Enantiomeric Discrimination by Surface-Enhanced Raman Scattering-Chiral Anisotropy of Chiral Nanostructured Gold Films
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
21931008
Major Research Plan
21975184
National Natural Science Foundation of China
21873072
National Natural Science Foundation of China
21922304
Young Scientists Fund
21533002
National Natural Science Foundation of China
19JC1410300
Science foundation of the Shanghai Municipal Science and Technology Commission
PubMed
32424964
DOI
10.1002/anie.202006486
Knihovny.cz E-zdroje
- Klíčová slova
- chiral anisotropy, chiral nanostructured Au film, chiral response, enantiomeric discrimination, surface-enhanced Raman scattering,
- Publikační typ
- časopisecké články MeSH
A surface-enhanced Raman scattering-chiral anisotropy (SERS-ChA) effect is reported that combines chiral discrimination and surface Raman scattering enhancement on chiral nanostructured Au films (CNAFs) equipped in the normal Raman scattering Spectrometer. The CNAFs provided remarkably higher enhancement factors of Raman scattering (EFs) for particular enantiomers, and the SERS intensity was proportional to the enantiomeric excesses (ee) values. Except for molecules with mesomeric species, all of the tested enantiomers exhibited high SERS-ChA asymmetry factors (g), ranging between 1.34 and 1.99 regardless of polarities, sizes, chromophores, concentrations and ee. The effect might be attributed to selective resonance coupling between the induced electric and magnetic dipoles associated with enantiomers and chiral plasmonic modes of CNAFs.
Zobrazit více v PubMed
J. Shen, Y. Okamoto, Chem. Rev. 2016, 116, 1094-1138;
T. D. James, K. Sandanayake, S. Shinkai, Nature 1995, 374, 345-347;
D. Patterson, M. Schnell, J. M. Doyle, Nature 2013, 497, 475-478;
K. Banerjee-Ghosh, O. Ben Dor, F. Tassinari, E. Capua, S. Yochelis, A. Capua, S. H. Yang, S. S. P. Parkin, S. Sarkar, L. Kronik, L. T. Baczewski, R. Naaman, Y. Paltiel, Science 2018, 360, 1331-1334;
S. Dutta, A. J. Gellman, Chem. Soc. Rev. 2017, 46, 7787-7839;
P. Lesot, C. Aroulanda, H. Zimmermann, Z. Luz, Chem. Soc. Rev. 2015, 44, 2330-2375.
L. D. Barron, Molecular Light Scattering and Optical Activity, Cambridge University Press, Cambridge, 1982;
N. Berova, L. Di Bari, G. Pescitelli, Chem. Soc. Rev. 2007, 36, 914-931;
L. Yang, C. S. Kwan, L. L. Zhang, X. H. Li, Y. Han, K. C. F. Leung, Y. G. Yang, Z. F. Huang, Adv. Funct. Mater. 2019, 29, 8;
B. T. Thole, P. Carra, F. Sette, G. Vanderlaan, Phys. Rev. Lett. 1992, 68, 1943-1946;
L. A. Nafie, Vibrational Optical Activity: Principles and Applications, Blackwell Science Publ, Oxford, 2011;
N. Berova, K. Nakanishi, R. W. Woody, Circular dichroism : principles and applications, Wiley-VCH, Weinheim, 2000;
N. Bouldi, N. J. Vollmers, C. G. Delpy-Laplanche, Y. Joly, A. Juhin, P. Sainctavit, C. Brouder, M. Calandra, L. Paulatto, F. Mauri, U. Gerstmann, Phys. Rev. B 2017, 96, 12.
D. Sofikitis, L. Bougas, G. E. Katsoprinakis, A. K. Spiliotis, B. Loppinet, T. P. Rakitzis, Nature 2014, 514, 76-79;
S. Beaulieu, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Geneaux, A. G. Harvey, F. Legare, Z. Masin, L. Nahon, A. F. Ordonez, S. Petit, B. Pons, Y. Mairesse, O. Smirnova, V. Blanchet, Nat. Phys. 2018, 14, 484-489.
K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld, Phys. Rev. Lett. 1997, 78, 1667-1670;
S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, Z. Q. Tian, Nat. Rev. Mater. 2016, 1, 16;
M. Fleischmann, P. J. Hendra, A. J. McQuillan, Chem. Phys. Lett. 1974, 26, 163-166.
M. Moskovits, Rev. Mod. Phys. 1985, 57, 783-826;
E. C. Le Ru, P. G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy, Elsevier, Amsterdam, 2009.
S. Abdali, E. W. Blanch, Chem. Soc. Rev. 2008, 37, 980-992.
L. D. Barron, A. D. Buckingham, Annu. Rev. Phys. Chem. 1975, 26, 381-396.
J. He, Y. Wang, Y. Feng, X. Qi, Z. Zeng, Q. Liu, W. S. Teo, C. L. Gan, H. Zhang, H. Chen, ACS Nano 2013, 7, 2733-2740.
Y. H. Zhu, J. T. He, C. Shang, X. H. Miao, J. F. Huang, Z. P. Liu, H. Y. Chen, Y. Han, J. Am. Chem. Soc. 2014, 136, 12746-12752;
A. H. Boerdijk, Philips Res. Rep. 1952, 7, 303-313;
J. Yan, W. C. Fang, J. Y. Kim, J. Lu, P. Kumar, Z. Z. Mu, X. C. Wu, X. M. Mao, N. A. Kotov, Chem. Mater. 2020, 32, 476-488.
P. Oleynikov, Cryst. Res. Technol. 2011, 46, 569-579.
J. Zhou, J. An, B. Tang, S. P. Xu, Y. X. Cao, B. Zhao, W. Q. Xu, J. J. Chang, J. R. Lombardi, Langmuir 2008, 24, 10407-10413;
C. G. Khoury, T. Vo-Dinh, J. Phys. Chem. C 2008, 112, 18849-18859.
M. Yang, R. Alvarez-Puebla, H. S. Kim, P. Aldeanueva-Potel, L. M. Liz-Marzan, N. A. Kotov, Nano Lett. 2010, 10, 4013-4019.
Bisignate Surface-Enhanced Raman Optical Activity with Analyte-Capped Colloids
Two Spectroscopies in One: Interference of Circular Dichroism and Raman Optical Activity