Population-genetic comparison of the Sorbian isolate population in Germany with the German KORA population using genome-wide SNP arrays
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
21798003
PubMed Central
PMC3199861
DOI
10.1186/1471-2156-12-67
PII: 1471-2156-12-67
Knihovny.cz E-zdroje
- MeSH
- analýza hlavních komponent MeSH
- dospělí MeSH
- etnicita genetika MeSH
- fenotyp MeSH
- jednonukleotidový polymorfismus * MeSH
- lidé středního věku MeSH
- lidé MeSH
- populační genetika * MeSH
- populační skupiny genetika MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Geografické názvy
- Česká republika etnologie MeSH
- Německo MeSH
- Polsko etnologie MeSH
BACKGROUND: The Sorbs are an ethnic minority in Germany with putative genetic isolation, making the population interesting for disease mapping. A sample of N = 977 Sorbs is currently analysed in several genome-wide meta-analyses. Since genetic differences between populations are a major confounding factor in genetic meta-analyses, we compare the Sorbs with the German outbred population of the KORA F3 study (N = 1644) and other publically available European HapMap populations by population genetic means. We also aim to separate effects of over-sampling of families in the Sorbs sample from effects of genetic isolation and compare the power of genetic association studies between the samples. RESULTS: The degree of relatedness was significantly higher in the Sorbs. Principal components analysis revealed a west to east clustering of KORA individuals born in Germany, KORA individuals born in Poland or Czech Republic, Half-Sorbs (less than four Sorbian grandparents) and Full-Sorbs. The Sorbs cluster is nearest to the cluster of KORA individuals born in Poland. The number of rare SNPs is significantly higher in the Sorbs sample. FST between KORA and Sorbs is an order of magnitude higher than between different regions in Germany. Compared to the other populations, Sorbs show a higher proportion of individuals with runs of homozygosity between 2.5 Mb and 5 Mb. Linkage disequilibrium (LD) at longer range is also slightly increased but this has no effect on the power of association studies. Oversampling of families in the Sorbs sample causes detectable bias regarding higher FST values and higher LD but the effect is an order of magnitude smaller than the observed differences between KORA and Sorbs. Relatedness in the Sorbs also influenced the power of uncorrected association analyses. CONCLUSIONS: Sorbs show signs of genetic isolation which cannot be explained by over-sampling of relatives, but the effects are moderate in size. The Slavonic origin of the Sorbs is still genetically detectable. Regarding LD structure, a clear advantage for genome-wide association studies cannot be deduced. The significant amount of cryptic relatedness in the Sorbs sample results in inflated variances of Beta-estimators which should be considered in genetic association analyses.
Zobrazit více v PubMed
Veeramah KR, Tonjes A, Kovacs P, Gross A, Wegmann D, Geary P, Gasperikova D, Klimes I, Scholz M, Novembre J, Genetic variation in the Sorbs of eastern Germany in the context of broader European genetic diversity. European Journal of Human Genetics. 2011. PubMed PMC
Abbott A. Manhattan versus Reykjavik. Nature. 2000;406(6794):340–342. doi: 10.1038/35019167. PubMed DOI
Eaves IA, Merriman TR, Barber RA, Nutland S, Tuomilehto-Wolf E, Tuomilehto J, Cucca F, Todd JA. The genetically isolated populations of Finland and sardinia may not be a panacea for linkage disequilibrium mapping of common disease genes. Nat Genet. 2000;25(3):320–323. doi: 10.1038/77091. PubMed DOI
Taillon-Miller P, Bauer-Sardina I, Saccone NL, Putzel J, Laitinen T, Cao A, Kere J, Pilia G, Rice JP, Kwok PY. Juxtaposed regions of extensive and minimal linkage disequilibrium in human Xq25 and Xq28. Nat Genet. 2000;25(3):324–328. doi: 10.1038/77100. PubMed DOI
Shifman S, Darvasi A. The value of isolated populations. Nat Genet. 2001;28(4):309–310. doi: 10.1038/91060. PubMed DOI
Kristiansson K, Naukkarinen J, Peltonen L. Isolated populations and complex disease gene identification. Genome Biol. 2008;9(8):109. doi: 10.1186/gb-2008-9-8-109. PubMed DOI PMC
Sheffield VC, Stone EM, Carmi R. Use of isolated inbred human populations for identification of disease genes. Trends Genet. 1998;14(10):391–396. doi: 10.1016/S0168-9525(98)01556-X. PubMed DOI
Arcos-Burgos M, Muenke M. Genetics of population isolates. Clin Genet. 2002;61(4):233–247. doi: 10.1034/j.1399-0004.2002.610401.x. PubMed DOI
Tenesa A, Wright AF, Knott SA, Carothers AD, Hayward C, Angius A, Persico I, Maestrale G, Hastie ND, Pirastu M. et al.Extent of linkage disequilibrium in a Sardinian sub-isolate: sampling and methodological considerations. Hum Mol Genet. 2004;13(1):25–33. PubMed
Service S, DeYoung J, Karayiorgou M, Roos JL, Pretorious H, Bedoya G, Ospina J, Ruiz-Linares A, Macedo A, Palha JA. et al.Magnitude and distribution of linkage disequilibrium in population isolates and implications for genome-wide association studies. Nat Genet. 2006;38(5):556–560. doi: 10.1038/ng1770. PubMed DOI
Angius A, Hyland FC, Persico I, Pirastu N, Woodage T, Pirastu M, De la Vega FM. Patterns of linkage disequilibrium between SNPs in a Sardinian population isolate and the selection of markers for association studies. Hum Hered. 2008;65(1):9–22. doi: 10.1159/000106058. PubMed DOI
Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW. Genetic structure of human populations. Science. 2002;298(5602):2381–2385. doi: 10.1126/science.1078311. PubMed DOI
Jakobsson M, Scholz SW, Scheet P, Gibbs JR, VanLiere JM, Fung HC, Szpiech ZA, Degnan JH, Wang K, Guerreiro R. et al.Genotype, haplotype and copy-number variation in worldwide human populations. Nature. 2008;451(7181):998–1003. doi: 10.1038/nature06742. PubMed DOI
Novembre J, Johnson T, Bryc K, Kutalik Z, Boyko AR, Auton A, Indap A, King KS, Bergmann S, Nelson MR. et al.Genes mirror geography within Europe. Nature. 2008;456(7218):98–101. doi: 10.1038/nature07331. PubMed DOI PMC
Lopez Herraez D, Bauchet M, Tang K, Theunert C, Pugach I, Li J, Nandineni MR, Gross A, Scholz M, Stoneking M. Genetic variation and recent positive selection in worldwide human populations: evidence from nearly 1 million SNPs. PLoS One. 2009;4(11):e7888. doi: 10.1371/journal.pone.0007888. PubMed DOI PMC
Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38(8):904–909. doi: 10.1038/ng1847. PubMed DOI
Amin N, van Duijn CM, Aulchenko YS. A genomic background based method for association analysis in related individuals. PLoS One. 2007;2(12):e1274. doi: 10.1371/journal.pone.0001274. PubMed DOI PMC
McQuillan R, Leutenegger AL, Abdel-Rahman R, Franklin CS, Pericic M, Barac-Lauc L, Smolej-Narancic N, Janicijevic B, Polasek O, Tenesa A. et al.Runs of homozygosity in European populations. Am J Hum Genet. 2008;83(3):359–372. doi: 10.1016/j.ajhg.2008.08.007. PubMed DOI PMC
Peltonen L, Jalanko A, Varilo T. Molecular genetics of the Finnish disease heritage. Hum Mol Genet. 1999;8(10):1913–1923. doi: 10.1093/hmg/8.10.1913. PubMed DOI
Peltonen L. Positional cloning of disease genes: advantages of genetic isolates. Hum Hered. 2000;50(1):66–75. doi: 10.1159/000022892. PubMed DOI
Weir BS. Genetic Data Analysis II. Sunderland, MA: Sinauer Associates, Inc; 1996.
Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2(12):e190. doi: 10.1371/journal.pgen.0020190. PubMed DOI PMC
Choi Y, Wijsman EM, Weir BS. Case-control association testing in the presence of unknown relationships. Genet Epidemiol. 2009;33(8):668–678. doi: 10.1002/gepi.20418. PubMed DOI PMC
Zhang F, Deng HW. Correcting for cryptic relatedness in population-based association studies of continuous traits. Hum Hered. 2010;69(1):28–33. doi: 10.1159/000243151. PubMed DOI PMC
Thornton T, McPeek MS. ROADTRIPS: case-control association testing with partially or completely unknown population and pedigree structure. Am J Hum Genet. 2010;86(2):172–184. doi: 10.1016/j.ajhg.2010.01.001. PubMed DOI PMC
Krawczak M, Lu TT, Willuweit S, Roewer L. Handbook of Human Molecular Evolution. John Wiley & Sons; 2008. Genetic diversity in the German population.
Kottgen A, Pattaro C, Boger CA, Fuchsberger C, Olden M, Glazer NL, Parsa A, Gao X, Yang Q, Smith AV, New loci associated with kidney function and chronic kidney disease. Nat Genet. 2010. PubMed PMC
Tonjes A, Koriath M, Schleinitz D, Dietrich K, Bottcher Y, Rayner NW, Almgren P, Enigk B, Richter O, Rohm S. et al.Genetic variation in GPR133 is associated with height: genome wide association study in the self-contained population of Sorbs. Hum Mol Genet. 2009;18(23):4662–4668. doi: 10.1093/hmg/ddp423. PubMed DOI PMC
Wichmann HE, Gieger C, Illig T. KORA-gen--resource for population genetics, controls and a broad spectrum of disease phenotypes. Gesundheitswesen. 2005;67(Suppl 1):S26–30. PubMed
Tonjes A, Zeggini E, Kovacs P, Bottcher Y, Schleinitz D, Dietrich K, Morris AP, Enigk B, Rayner NW, Koriath M. et al.Association of FTO variants with BMI and fat mass in the self-contained population of Sorbs in Germany. Eur J Hum Genet. 2010;18(1):104–110. doi: 10.1038/ejhg.2009.107. PubMed DOI PMC
Holle R, Happich M, Lowel H, Wichmann HE. KORA--a research platform for population based health research. Gesundheitswesen. 2005;67(Suppl 1):S19–25. PubMed
Doring A, Gieger C, Mehta D, Gohlke H, Prokisch H, Coassin S, Fischer G, Henke K, Klopp N, Kronenberg F. et al.SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet. 2008;40(4):430–436. doi: 10.1038/ng.107. PubMed DOI
Pemberton TJ, Wang C, Li JZ, Rosenberg NA. Inference of unexpected genetic relatedness among individuals in HapMap Phase III. Am J Hum Genet. 2010;87(4):457–464. doi: 10.1016/j.ajhg.2010.08.014. PubMed DOI PMC
Li Y, Willer C, Sanna S, Abecasis G. Genotype imputation. Annu Rev Genomics Hum Genet. 2009;10:387–406. doi: 10.1146/annurev.genom.9.081307.164242. PubMed DOI PMC
Troendle JF, Yu KF. A note on testing the Hardy-Weinberg law across strata. Ann Hum Genet. 1994;58(Pt 4):397–402. PubMed
Wang J. An estimator for pairwise relatedness using molecular markers. Genetics. 2002;160(3):1203–1215. PubMed PMC
Lao O, Lu TT, Nothnagel M, Junge O, Freitag-Wolf S, Caliebe A, Balascakova M, Bertranpetit J, Bindoff LA, Comas D. et al.Correlation between genetic and geographic structure in Europe. Curr Biol. 2008;18(16):1241–1248. doi: 10.1016/j.cub.2008.07.049. PubMed DOI
McVean G. A genealogical interpretation of principal components analysis. PLoS Genet. 2009;5(10):e1000686. doi: 10.1371/journal.pgen.1000686. PubMed DOI PMC
Scholz M, Hasenclever D. Comparison of Estimators for Measures of Linkage Disequilibrium. The International Journal of Biostatistics. 2010;6(1) PubMed
Hill WG, Robertson A. Linkage Disequilibrium in Finite Populations. Theoretical and Applied Genetics. 1968;38:226–231. doi: 10.1007/BF01245622. PubMed DOI
Lewontin RC. The Interaction of Selection and Linkage. I. General Considerations; Heterotic Models. Genetics. 1964;49(1):49–67. PubMed PMC
A Canonical Measure of Allelic Association. http://arxiv.org/PS_cache/arxiv/pdf/0903/0903.3886v1.pdf
Edwards AWF. The Measure of Association in a 2 × 2 Table. Journal of the Royal Statistical Society, Series A. 1963;126:108–114.
Olshen AB, Gold B, Lohmueller KE, Struewing JP, Satagopan J, Stefanov SA, Eskin E, Kirchhoff T, Lautenberger JA, Klein RJ. et al.Analysis of genetic variation in Ashkenazi Jews by high density SNP genotyping. BMC Genet. 2008;9:14. PubMed PMC
Cleveland WS. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association. 1979;74:829–836. doi: 10.2307/2286407. DOI
International HapMap Project. http://hapmap.ncbi.nlm.nih.gov/
EIGENSOFT Package. http://genepath.med.harvard.edu/~reich/Software.htm
PLINK Package. http://pngu.mgh.harvard.edu/purcell/plink/
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ. et al.PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–575. doi: 10.1086/519795. PubMed DOI PMC
The R Project. http://www.r-project.org/
R: A Language and Environment for Statistical Computing. http://www.R-project.org
Rodig H, Grum M, Grimmecke HD. Population study and evaluation of 20 Y-chromosome STR loci in Germans. Int J Legal Med. 2007;121(1):24–27. PubMed
Steffens M, Lamina C, Illig T, Bettecken T, Vogler R, Entz P, Suk EK, Toliat MR, Klopp N, Caliebe A. et al.SNP-based analysis of genetic substructure in the German population. Hum Hered. 2006;62(1):20–29. doi: 10.1159/000095850. PubMed DOI
Chen Y, Lin CHL, Sabatti C. Volume Measures for Linkage Disequilibrium. BMC Genetics. 2006;7(54) PubMed PMC
Kruglyak L. Genetic isolates: separate but equal? Proc Natl Acad Sci USA. 1999;96(4):1170–1172. doi: 10.1073/pnas.96.4.1170. PubMed DOI PMC
Shifman S, Kuypers J, Kokoris M, Yakir B, Darvasi A. Linkage disequilibrium patterns of the human genome across populations. Hum Mol Genet. 2003;12(7):771–776. doi: 10.1093/hmg/ddg088. PubMed DOI
Bosch E, Laayouni H, Morcillo-Suarez C, Casals F, Moreno-Estrada A, Ferrer-Admetlla A, Gardner M, Rosa A, Navarro A, Comas D. et al.Decay of linkage disequilibrium within genes across HGDP-CEPH human samples: most population isolates do not show increased LD. BMC Genomics. 2009;10:338. doi: 10.1186/1471-2164-10-338. PubMed DOI PMC