Bisignate Surface-Enhanced Raman Optical Activity with Analyte-Capped Colloids

. 2025 Mar 18 ; 19 (10) : 10412-10420. [epub] 20250307

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40053825

Spectroscopic detection of chiral compounds is often hampered by a low sensitivity. For Raman optical activity (ROA), the signal can be dramatically increased in surface-enhanced experiments. So far, however, reproducible surface-enhanced ROA (SEROA) spectra were obtained for a reporter molecule only via induced chirality, and the intensities were just proportional to the Raman scattering. In the present study, we show that the signal can be substantially increased if colloidal silver nanoparticles are prepared already in the presence of a chiral analyte. In this case, both the analyte's and reporter's bands are visible. In addition, some experiments provided bisignate SEROA patterns, thus significantly enhancing information about the molecular structure provided by this spectroscopic method. Increased electronic circular dichroism (ECD) of the capped aggregated colloids suggests that ECD and polarized Raman scattering (ECD-Raman) contribute to the monosignate SEROA intensities, while well-dispersed nonaggregating colloids are important for observation of true (bisignate) molecular vibrational SEROA.

Zobrazit více v PubMed

Langer J.; Jimenez de Aberasturi D.; Aizpurua J.; Alvarez-Puebla R. A.; Auguié B.; Baumberg J. J.; Bazan G. C.; Bell S. E.; Boisen A.; Brolo A. G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14 (1), 28–117. 10.1021/acsnano.9b04224. PubMed DOI PMC

Sun F.; Galvan D. D.; Jain P.; Yu Q. Multi-functional, thiophenol-based surface chemistry for surface-enhanced Raman spectroscopy. Chem. Commun. 2017, 53 (33), 4550–4561. 10.1039/C7CC01577A. PubMed DOI

Wang N.; Zhao L.; Liu C.; Zhang J.; He Y.; Yang H.; Liu X. Chiral Detection of Glucose: An Amino Acid-Assisted Surface-Enhanced Raman Scattering Strategy Showing Opposite Enantiomeric Effects on SERS Signals. Anal. Chem. 2022, 94 (42), 14565–14572. 10.1021/acs.analchem.2c02340. PubMed DOI

Leong S. X.; Koh C. S. L.; Sim H. Y. F.; Lee Y. H.; Han X.; Phan-Quang G. C.; Ling X. Y. Enantiospecific Molecular Fingerprinting Using Potential-Modulated Surface-Enhanced Raman Scattering to Achieve Label-Free Chiral Differentiation. ACS Nano 2021, 15 (1), 1817–1825. 10.1021/acsnano.0c09670. PubMed DOI

Liu Z.; Ai J.; Kumar P.; You E.; Zhou X.; Liu X.; Tian Z.; Bouř P.; Duan Y.; Han L.; et al. Enantiomeric Discrimination by Surface-Enhanced Raman Scattering-Chiral Anisotropy of Chiral Nanostructured Gold Films. Angew. Chem. 2020, 59 (35), 15226–15231. 10.1002/anie.202006486. PubMed DOI

Kuang X.; Ye S.; Li X.; Ma Y.; Zhang C.; Tang B. A new type of surface-enhanced Raman scattering sensor for the enantioselective recognition of d/l-cysteine and d/l-asparagine based on a helically arranged Ag NPs@homochiral MOF. Chem. Commun. 2016, 52 (31), 5432–5435. 10.1039/C6CC00320F. PubMed DOI

Škrna O. e.; Kessler J. i.; Liu Z.; Che S.; Bouř P. Reproduction of Chiral Anisotropy in Surface-Enhanced Raman Scattering on Gold Nanowires by Computational Modeling. J. Phys. Chem. C 2024, 128 (30), 12649–12656. 10.1021/acs.jpcc.4c02703. DOI

Kneipp J.; Wittig B.; Bohr H.; Kneipp K. Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine. Theor. Chem. Acc. 2010, 125 (3), 319–327. 10.1007/s00214-009-0665-2. DOI

Bouř P. Matrix formulation of the surface-enhanced Raman optical activity theory. J. Chem. Phys. 2007, 126 (13), 13610110.1063/1.2715949. PubMed DOI

Das M.; Kurochka A.; Bouř P.; Gangopadhyay D.. Chirality Revealed by Raman Optical Activity: Principles, Applications, Recent Developments and Future Prospects. Raman Spectroscopy: Advances and Applications Singh D. K.; Kumar Mishra A.; Materny A., Eds.; Springer Nature: Singapore, 2024; pp 145–166.

Hentschel M.; Schäferling M.; Duan X.; Giessen H.; Liu N. Chiral plasmonics. Sci. Adv. 2017, 3 (5), e160273510.1126/sciadv.1602735. PubMed DOI PMC

Biswas A.; Cencillo-Abad P.; Shabbir M. W.; Karmakar M.; Chanda D. Tunable plasmonic superchiral light for ultrasensitive detection of chiral molecules. Sci. Adv. 2024, 10 (8), eadk256010.1126/sciadv.adk2560. PubMed DOI PMC

Novák V.; Šebestík J.; Bouř P. Theoretical Modeling of the Surface-Enhanced Raman Optical Activity. J. Chem. Theory Comput. 2012, 8 (5), 1714–1720. 10.1021/ct300150g. PubMed DOI

Abdali S.; Blanch E. W. Surface enhanced Raman optical activity (SEROA). Chem. Soc. Rev. 2008, 37 (5), 980–992. 10.1039/b707862p. PubMed DOI

Abdali S.; Johannessen C.; Nygaard J.; Noerbygaard T. Resonance surface enhanced Raman optical activity of myoglobin as a result of optimized resonance surface enhanced Raman scattering conditions. J. Condens. Matter Phys. 2007, 19 (28), 28520510.1088/0953-8984/19/28/285205. DOI

Kneipp H.; Kneipp J.; Kneipp K. Surface-Enhanced Raman Optical Activity on Adenine in Silver Colloidal Solution. Anal. Chem. 2006, 78 (4), 1363–1366. 10.1021/ac0516382. PubMed DOI

Pour S. O.; Bell S. E. J.; Blanch E. W. Use of a hydrogel polymer for reproducible surface enhanced Raman optical activity (SEROA). Chem. Commun. 2011, 47 (16), 4754–4756. 10.1039/c0cc05284a. PubMed DOI

Chulhai D. V.; Jensen L. Simulating Surface-Enhanced Raman Optical Activity Using Atomistic Electrodynamics-Quantum Mechanical Models. J. Phys. Chem. A 2014, 118 (39), 9069–9079. 10.1021/jp502107f. PubMed DOI

Das M.; Gangopadhyay D.; Šebestík J.; Habartová L.; Michal P.; Kapitán J.; Bouř P. Chiral detection by induced surface-enhanced Raman optical activity. Chem. Commun. 2021, 57 (52), 6388–6391. 10.1039/D1CC01504D. PubMed DOI

Janesko B. G.; Scuseria G. E. Molecule–Surface Orientational Averaging in Surface Enhanced Raman Optical Activity Spectroscopy. J. Phys. Chem. C 2009, 113 (22), 9445–9449. 10.1021/jp9025514. DOI

Johannessen C.; White P. C.; Abdali S. Resonance Raman Optical Activity and Surface Enhanced Resonance Raman Optical Activity Analysis of Cytochrome c. J. Phys. Chem. A 2007, 111 (32), 7771–7776. 10.1021/jp0705267. PubMed DOI

Xiao T. H.; Cheng Z.; Luo Z.; Isozaki A.; Hiramatsu K.; Itoh T.; Nomura M.; Iwamoto S.; Goda K. All-dielectric chiral-field-enhanced Raman optical activity. Nat. Commun. 2021, 12 (1), 3062.10.1038/s41467-021-23364-w. PubMed DOI PMC

Ostovar pour S.; Rocks L.; Faulds K.; Graham D.; Parchaňský V.; Bouř P.; Blanch E. W. Through-space transfer of chiral information mediated by a plasmonic nanomaterial. Nat. Chem. 2015, 7 (7), 591–596. 10.1038/nchem.2280. PubMed DOI

Etchegoin P. G.; Galloway C.; Le Ru E. C. Polarization-dependent effects in surface-enhanced Raman scattering (SERS). Phys. Chem. Chem. Phys. 2006, 8 (22), 2624–2628. 10.1039/b603725a. PubMed DOI

Che D.; Nafie L. A. Theory and Reduction of Artifacts in Incident, Scattered, and Dual Circular Polarization Forms of Raman Optical Activity. Appl. Spectrosc. 1993, 47 (5), 544–555. 10.1366/0003702934067216. DOI

Dolamic I.; Varnholt B.; Bürgi T. Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism. Nat. Commun. 2015, 6 (1), 7117.10.1038/ncomms8117. PubMed DOI PMC

Baddeley C. J.; Richardson N. V.. Chirality at metal surfaces. In Scanning Tunneling Microscopy, in Surface Science, Nanoscience and Catalysis; Wiley-VCH Verlag GmbH & Co.20101.10.1002/9783527628827. DOI

Zając G.; Bouř P. Measurement and Theory of Resonance Raman Optical Activity for Gases, Liquids, and Aggregates. What It Tells about Molecules. J. Phys. Chem. B 2022, 126 (2), 355–367. 10.1021/acs.jpcb.1c08370. PubMed DOI

Lee S. G.; Kwak S.; Son W.-K.; Kim S.; Nam K. T.; Lee H.-Y.; Jeong D. H. Chiral-Induced Surface-Enhanced Raman Optical Activity on a Single-Particle Substrate. Anal. Chem. 2024, 96 (24), 9894–9900. 10.1021/acs.analchem.4c00772. PubMed DOI

Wu T.; Li G.; Kapitán J.; Kessler J.; Xu Y.; Bouř P. Two spectroscopies in one: Interference of circular dichroism and raman optical activity. Angew. Chem., Int. Ed. Engl. 2020, 59 (49), 21895–21898. 10.1002/anie.202011146. PubMed DOI PMC

Machalska E.; Zajac G.; Wierzba A. J.; Kapitán J.; Andruniów T.; Spiegel M.; Gryko D.; Bouř P.; Baranska M. Recognition of the true and false resonance Raman optical activity. Angew. Chem. 2021, 133 (39), 21375–21380. 10.1002/ange.202107600. PubMed DOI PMC

Li G. J.; Alshalalfeh M.; Yang Y. Q.; Cheeseman J. R.; Bour P.; Xu Y. J. Can One Measure Resonance Raman Optical Activity?. Angew. Chem. 2021, 60 (40), 22004–22009. 10.1002/anie.202109345. PubMed DOI

Meriggio E.; Lazzari R.; Chenot S.; David P.; Méthivier C.; Carrier X.; Cabailh G.; Humblot V. Adsorption of a chiral modifier on an oxide surface: Chemical nature of tartaric acid on rutile TiO2 (110). Appl. Surf. Sci. 2019, 493, 1134–1141. 10.1016/j.apsusc.2019.07.143. DOI

Ji X.; Song X.; Li J.; Bai Y.; Yang W.; Peng X. Size Control of Gold Nanocrystals in Citrate Reduction: The Third Role of Citrate. J. Am. Chem. Soc. 2007, 129 (45), 13939–13948. 10.1021/ja074447k. PubMed DOI

Song G.; Xu C.; Li B. Visual chiral recognition of mandelic acid enantiomers with l-tartaric acid-capped gold nanoparticles as colorimetric probes. Sens. Actuators B: Chem. 2015, 215, 504–509. 10.1016/j.snb.2015.03.109. DOI

Choi S.-H.; Lee S.-H.; Hwang Y.-M.; Lee K.-P.; Kang H.-D. Interaction between the surface of the silver nanoparticles prepared by γ-irradiation and organic molecules containing thiol group. Radiat. Phys. Chem. 2003, 67 (3), 517–521. 10.1016/S0969-806X(03)00097-5. DOI

Balavandy S. K.; Shameli K.; Biak D. R. B. A.; Abidin Z. Z. Stirring time effect of silver nanoparticles prepared in glutathione mediated by green method. Chem. Cent. J. 2014, 8 (1), 11.10.1186/1752-153X-8-11. PubMed DOI PMC

McNay G.; Eustace D.; Smith W. E.; Faulds K.; Graham D. Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications. Appl. Spectrosc. 2011, 65 (8), 825–837. 10.1366/11-06365. PubMed DOI

Smith E.; Dent G.; Surface-enhanced Raman scattering and surface-enhanced resonance raman scattering. In Modern Raman Spectroscopy – A Practical Approach; Smith E.; Dent G.; John Wiley & Sons, Ltd., 2005; pp 113–133.

Cinteza L. O.; Scomoroscenco C.; Voicu S. N.; Nistor C. L.; Nitu S. G.; Trica B.; Jecu M.-L.; Petcu C. Chitosan-Stabilized Ag Nanoparticles with Superior Biocompatibility and Their Synergistic Antibacterial Effect in Mixtures with Essential Oils. Nanomaterials 2018, 8 (10), 826.10.3390/nano8100826. PubMed DOI PMC

Wei Y. Y.; Li F.; Liang A. H.; Jiang Z. L. A Surface-Enhanced Resonance Raman Scattering Method for Trace Cystine Using 4-Mercaptopyridine-Aggregated-Nanosilver as Probe. Adv. Mater. Res. 2013, 647, 181–184. 10.4028/www.scientific.net/AMR.647.181. DOI

Farrag M.; Tschurl M.; Heiz U. Chiral Gold and Silver Nanoclusters: Preparation, Size Selection, and Chiroptical Properties. Chem. Mater. 2013, 25 (6), 862–870. 10.1021/cm3033725. DOI

Merten C.; Li H.; Nafie L. A. Simultaneous Resonance Raman Optical Activity Involving Two Electronic States. J. Phys. Chem. A 2012, 116 (27), 7329–7336. 10.1021/jp3036082. PubMed DOI

Fulara A.; Lakhani A.; Wójcik S.; Nieznańska H.; Keiderling T. A.; Dzwolak W. Spiral Superstructures of Amyloid-Like Fibrils of Polyglutamic Acid: An Infrared Absorption and Vibrational Circular Dichroism Study. J. Phys. Chem. B 2011, 115, 11010–11016. 10.1021/jp206271e. PubMed DOI

Krupová M.; Kessler J.; Bouř P. Polymorphism of Amyloid Fibrils Induced by Catalytic Seeding: A Vibrational Circular Dichroism Study. ChemPhysChem 2021, 22, 83–91. 10.1002/cphc.202000797. PubMed DOI

Nafie L.Vibrational optical activity: Principles and applications; Wiley, 2011.

Shrivas K.; Sahu S.; Patra G. K.; Jaiswal N. K.; Shankar R. Localized surface plasmon resonance of silver nanoparticles for sensitive colorimetric detection of chromium in surface water, industrial waste water and vegetable samples. Anal. Methods. 2016, 8 (9), 2088–2096. 10.1039/C5AY03120F. DOI

Řezanka P.; Koktan J.; Řezanková H.; Matějka P.; Král V. Spectrometric determination of l-cysteine and its enantiomeric purity using silver nanoparticles. Colloids Surf. A: Physicochem. Eng. 2013, 436, 961–966. 10.1016/j.colsurfa.2013.08.042. DOI

Řezanka P.; Záruba K.; Král V. Supramolecular chirality of cysteine modified silver nanoparticles. Colloids Surf. A: Physicochem. Eng. 2011, 374 (1), 77–83. 10.1016/j.colsurfa.2010.11.015. DOI

Lee P. C.; Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 1982, 86 (17), 3391–3395. 10.1021/j100214a025. DOI

Michal P.; Čelechovský R.; Dudka M.; Kapitán J.; Vůjtek M.; Berešová M.; Šebestík J.; Thangavel K.; Bouř P. Vibrational Optical Activity of Intermolecular, Overtone, and Combination Bands: 2-Chloropropionitrile and α-Pinene. J. Phys. Chem. B 2019, 123 (9), 2147–2156. 10.1021/acs.jpcb.9b00403. PubMed DOI

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.. Gaussian 16 Rev. C.01; Wallingford, CT, 2016.

Becke A. D.; et al. J. Chem. Phys. 1993, 98 (7), 5648–5652. 10.1063/1.464913. DOI

Dolg M.; Cao X. Relativistic Pseudopotentials: Their Development and Scope of Applications. Chem. Rev. 2012, 112 (1), 403–480. 10.1021/cr2001383. PubMed DOI

Cossi M.; Rega N.; Scalmani G.; Barone V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24 (6), 669–681. 10.1002/jcc.10189. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...