Can One Measure Resonance Raman Optical Activity?
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34347923
DOI
10.1002/anie.202109345
Knihovny.cz E-zdroje
- Klíčová slova
- chiral Raman spectroscopy, circularly polarized Raman, electronic circular dichroism, finite-lifetime approach, resonance Raman optical activity,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Resonance Raman optical activity (RROA) is commonly measured as the difference in intensity of Raman scattered right and left circularly polarized light, IR -IL , when a randomly polarized light is in resonance with a chiral molecule. Strong and sometimes mono-signate experimental RROA spectra of several chiral solutes were reported previously, although their signs and relative intensities could not be reproduced theoretically. By examining multiple light-matter interaction events which can occur simultaneously under resonance, we show that a new form of chiral Raman spectroscopy, eCP-Raman, a combination of electronic circular dichroism and circularly polarized Raman, prevails. By incorporating the finite-lifetime approach for resonance, the experimental patterns of the model chiral solutes are captured theoretically by eCP-Raman, without any RROA contribution. The results open opportunity for applications of eCP-Raman spectroscopy and for extracting true RROA experimentally.
Department of Chemistry University of Alberta Edmonton Alberta T6G 2G2 Canada
Gaussian Inc 340 Quinnipiac St Bldg 40 Wallingford CT 06492 4050 USA
Institute of Organic Chemistry and Biochemistry Flemingovo náměstí 2 16610 Prague Czech Republic
Zobrazit více v PubMed
L. D. Barron, Molecular Light Scattering and Optical Activity, Cambridge University Press, Cambridge, UK, 2004;
L. A. Nafie, Vibrational optical activity: Principles and applications, Wiley, Chichester, 2011.
L. D. Barron, Biomed. Spectrosc. Imaging 2015, 4, 223-253.
M. Krupová, J. Kessler, P. Bouř, ChemPlusChem 2020, 85, 561-575.
M. Vargek, T. B. Freedman, E. Lee, L. A. Nafie, Chem. Phys. Lett. 1998, 287, 359-364.
C. Merten, H. Li, L. A. Nafie, J. Phys. Chem. A 2012, 116, 7329-7336.
M. Dudek, E. Machalska, T. Oleszkiewicz, E. Grzebelus, R. Baranski, P. Szcześniak, J. Mlynarski, G. Zajac, A. Kaczor, M. Baranska, Angew. Chem. Int. Ed. 2019, 58, 8383-8388;
Angew. Chem. 2019, 131, 8471-8476.
S. Haraguchi, M. Hara, T. Shingae, M. Kumauchi, W. D. Hoff, M. Unno, Angew. Chem. Int. Ed. 2015, 54, 11555-11558;
Angew. Chem. 2015, 127, 11717-11720;
R. Sgammato, W. Herrebout, C. Johannessen, J. Raman Spectrosc. 2019, 50, 1905-1913;
J. Bogaerts, C. Johannessen, J. Raman Spectrosc. 2019, 50, 641-646.
S. Abdali, E. W. Blanch, Chem. Soc. Rev. 2008, 37, 980-992;
S. O. Pour, S. E. J. Bell, E. W. Blanch, Chem. Commun. 2011, 47, 4754-4756;
S. Ostovar pour, L. Rocks, K. Faulds, D. Graham, V. Parchaňský, P. Bouř, E. W. Blanch, Nat. Chem. 2015, 7, 591-596.
S. Abdali, C. Johannessen, J. Nygaard, T. Nørbygaard, J. Phys. Condens. Matter 2007, 19, 285205.
J. R. Cheeseman, M. J. Frisch, J. Chem. Theory Comput. 2011, 7, 3323-3334.
L. Nafie, Chem. Phys. 1996, 205, 309-322.
E. Machalska, G. Zajac, M. Baranska, D. Kaczorek, R. Kawęcki, P. F. J. Lipiński, J. E. Rode, J. Dobrowolski, Chem. Sci. 2021, 12, 911-916.
L. N. Vidal, T. Giovannini, C. Cappelli, J. Phys. Chem. Lett. 2016, 7, 3585-3590.
S. Luber, J. Neugebauer, M. Reiher, J. Chem. Phys. 2010, 132, 044113;
A. Baiardi, J. Bloino, V. Barone, J. Chem. Theory Comput. 2018, 14, 6370-6390;
J. Mattiat, S. Luber, J. Chem. Phys. 2019, 151, 234110/1-16.
S. Luber, M. Reiher, ChemPhysChem 2010, 11, 1876-1887;
F. Krausbeck, J. Autschbach, M. Reiher, J. Phys. Chem. A 2016, 120, 9740-9748;
L. Abella, H. D. Ludowieg, J. Autschbach, Chirality 2020, 32, 741-752.
G. L. J. A. Rikken, E. Raupach, Nature 1997, 390, 493-494.
G. Li, J. Kessler, J. Cheramy, T. Wu, M. R. Poopari, P. Bouř, Y. Xu, Angew. Chem. Int. Ed. 2019, 58, 16495-16498;
Angew. Chem. 2019, 131, 16647-16650.
T. Wu, G. Li, J. Kapitán, J. Kessler, Y. Xu, P. Bouř, Angew. Chem. Int. Ed. 2020, 59, 21895-21898;
Angew. Chem. 2020, 132, 22079-22082. Note a factor of ln 10 was missing in the original derivation.
J. Sadlej, J. C. Dobrowolski, J. E. Rode, Chem. Soc. Rev. 2010, 39, 1478-1488;
M. Losada, Y. Xu, Phys. Chem. Chem. Phys. 2007, 9, 3127-3135;
A. S. Perera, J. Thomas, M. R. Poopari, Y. Xu, Front. Chem. 2016, 4, 9;
T. Wu, J. Kessler, P. Bouř, Phys. Chem. Chem. Phys. 2016, 18, 23803-23811.
Z. Dezhahang, M. Poopari, J. Cheramy, Y. Xu, Inorg. Chem. 2015, 54, 4539-4549.
R. Clark, S. R. Jeyes, A. J. McCaffery, R. A. Shatwell, J. Am. Chem. Soc. 1974, 96, 5586-5588.
W. Hug, G. Zuber, A. de Meijere, A. F. Khlebnikov, H.-J. Hansen, Helv. Chim. Acta 2001, 84, 1-21.
W. Hug, G. Hangartner, J. Raman Spectrosc. 1999, 30, 841-852.
L. Jensen, J. Autschbach, M. Krykunovc, G. C. Schatz, J. Chem. Phys. 2007, 127, 134101;
L. A. Nafie, Theor. Chem. Acc. 2008, 119, 39-55;
T. Helgaker, S. Coriani, P. Jørgensen, K. Kristensen, J. Olsen, K. Ruud, Chem. Rev. 2012, 112, 543-631.
M. J. Frisch, et al., Gaussian development version, Gaussian, Inc., Wallingford, CT, 2020. See Supporting Information for the full reference.
M. J. Frisch, et al., Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford, CT, 2016. See Supporting Information for the full reference.
Bisignate Surface-Enhanced Raman Optical Activity with Analyte-Capped Colloids