assisted Renewable Substrate. ACS Appl. Mater. Interfaces 2012, 4, 3818–3828. 10.1021/am300349k. PubMed DOI
Finkelstein-Shapiro D.; Petrosko S. H.; Dimitrijevic N. M.; Gosztola D.; Gray K. A.; Rajh T.; Tarakeshwar P.; Mujica V. CO2 Preactivation in Photoinduced Reduction via Surface Functionalization of TiO2 Nanoparticles. J. Phys. Chem. Lett. 2013, 4, 475–479. 10.1021/jz3020327. PubMed DOI
Lombardi J. R. The Theory of Surface-Enhanced Raman Scattering on Semiconductor Nanoparticles: Toward the Optimization of SERS Sensors. Faraday Discuss. 2017, 205, 105–120. 10.1039/C7FD00138J. PubMed DOI
Ji W.; Song W.; Tanabe I.; Wang Y.; Zhao B.; Ozaki Y. Semiconductor-Enhanced Raman Scattering For Highly Robust SERS Sensing: The Case of Phosphate Analysis. Chem. Commun. 2015, 51, 7641–7644. 10.1039/C5CC02395E. PubMed DOI
Ji W.; Wang Y.; Tanabe I.; Han X.; Zhao B.; Ozaki Y. Semiconductor-Driven ″turn-off″ Surface-Enhanced Raman Scattering Spectroscopy: Application in Selective Determination of Chromium(vi) in Water. Chem. Sci. 2015, 6, 342–348. 10.1039/C4SC02618G. PubMed DOI PMC
Bontempi N.; Carletti L.; De Angelis C.; Alessandri I. Plasmon-Free SERS Detection of Environmental CO2 on TiO2 Surfaces. Nanoscale 2016, 8, 3226–3231. 10.1039/C5NR08380J. PubMed DOI
Alessandri I.; Vassalini I.; Bertuzzi M.; Bontempi N.; Memo M.; Gianoncelli A. RaMassays”: Synergistic Enhancement of Plasmon-Free Raman Scattering and Mass Spectrometry for Multimodal Analysis of Small Molecules. Sci. Rep. 2016, 6, 34521.10.1038/srep34521. PubMed DOI PMC
Kurouski D.; Dazzi A.; Zenobi R.; Centrone A. Infrared and Raman chemical imaging and spectroscopy at the nanoscale. Chem. Soc. Rev. 2020, 49, 3315–3347. 10.1039/C8CS00916C. PubMed DOI PMC
Blackie E. J.; Le Ru E. C.; Etchegoin P. G. Single-Molecule Surface-Enhanced Raman Spectroscopy of Nonresonant Molecules. J. Am. Chem. Soc. 2009, 131, 14466–14472. 10.1021/ja905319w. PubMed DOI
Fang Y.; Seong N.-H.; Dlott D. D. Measurement of the Distribution of Site Enhancements in Surface-Enhanced Raman Scattering. Science 2008, 321, 388–392. 10.1126/science.1159499. PubMed DOI
Wu D. Y.; Li J. F.; Ren B.; Tian Z. Q. Electrochemical Surface-Enhanced Raman Spectroscopy of Nanostructures. Chem. Soc. Rev. 2008, 37, 1025–1041. 10.1039/b707872m. PubMed DOI
Yeo B. S.; Schmid T.; Zhang W. H.; Zenobi R. A Strategy to Prevent Signal Losses, Analyte Decomposition, and Fluctuating Carbon Contamination Bands in Surface-Enhanced Raman Spectroscopy. Appl. Spectrosc. 2008, 62, 708–713. 10.1366/000370208784658165. PubMed DOI
Asiala S. M.; Schultz Z. D. Label-Free in situ Detection of Individual Macromolecular Assemblies by Surface Enhanced Raman Scattering. Chem. Commun. 2013, 49, 4340–4342. 10.1039/C2CC37268A. PubMed DOI PMC
Bell S. E. J.; Sirimuthu N. M. S. Quantitative Surface-Enhanced Raman Spectroscopy. Chem. Soc. Rev. 2008, 37, 1012–1024. 10.1039/b705965p. PubMed DOI
Zhang D. M.; Xie Y.; Deb S. K.; Davison V. J.; Ben-Amotz D. Isotope Edited Internal Standard Method for Quantitative Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2005, 77, 3563–3569. 10.1021/ac050338h. PubMed DOI
Shen W.; Lin X.; Jiang C. Y.; Li C. Y.; Lin H. X.; Huang J. T.; Wang S.; Liu G. K.; Yan X. M.; Zhong Q. L.; et al. Reliable Quantitative SERS Analysis Facilitated by Core-Shell Nanoparticles with Embedded Internal Standards. Angew. Chem., Int. Ed. Engl. 2015, 54, 7308–7312. 10.1002/anie.201502171. PubMed DOI
de Albuquerque C. D. L.; Sobral R. G.; Poppi R. J.; Brolo A. G. Digital Protocol for Chemical Analysis at Ultralow Concentrations by Surface-Enhanced Raman Scattering. Anal. Chem. 2018, 90, 1248–1254. 10.1021/acs.analchem.7b03968. PubMed DOI
Hong K. Y.; de Albuquerque C. D. L.; Poppi R. J.; Brolo A. G. Determination of Aqueous Antibiotic Solutions Using SERS Nanogratings. Anal. Chim. Acta 2017, 982, 148–155. 10.1016/j.aca.2017.05.025. PubMed DOI
Bohn J. E.; Le Ru E. C.; Etchegoin P. G. A Statistical Criterion for Evaluating the Single-Molecule Character of SERS Signals. J. Phys. Chem. C 2010, 114, 7330–7335. 10.1021/jp908990v. DOI
Sonntag M. D.; Klingsporn J. M.; Garibay L. K.; Roberts J. M.; Dieringer J. A.; Seideman T.; Scheidt K. A.; Jensen L.; Schatz G. C.; Van Duyne R. P. Single-Molecule Tip-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2012, 116, 478–483. 10.1021/jp209982h. DOI
Bhattarai A.; Joly A. G.; Hess W. P.; El-Khoury P. Z. Visualizing Electric Fields at Au(111) Step Edges via Tip-Enhanced Raman Scattering. Nano Lett. 2017, 17, 7131–7137. 10.1021/acs.nanolett.7b04027. PubMed DOI
Schmid T.; Yeo B. S.; Leong G.; Stadler J.; Zenobi R. Performing Tip-Enhanced Raman Spectroscopy in Liquids. J. Raman Spectrosc. 2009, 40, 1392–1399. 10.1002/jrs.2387. DOI
Watanabe K.; Palonpon A. F.; Smith N. I.; Chiu L. D.; Kasai A.; Hashimoto H.; Kawata S.; Fujita K. Structured Line Illumination Raman Microscopy. Nat. Commun. 2015, 6, 10095.10.1038/ncomms10095. PubMed DOI PMC
Chen H. K.; Wang S. Q.; Zhang Y. Q.; Yang Y.; Fang H.; Zhu S. W.; Yuan X. C. Structured Illumination for Wide-Field Raman Imaging of Cell Membranes. Opt. Commun. 2017, 402, 221–225. 10.1016/j.optcom.2017.06.021. DOI
Weber M. L.; Willets K. A. Correlated Super-Resolution Optical and Structural Studies of Surface-Enhanced Raman Scattering Hot Spots in Silver Colloid Aggregates. J. Phys. Chem. Lett. 2011, 2, 1766–1770. 10.1021/jz200784e. DOI
Olson A. P.; Ertsgaard C. T.; Elliott S. N.; Lindquist N. C. Super-Resolution Chemical Imaging with Plasmonic Substrates. ACS Photonics 2016, 3, 329–336. 10.1021/acsphotonics.5b00647. DOI
Procházka M.Surface-Enhanced Raman Spectroscopy - Bioanalytical, Biomolecular and Medical Applications; Springer International Publishing, 2016; pp 1–221.
Treffer R.; Deckert V. Recent Advances in Single-Molecule Sequencing. Curr. Opin. Biotechnol. 2010, 21, 4–11. 10.1016/j.copbio.2010.02.009. PubMed DOI
Najjar S.; Talaga D.; Schue L.; Coffinier Y.; Szunerits S.; Boukherroub R.; Servant L.; Rodriguez V.; Bonhommeau S. Tip-Enhanced Raman Spectroscopy of Combed Double-Stranded DNA Bundles. J. Phys. Chem. C 2014, 118, 1174–1181. 10.1021/jp410963z. DOI
Venkatesan B. M.; Bashir R. Nanopore Sensors for Nucleic Acid Analysis. Nat. Nanotechnol. 2011, 6, 615–624. 10.1038/nnano.2011.129. PubMed DOI
Chen C.; Li Y.; Kerman S.; Neutens P.; Willems K.; Cornelissen S.; Lagae L.; Stakenborg T.; Van Dorpe P. High Spatial Resolution Nanoslit SERS for Single-Molecule Nucleobase Sensing. Nat. Commun. 2018, 9, 1733.10.1038/s41467-018-04118-7. PubMed DOI PMC
Pashaee F.; Tabatabaei M.; Caetano F. A.; Ferguson S. S. G.; Lagugne-Labarthet F. Tip-Enhanced Raman Spectroscopy: Plasmid-Free vs. Plasmid-Embedded DNA. Analyst 2016, 141, 3251–3258. 10.1039/C6AN00350H. PubMed DOI
Kurouski D.; Deckert-Gaudig T.; Deckert V.; Lednev I. K. Structure and Composition of Insulin Fibril Surfaces Probed by TERS. J. Am. Chem. Soc. 2012, 134, 13323–13329. 10.1021/ja303263y. PubMed DOI PMC
Deckert-Gaudig T.; Kurouski D.; Hedegaard M. A. B.; Singh P.; Lednev I. K.; Deckert V. Spatially Resolved Spectroscopic Differentiation of Hydrophilic and Hydrophobic Domains on Individual Insulin Amyloid Fibrils. Sci. Rep. 2016, 6, 33575.10.1038/srep33575. PubMed DOI PMC
Bonhommeau S.; Talaga D.; Hunel J.; Cullin C.; Lecomte S. Tip-Enhanced Raman Spectroscopy to Distinguish Toxic Oligomers from Aβ1-42 Fibrils at the Nanometer Scale. Angew. Chem., Int. Ed. Engl. 2017, 56, 1771–1774. 10.1002/anie.201610399. PubMed DOI
Lipiec E.; Perez-Guaita D.; Kaderli J.; Wood B. R.; Zenobi R. Direct Nanospectroscopic Verification of the Amyloid Aggregation Pathway. Angew. Chem., Int. Ed. Engl. 2018, 57, 8519–8524. 10.1002/anie.201803234. PubMed DOI
Tabatabaei M.; Caetano F. A.; Pashee F.; Ferguson S. S. G.; Lagugne-Labarthet F. Tip-Enhanced Raman Spectroscopy of Amyloid Beta at Neuronal spines. Analyst 2017, 142, 4415–4421. 10.1039/C7AN00744B. PubMed DOI
Kurouski D.; Deckert-Gaudig T.; Deckert V.; Lednev I. K. Surface Characterization of Insulin Protofilaments and Fibril Polymorphs Using Tip-Enhanced Raman Spectroscopy (TERS). Biophys. J. 2014, 106, 263–271. 10.1016/j.bpj.2013.10.040. PubMed DOI PMC
Bao P. D.; Huang T. Q.; Liu X. M.; Wu T. Q. Surface-Enhanced Raman Spectroscopy of Insect Nuclear Polyhedrosis Virus. J. Raman Spectrosc. 2001, 32, 227–230. 10.1002/jrs.665. DOI
Cialla D.; Deckert-Gaudig T.; Budich C.; Laue M.; Moller R.; Naumann D.; Deckert V.; Popp J. Raman to the Limit: Tip-Enhanced Raman Spectroscopic Investigations of a Single Tobacco Mosaic Virus. J. Raman Spectrosc. 2009, 40, 240–243. 10.1002/jrs.2123. DOI
Yang J. L.; Wang H. J.; Zhang H.; Tian Z. Q.; Li J. F. Probing Hot Electron Behaviors by Surface-Enhanced Raman Spectroscopy. Cell. Rep. Phys. Sci. 2020, 1, 100184.10.1016/j.xcrp.2020.100184. DOI
Li J. F.; Huang Y. F.; Ding Y.; Yang Z. L.; Li S. B.; Zhou X. S.; Fan F. R.; Zhang W.; Zhou Z. Y.; Wu D. Y.; et al. Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Nature 2010, 464, 392–395. 10.1038/nature08907. PubMed DOI
Wang Y. H.; Wei J.; Radjenovic P.; Tian Z. Q.; Li J. F. In Situ Analysis of Surface Catalytic Reactions Using Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Anal. Chem. 2019, 91, 1675–1685. 10.1021/acs.analchem.8b05499. PubMed DOI
Zhang Z.; Merk V.; Hermanns A.; Unger W. E. S.; Kneipp J. Role of Metal Cations in Plasmon-Catalyzed Oxidation: A Case Study of p-Aminothiophenol Dimerization. ACS Catal. 2017, 7, 7803–7809. 10.1021/acscatal.7b02700. DOI
Wang J. L.; Ando R. A.; Camargo P. H. C. Controlling the Selectivity of the Surface Plasmon Resonance Mediated Oxidation of p-Aminothiophenol on Au Nanoparticles by Charge Transfer from UV-excited TiO2. Angew. Chem., Int. Ed. Engl. 2015, 54, 6909–6912. 10.1002/anie.201502077. PubMed DOI
Xie W.; Schlucker S. Hot Electron-Induced Reduction of Small Molecules on Photorecycling Metal Surfaces. Nat. Commun. 2015, 6, 7570.10.1038/ncomms8570. PubMed DOI PMC
Cortes E.; Xie W.; Cambiasso J.; Jermyn A. S.; Sundararaman R.; Narang P.; Schlucker S.; Maier S. A. Plasmonic Hot Electron Transport Drives Nano-Localized Chemistry. Nat. Commun. 2017, 8, 14880.10.1038/ncomms14880. PubMed DOI PMC
Brandt N. C.; Keller E. L.; Frontiera R. R. Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry. J. Phys. Chem. Lett. 2016, 7, 3179–3185. 10.1021/acs.jpclett.6b01453. PubMed DOI
Karaballi R. A.; Nel A.; Krishnan S.; Blackburn J.; Brosseau C. L. Development of an Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS) Aptasensor for Direct Detection of DNA Hybridization. Phys. Chem. Chem. Phys. 2015, 17, 21356–21363. 10.1039/C4CP05077K. PubMed DOI
Lee T.; Mohammadniaei M.; Zhang H.; Yoon J.; Choi H. K.; Guo S. J.; Guo P. X.; Choi J. W. Single Functionalized pRNA/Gold Nanoparticle for Ultrasensitive MicroRNA Detection Using Electrochemical Surface-Enhanced Raman Spectroscopy. Adv. Sci. 2020, 7, 1902477.10.1002/advs.201902477. PubMed DOI PMC
Hu Y. L.; Wu C. J.; Huang S. Q.; Luo X. L.; Yuan R.; Yang X. A Novel SERS Substrate with High Reusability for Sensitive Detection of miRNA 21. Talanta 2021, 228, 122240.10.1016/j.talanta.2021.122240. PubMed DOI
Goodall B. L.; Robinson A. M.; Brosseau C. L. Electrochemical-Surface Enhanced Raman Spectroscopy (E-SERS) of Uric Acid: A Potential Rapid Diagnostic Method for Early Preeclampsia Detection. Phys. Chem. Chem. Phys. 2013, 15, 1382–1388. 10.1039/C2CP42596C. PubMed DOI
Hernandez S.; Perales-Rondon J. V.; Heras A.; Colina A. Determination of Uric Acid in Synthetic Urine by Using Electrochemical Surface Oxidation Enhanced Raman Scattering. Anal. Chim. Acta 2019, 1085, 61–67. 10.1016/j.aca.2019.07.057. PubMed DOI
Huang C. Y.; Hsiao H. C. Integrated EC-SERS Chip with Uniform Nanostructured EC-SERS Active Working Electrode for Rapid Detection of Uric Acid. Sensors 2020, 20, 7066.10.3390/s20247066. PubMed DOI PMC
Lynk T. P.; Sit C. S.; Brosseau C. L. Electrochemical Surface-Enhanced Raman Spectroscopy as a Platform for Bacterial Detection and Identification. Anal. Chem. 2018, 90, 12639–12646. 10.1021/acs.analchem.8b02806. PubMed DOI
Do H.; Kwon S. R.; Fu K. Y.; Morales-Soto N.; Shrout J. D.; Bohn P. W. Electrochemical Surface-Enhanced Raman Spectroscopy of Pyocyanin Secreted by Pseudomonas aeruginosa Communities. Langmuir 2019, 35, 7043–7049. 10.1021/acs.langmuir.9b00184. PubMed DOI PMC
Hassanain W. A.; Izake E. L.; Ayoko G. A. Spectroelectrochemical Nanosensor for the Determination of Cystatin C in Human Blood. Anal. Chem. 2018, 90, 10843–10850. 10.1021/acs.analchem.8b02121. PubMed DOI
Huang S. C.; Bao Y. F.; Wu S. S.; Huang T. X.; Sartin M. M.; Wang X.; Ren B. Electrochemical Tip-Enhanced Raman Spectroscopy: An in Situ Nanospectroscopy for Electrochemistry. Annu. Rev. Phys. Chem. 2021, 72, 213–234. 10.1146/annurev-physchem-061020-053442. PubMed DOI
Kurouski D.; Mattei M.; Van Duyne R. P. Probing Redox Reactions at the Nanoscale with Electrochemical Tip-Enhanced Raman Spectroscopy. Nano Lett. 2015, 15, 7956–7962. 10.1021/acs.nanolett.5b04177. PubMed DOI
Mattei M.; Kang G.; Goubert G.; Chulhai D. V.; Schatz G. C.; Jensen L.; Van Duyne R. P. Tip-Enhanced Raman Voltammetry: Coverage Dependence and Quantitative Modeling. Nano Lett. 2017, 17, 590–596. 10.1021/acs.nanolett.6b04868. PubMed DOI
Zeng Z. C.; Huang S. C.; Wu D. Y.; Meng L. Y.; Li M. H.; Huang T. X.; Zhong J. H.; Wang X.; Yang Z. L.; Ren B. Electrochemical Tip-Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2015, 137, 11928–11931. 10.1021/jacs.5b08143. PubMed DOI
Huang S. C.; Ye J. Z.; Shen X. R.; Zhao Q. Q.; Zeng Z. C.; Li M. H.; Wu D. Y.; Wang X.; Ren B. Electrochemical Tip-Enhanced Raman Spectroscopy with Improved Sensitivity Enabled by a Water Immersion Objective. Anal. Chem. 2019, 91, 11092–11097. 10.1021/acs.analchem.9b01701. PubMed DOI
Sabanes N. M.; Ohto T.; Andrienko D.; Nagata Y.; Domke K. F. Electrochemical TERS Elucidates Potential-Induced Molecular Reorientation of Adenine/Au(111). Angew. Chem., Int. Ed. Engl. 2017, 56, 9796–9801. 10.1002/anie.201704460. PubMed DOI
Touzalin T.; Joiret S.; Maisonhaute E.; Lucas I. T. Complex Electron Transfer Pathway at a Microelectrode Captured by in Situ Nanospectroscopy. Anal. Chem. 2017, 89, 8974–8980. 10.1021/acs.analchem.7b01542. PubMed DOI
Touzalin T.; Joiret S.; Lucas I. T.; Maisonhaute E. Electrochemical Tip-Enhanced Raman Spectroscopy Imaging with 8 nm Lateral Resolution. Electrochem. Commun. 2019, 108, 106557.10.1016/j.elecom.2019.106557. DOI
Kumar N.; Wondergem C. S.; Wain A. J.; Weckhuysen B. M. In Situ Nanoscale Investigation of Catalytic Reactions in the Liquid Phase Using Zirconia-Protected Tip-Enhanced Raman Spectroscopy Probes. J. Phys. Chem. Lett. 2019, 10, 1669–1675. 10.1021/acs.jpclett.8b02496. PubMed DOI PMC
Wang R.; Kurouski D. Elucidation of Tip-Broadening Effect in Tip-Enhanced Raman Spectroscopy (TERS): A Cause of Artifacts or Potential for 3D TERS. J. Phys. Chem. C 2018, 122, 24334–24340. 10.1021/acs.jpcc.8b09455. DOI
Karabeber H.; Huang R. M.; Iacono P.; Samii J. M.; Pitter K.; Holland E. C.; Kircher M. F. Guiding Brain Tumor Resection Using Surface-Enhanced Raman Scattering Nanoparticles and a Hand-Held Raman Scanner. ACS Nano 2014, 8, 9755–9766. 10.1021/nn503948b. PubMed DOI PMC
Han L. M.; Duan W. J.; Li X. W.; Wang C.; Jin Z. Y.; Zhai Y. T.; Cao C.; Chen L.; Xu W. J.; Liu Y.; et al. Surface-Enhanced Resonace Raman Scattering - Guided Brain Tumor Surgery Showing Prognostic Benefit in Rat Models. ACS Appl. Mater. Interfaces 2019, 11, 15241–15250. 10.1021/acsami.9b00227. PubMed DOI
Jin Z. Y.; Yue Q.; Duan W. J.; Sui A.; Zhao B. T.; Deng Y. H.; Zhai Y. T.; Zhang Y. W.; Sun T.; Zhang G. P.; et al. Intelligent SERS Navigation System Guiding Brain Tumor Surgery by Intraoperatively Delineating the Metabolic Acidosis. Adv. Sci. 2022, 9, e210493510.1002/advs.202270043. PubMed DOI PMC
Duan W. J.; Yue Q.; Liu Y.; Zhang Y. F.; Guo Q. H.; Wang C.; Yin S. J.; Fan D. D.; Xu W. J.; Zhuang J. X.; et al. A pH Ratiometrically Responsive Surface Enhanced Resonance Raman Scattering Probe for Tumor Acidic Margin Delineation and Image-Guided Surgery. Chem. Sci. 2020, 11, 4397–4402. 10.1039/D0SC00844C. PubMed DOI PMC
Zavaleta C. L.; Garai E.; Liu J. T. C.; Sensarn S.; Mandella M. J.; Van de Sompel D.; Friedland S.; Van Dam J.; Contag C. H.; Gambhir S. S. A Raman-Based Endoscopic Strategy for Multiplexed Molecular Imaging. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 10062–10063. 10.1073/pnas.1211309110. PubMed DOI PMC
Garai E.; Sensarn S.; Zavaleta C. L.; Van de Sompel D.; Loewke N. O.; Mandella M. J.; Gambhir S. S.; Contag C. H. High-Sensitivity, Real-Time, Ratiometric Imaging of Surface-Enhanced Raman Scattering Nanoparticles with a Clinically Translatable Raman Endoscope Device. J. Biomed. Opt. 2013, 18, 096008.10.1117/1.JBO.18.9.096008. PubMed DOI PMC
Garai E.; Sensarn S.; Zavaleta C. L.; Loewke N. O.; Rogalla S.; Mandella M. J.; Felt S. A.; Friedland S.; Liu J. T. C.; Gambhir S. S.; et al. A Real-Time Clinical Endoscopic System for Intraluminal, Multiplexed Imaging of Surface-Enhanced Raman Scattering Nanoparticles. PLoS One 2015, 10, e012318510.1371/journal.pone.0123185. PubMed DOI PMC
Wang Y. W.; Kang S.; Khan A.; Bao P. Q.; Liu J. T. C. In vivo Multiplexed Molecular Imaging of Esophageal Cancer via Spectral Endoscopy of Topically Applied SERS Nanoparticles. Biomed. Opt. Express 2015, 6, 3714–3723. 10.1364/BOE.6.003714. PubMed DOI PMC
Lu G.; De Keersmaecker H.; Su L.; Kenens B.; Rocha S.; Fron E.; Chen C.; Van Dorpe P.; Mizuno H.; Hofkens J.; et al. Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides. Adv. Mater. 2014, 26, 5124–5128. 10.1002/adma.201401237. PubMed DOI
Sharma N.; Takeshita N.; Ho K. Y. Raman Spectroscopy for the Endoscopic Diagnosis of Esophageal, Gastric, and Colonic Diseases. Clin. Endosc. 2016, 49, 404–407. 10.5946/ce.2016.100. PubMed DOI PMC
Zhang Y. Y.; Mi X.; Tan X. Y.; Xiang R. Recent Progress on Liquid Biopsy Analysis using Surface-Enhanced Raman Spectroscopy. Theranostics 2019, 9, 491–525. 10.7150/thno.29875. PubMed DOI PMC
Shanmugasundaram K. B.; Li J. R.; Sina A. I.; Wuethrich A.; Trau M. Toward Precision Oncology: SERS Microfluidic Systems for Multiplex Biomarker Analysis in Liquid Biopsy. Mater. Adv. 2022, 3, 1459–1471. 10.1039/D1MA00848J. DOI
Sha M. Y.; Xu H. X.; Natan M. J.; Cromer R. Surface-Enhanced Raman Scattering Tags for Rapid and Homogeneous Detection of Circulating Tumor Cells in the Presence of Human Whole Blood. J. Am. Chem. Soc. 2008, 130, 17214–17215. 10.1021/ja804494m. PubMed DOI PMC
Wang X.; Qian X. M.; Beitler J. J.; Chen Z. G.; Khuri F. R.; Lewis M. M.; Shin H. J. C.; Nie S. M.; Shin D. M. Detection of Circulating Tumor Cells in Human Peripheral Blood Using Surface-Enhanced Raman Scattering Nanoparticles. Cancer Res. 2011, 71, 1526–1532. 10.1158/0008-5472.CAN-10-3069. PubMed DOI PMC
Shi W.; Paproski R. J.; Moore R.; Zemp R. Detection of Circulating Tumor Cells Using Targeted Surface-Enhanced Raman Scattering Nanoparticles and Magnetic Enrichment. J. Biomed. Opt. 2014, 19, 056014.10.1117/1.JBO.19.5.056014. PubMed DOI
Nima Z. A.; Mahmood M.; Xu Y.; Mustafa T.; Watanabe F.; Nedosekin D. A.; Juratli M. A.; Fahmi T.; Galanzha E. I.; Nolan J. P.; et al. Circulating Tumor Cell Identification by Functionalized Silver-Gold Nanorods with Multicolor, Super-Enhanced SERS and Photothermal Resonances. Sci. Rep. 2015, 4, 4752.10.1038/srep04752. PubMed DOI PMC
Bhamidipati M.; Cho H. Y.; Lee K. B.; Fabris L. SERS-Based Quantification of Biomarker Expression at the Single Cell Level Enabled by Gold Nanostars and Truncated Aptamers. Bioconjugate Chem. 2018, 29, 2970–2981. 10.1021/acs.bioconjchem.8b00397. PubMed DOI
Reza K. K.; Dey S.; Wuethrich A.; Wang J.; Behren A.; Antaw F.; Wang Y. L.; Ibn Sina A.; Trau M. In Situ Single Cell Proteomics Reveals Circulating Tumor Cell Heterogeneity during Treatment. ACS Nano 2021, 15, 11231–11243. 10.1021/acsnano.0c10008. PubMed DOI
Cho H. Y.; Hossain M. K.; Lee J. H.; Han J.; Lee H. J.; Kim K. J.; Kim J. H.; Lee K. B.; Choi J. W. Selective Isolation and Noninvasive Analysis of Circulating Cancer Stem Cells Through Raman Imaging. Biosens. Bioelectron. 2018, 102, 372–382. 10.1016/j.bios.2017.11.049. PubMed DOI
Wilson R. E.; O’Connor R.; Gallops C. E.; Kwizera E. A.; Noroozi B.; Morshed B. I.; Wang Y. M.; Huang X. H. Immunomagnetic Capture and Multiplexed Surface Marker Detection of Circulating Tumor Cells with Magnetic Multicolor Surface-Enhanced Raman Scattering Nanotags. ACS Appl. Mater. Interfaces 2020, 12, 47220–47232. 10.1021/acsami.0c12395. PubMed DOI PMC
Wood B. R.; Bailo E.; Khiavi M. A.; Tilley L.; Deed S.; Deckert-Gaudig T.; McNaughton D.; Deckert V. Tip-Enhanced Raman Scattering (TERS) from Hemozoin Crystals within a Sectioned Erythrocyte. Nano Lett. 2011, 11, 1868–1873. 10.1021/nl103004n. PubMed DOI
Xiao L. F.; Bailey K. A.; Wang H.; Schultz Z. D. Probing Membrane Receptor-Ligand Specificity with Surface- and Tip-Enhanced Raman Scattering. Anal. Chem. 2017, 89, 9091–9099. 10.1021/acs.analchem.7b01796. PubMed DOI PMC
Treffer R.; Bohme R.; Deckert-Gaudig T.; Lau K.; Tiede S.; Lin X. M.; Deckert V. Advances in TERS (Tip-Enhanced Raman scattering) for Biochemical Applications. Biochem. Soc. Trans. 2012, 40, 609–614. 10.1042/BST20120033. PubMed DOI