Bisignate Surface-Enhanced Raman Optical Activity with Analyte-Capped Colloids
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40053825
PubMed Central
PMC11924305
DOI
10.1021/acsnano.4c19027
Knihovny.cz E-zdroje
- Klíčová slova
- chiral analyte capped colloid, chirality, electronic circular dichroism, silver nanoparticles, surface-enhanced Raman optical activity,
- Publikační typ
- časopisecké články MeSH
Spectroscopic detection of chiral compounds is often hampered by a low sensitivity. For Raman optical activity (ROA), the signal can be dramatically increased in surface-enhanced experiments. So far, however, reproducible surface-enhanced ROA (SEROA) spectra were obtained for a reporter molecule only via induced chirality, and the intensities were just proportional to the Raman scattering. In the present study, we show that the signal can be substantially increased if colloidal silver nanoparticles are prepared already in the presence of a chiral analyte. In this case, both the analyte's and reporter's bands are visible. In addition, some experiments provided bisignate SEROA patterns, thus significantly enhancing information about the molecular structure provided by this spectroscopic method. Increased electronic circular dichroism (ECD) of the capped aggregated colloids suggests that ECD and polarized Raman scattering (ECD-Raman) contribute to the monosignate SEROA intensities, while well-dispersed nonaggregating colloids are important for observation of true (bisignate) molecular vibrational SEROA.
Zobrazit více v PubMed
Langer J.; Jimenez de Aberasturi D.; Aizpurua J.; Alvarez-Puebla R. A.; Auguié B.; Baumberg J. J.; Bazan G. C.; Bell S. E.; Boisen A.; Brolo A. G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14 (1), 28–117. 10.1021/acsnano.9b04224. PubMed DOI PMC
Sun F.; Galvan D. D.; Jain P.; Yu Q. Multi-functional, thiophenol-based surface chemistry for surface-enhanced Raman spectroscopy. Chem. Commun. 2017, 53 (33), 4550–4561. 10.1039/C7CC01577A. PubMed DOI
Wang N.; Zhao L.; Liu C.; Zhang J.; He Y.; Yang H.; Liu X. Chiral Detection of Glucose: An Amino Acid-Assisted Surface-Enhanced Raman Scattering Strategy Showing Opposite Enantiomeric Effects on SERS Signals. Anal. Chem. 2022, 94 (42), 14565–14572. 10.1021/acs.analchem.2c02340. PubMed DOI
Leong S. X.; Koh C. S. L.; Sim H. Y. F.; Lee Y. H.; Han X.; Phan-Quang G. C.; Ling X. Y. Enantiospecific Molecular Fingerprinting Using Potential-Modulated Surface-Enhanced Raman Scattering to Achieve Label-Free Chiral Differentiation. ACS Nano 2021, 15 (1), 1817–1825. 10.1021/acsnano.0c09670. PubMed DOI
Liu Z.; Ai J.; Kumar P.; You E.; Zhou X.; Liu X.; Tian Z.; Bouř P.; Duan Y.; Han L.; et al. Enantiomeric Discrimination by Surface-Enhanced Raman Scattering-Chiral Anisotropy of Chiral Nanostructured Gold Films. Angew. Chem. 2020, 59 (35), 15226–15231. 10.1002/anie.202006486. PubMed DOI
Kuang X.; Ye S.; Li X.; Ma Y.; Zhang C.; Tang B. A new type of surface-enhanced Raman scattering sensor for the enantioselective recognition of d/l-cysteine and d/l-asparagine based on a helically arranged Ag NPs@homochiral MOF. Chem. Commun. 2016, 52 (31), 5432–5435. 10.1039/C6CC00320F. PubMed DOI
Škrna O. e.; Kessler J. i.; Liu Z.; Che S.; Bouř P. Reproduction of Chiral Anisotropy in Surface-Enhanced Raman Scattering on Gold Nanowires by Computational Modeling. J. Phys. Chem. C 2024, 128 (30), 12649–12656. 10.1021/acs.jpcc.4c02703. DOI
Kneipp J.; Wittig B.; Bohr H.; Kneipp K. Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine. Theor. Chem. Acc. 2010, 125 (3), 319–327. 10.1007/s00214-009-0665-2. DOI
Bouř P. Matrix formulation of the surface-enhanced Raman optical activity theory. J. Chem. Phys. 2007, 126 (13), 13610110.1063/1.2715949. PubMed DOI
Das M.; Kurochka A.; Bouř P.; Gangopadhyay D.. Chirality Revealed by Raman Optical Activity: Principles, Applications, Recent Developments and Future Prospects. Raman Spectroscopy: Advances and Applications Singh D. K.; Kumar Mishra A.; Materny A., Eds.; Springer Nature: Singapore, 2024; pp 145–166.
Hentschel M.; Schäferling M.; Duan X.; Giessen H.; Liu N. Chiral plasmonics. Sci. Adv. 2017, 3 (5), e160273510.1126/sciadv.1602735. PubMed DOI PMC
Biswas A.; Cencillo-Abad P.; Shabbir M. W.; Karmakar M.; Chanda D. Tunable plasmonic superchiral light for ultrasensitive detection of chiral molecules. Sci. Adv. 2024, 10 (8), eadk256010.1126/sciadv.adk2560. PubMed DOI PMC
Novák V.; Šebestík J.; Bouř P. Theoretical Modeling of the Surface-Enhanced Raman Optical Activity. J. Chem. Theory Comput. 2012, 8 (5), 1714–1720. 10.1021/ct300150g. PubMed DOI
Abdali S.; Blanch E. W. Surface enhanced Raman optical activity (SEROA). Chem. Soc. Rev. 2008, 37 (5), 980–992. 10.1039/b707862p. PubMed DOI
Abdali S.; Johannessen C.; Nygaard J.; Noerbygaard T. Resonance surface enhanced Raman optical activity of myoglobin as a result of optimized resonance surface enhanced Raman scattering conditions. J. Condens. Matter Phys. 2007, 19 (28), 28520510.1088/0953-8984/19/28/285205. DOI
Kneipp H.; Kneipp J.; Kneipp K. Surface-Enhanced Raman Optical Activity on Adenine in Silver Colloidal Solution. Anal. Chem. 2006, 78 (4), 1363–1366. 10.1021/ac0516382. PubMed DOI
Pour S. O.; Bell S. E. J.; Blanch E. W. Use of a hydrogel polymer for reproducible surface enhanced Raman optical activity (SEROA). Chem. Commun. 2011, 47 (16), 4754–4756. 10.1039/c0cc05284a. PubMed DOI
Chulhai D. V.; Jensen L. Simulating Surface-Enhanced Raman Optical Activity Using Atomistic Electrodynamics-Quantum Mechanical Models. J. Phys. Chem. A 2014, 118 (39), 9069–9079. 10.1021/jp502107f. PubMed DOI
Das M.; Gangopadhyay D.; Šebestík J.; Habartová L.; Michal P.; Kapitán J.; Bouř P. Chiral detection by induced surface-enhanced Raman optical activity. Chem. Commun. 2021, 57 (52), 6388–6391. 10.1039/D1CC01504D. PubMed DOI
Janesko B. G.; Scuseria G. E. Molecule–Surface Orientational Averaging in Surface Enhanced Raman Optical Activity Spectroscopy. J. Phys. Chem. C 2009, 113 (22), 9445–9449. 10.1021/jp9025514. DOI
Johannessen C.; White P. C.; Abdali S. Resonance Raman Optical Activity and Surface Enhanced Resonance Raman Optical Activity Analysis of Cytochrome c. J. Phys. Chem. A 2007, 111 (32), 7771–7776. 10.1021/jp0705267. PubMed DOI
Xiao T. H.; Cheng Z.; Luo Z.; Isozaki A.; Hiramatsu K.; Itoh T.; Nomura M.; Iwamoto S.; Goda K. All-dielectric chiral-field-enhanced Raman optical activity. Nat. Commun. 2021, 12 (1), 3062.10.1038/s41467-021-23364-w. PubMed DOI PMC
Ostovar pour S.; Rocks L.; Faulds K.; Graham D.; Parchaňský V.; Bouř P.; Blanch E. W. Through-space transfer of chiral information mediated by a plasmonic nanomaterial. Nat. Chem. 2015, 7 (7), 591–596. 10.1038/nchem.2280. PubMed DOI
Etchegoin P. G.; Galloway C.; Le Ru E. C. Polarization-dependent effects in surface-enhanced Raman scattering (SERS). Phys. Chem. Chem. Phys. 2006, 8 (22), 2624–2628. 10.1039/b603725a. PubMed DOI
Che D.; Nafie L. A. Theory and Reduction of Artifacts in Incident, Scattered, and Dual Circular Polarization Forms of Raman Optical Activity. Appl. Spectrosc. 1993, 47 (5), 544–555. 10.1366/0003702934067216. DOI
Dolamic I.; Varnholt B.; Bürgi T. Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism. Nat. Commun. 2015, 6 (1), 7117.10.1038/ncomms8117. PubMed DOI PMC
Baddeley C. J.; Richardson N. V.. Chirality at metal surfaces. In Scanning Tunneling Microscopy, in Surface Science, Nanoscience and Catalysis; Wiley-VCH Verlag GmbH & Co.20101.10.1002/9783527628827. DOI
Zając G.; Bouř P. Measurement and Theory of Resonance Raman Optical Activity for Gases, Liquids, and Aggregates. What It Tells about Molecules. J. Phys. Chem. B 2022, 126 (2), 355–367. 10.1021/acs.jpcb.1c08370. PubMed DOI
Lee S. G.; Kwak S.; Son W.-K.; Kim S.; Nam K. T.; Lee H.-Y.; Jeong D. H. Chiral-Induced Surface-Enhanced Raman Optical Activity on a Single-Particle Substrate. Anal. Chem. 2024, 96 (24), 9894–9900. 10.1021/acs.analchem.4c00772. PubMed DOI
Wu T.; Li G.; Kapitán J.; Kessler J.; Xu Y.; Bouř P. Two spectroscopies in one: Interference of circular dichroism and raman optical activity. Angew. Chem., Int. Ed. Engl. 2020, 59 (49), 21895–21898. 10.1002/anie.202011146. PubMed DOI PMC
Machalska E.; Zajac G.; Wierzba A. J.; Kapitán J.; Andruniów T.; Spiegel M.; Gryko D.; Bouř P.; Baranska M. Recognition of the true and false resonance Raman optical activity. Angew. Chem. 2021, 133 (39), 21375–21380. 10.1002/ange.202107600. PubMed DOI PMC
Li G. J.; Alshalalfeh M.; Yang Y. Q.; Cheeseman J. R.; Bour P.; Xu Y. J. Can One Measure Resonance Raman Optical Activity?. Angew. Chem. 2021, 60 (40), 22004–22009. 10.1002/anie.202109345. PubMed DOI
Meriggio E.; Lazzari R.; Chenot S.; David P.; Méthivier C.; Carrier X.; Cabailh G.; Humblot V. Adsorption of a chiral modifier on an oxide surface: Chemical nature of tartaric acid on rutile TiO2 (110). Appl. Surf. Sci. 2019, 493, 1134–1141. 10.1016/j.apsusc.2019.07.143. DOI
Ji X.; Song X.; Li J.; Bai Y.; Yang W.; Peng X. Size Control of Gold Nanocrystals in Citrate Reduction: The Third Role of Citrate. J. Am. Chem. Soc. 2007, 129 (45), 13939–13948. 10.1021/ja074447k. PubMed DOI
Song G.; Xu C.; Li B. Visual chiral recognition of mandelic acid enantiomers with l-tartaric acid-capped gold nanoparticles as colorimetric probes. Sens. Actuators B: Chem. 2015, 215, 504–509. 10.1016/j.snb.2015.03.109. DOI
Choi S.-H.; Lee S.-H.; Hwang Y.-M.; Lee K.-P.; Kang H.-D. Interaction between the surface of the silver nanoparticles prepared by γ-irradiation and organic molecules containing thiol group. Radiat. Phys. Chem. 2003, 67 (3), 517–521. 10.1016/S0969-806X(03)00097-5. DOI
Balavandy S. K.; Shameli K.; Biak D. R. B. A.; Abidin Z. Z. Stirring time effect of silver nanoparticles prepared in glutathione mediated by green method. Chem. Cent. J. 2014, 8 (1), 11.10.1186/1752-153X-8-11. PubMed DOI PMC
McNay G.; Eustace D.; Smith W. E.; Faulds K.; Graham D. Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications. Appl. Spectrosc. 2011, 65 (8), 825–837. 10.1366/11-06365. PubMed DOI
Smith E.; Dent G.; Surface-enhanced Raman scattering and surface-enhanced resonance raman scattering. In Modern Raman Spectroscopy – A Practical Approach; Smith E.; Dent G.; John Wiley & Sons, Ltd., 2005; pp 113–133.
Cinteza L. O.; Scomoroscenco C.; Voicu S. N.; Nistor C. L.; Nitu S. G.; Trica B.; Jecu M.-L.; Petcu C. Chitosan-Stabilized Ag Nanoparticles with Superior Biocompatibility and Their Synergistic Antibacterial Effect in Mixtures with Essential Oils. Nanomaterials 2018, 8 (10), 826.10.3390/nano8100826. PubMed DOI PMC
Wei Y. Y.; Li F.; Liang A. H.; Jiang Z. L. A Surface-Enhanced Resonance Raman Scattering Method for Trace Cystine Using 4-Mercaptopyridine-Aggregated-Nanosilver as Probe. Adv. Mater. Res. 2013, 647, 181–184. 10.4028/www.scientific.net/AMR.647.181. DOI
Farrag M.; Tschurl M.; Heiz U. Chiral Gold and Silver Nanoclusters: Preparation, Size Selection, and Chiroptical Properties. Chem. Mater. 2013, 25 (6), 862–870. 10.1021/cm3033725. DOI
Merten C.; Li H.; Nafie L. A. Simultaneous Resonance Raman Optical Activity Involving Two Electronic States. J. Phys. Chem. A 2012, 116 (27), 7329–7336. 10.1021/jp3036082. PubMed DOI
Fulara A.; Lakhani A.; Wójcik S.; Nieznańska H.; Keiderling T. A.; Dzwolak W. Spiral Superstructures of Amyloid-Like Fibrils of Polyglutamic Acid: An Infrared Absorption and Vibrational Circular Dichroism Study. J. Phys. Chem. B 2011, 115, 11010–11016. 10.1021/jp206271e. PubMed DOI
Krupová M.; Kessler J.; Bouř P. Polymorphism of Amyloid Fibrils Induced by Catalytic Seeding: A Vibrational Circular Dichroism Study. ChemPhysChem 2021, 22, 83–91. 10.1002/cphc.202000797. PubMed DOI
Nafie L.Vibrational optical activity: Principles and applications; Wiley, 2011.
Shrivas K.; Sahu S.; Patra G. K.; Jaiswal N. K.; Shankar R. Localized surface plasmon resonance of silver nanoparticles for sensitive colorimetric detection of chromium in surface water, industrial waste water and vegetable samples. Anal. Methods. 2016, 8 (9), 2088–2096. 10.1039/C5AY03120F. DOI
Řezanka P.; Koktan J.; Řezanková H.; Matějka P.; Král V. Spectrometric determination of l-cysteine and its enantiomeric purity using silver nanoparticles. Colloids Surf. A: Physicochem. Eng. 2013, 436, 961–966. 10.1016/j.colsurfa.2013.08.042. DOI
Řezanka P.; Záruba K.; Král V. Supramolecular chirality of cysteine modified silver nanoparticles. Colloids Surf. A: Physicochem. Eng. 2011, 374 (1), 77–83. 10.1016/j.colsurfa.2010.11.015. DOI
Lee P. C.; Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 1982, 86 (17), 3391–3395. 10.1021/j100214a025. DOI
Michal P.; Čelechovský R.; Dudka M.; Kapitán J.; Vůjtek M.; Berešová M.; Šebestík J.; Thangavel K.; Bouř P. Vibrational Optical Activity of Intermolecular, Overtone, and Combination Bands: 2-Chloropropionitrile and α-Pinene. J. Phys. Chem. B 2019, 123 (9), 2147–2156. 10.1021/acs.jpcb.9b00403. PubMed DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.. Gaussian 16 Rev. C.01; Wallingford, CT, 2016.
Becke A. D.; et al. J. Chem. Phys. 1993, 98 (7), 5648–5652. 10.1063/1.464913. DOI
Dolg M.; Cao X. Relativistic Pseudopotentials: Their Development and Scope of Applications. Chem. Rev. 2012, 112 (1), 403–480. 10.1021/cr2001383. PubMed DOI
Cossi M.; Rega N.; Scalmani G.; Barone V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24 (6), 669–681. 10.1002/jcc.10189. PubMed DOI