Chloroplast protease/chaperone AtDeg2 holds γ1 subunit of ATP synthase in an unaggregated state under high irradiance conditions in Arabidopsis thaliana
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39650758
PubMed Central
PMC11558513
DOI
10.32615/ps.2022.004
PII: PS60212
Knihovny.cz E-zdroje
- Klíčová slova
- Deg2, chaperone, elevated irradiance, homodimerization, protease,
- Publikační typ
- časopisecké články MeSH
Little data on the role played in vivo by chloroplast protein AtDeg2 as a chaperone is available. Therefore, we sought for chloroplast proteins protected from high irradiance-induced interprotein aggregation via disulphide bridges by AtDeg2 acting as a holdase. To reach this goal, we performed analyses which involved comparative diagonal electrophoreses of lysates of chloroplasts isolated from wild type (WT) plants and transgenic plants 35S:AtDEG2ΔPDZ1-GFP which expressed AtDeg2 lacking its chaperone activity but retaining the protease activity. The results of the analyses indicate that AtDeg2 acting as a holdase prevents a single chloroplast protein, i.e., the γ1 subunit of ATP synthase from long-term high irradiance-induced homodimerization mediated by disuplhide bridges and this allows us to better understand a complexity of physiological significance of AtDeg2 - the chloroplast protein of dual protease/chaperone activity.
Zobrazit více v PubMed
Adamiec M., Jagodzik P., Wyka T.P. et al.: Chloroplast protease/chaperone AtDeg2 influences cotyledons opening and reproductive development in Arabidopsis. – Acta Soc. Bot. Pol. 87: 3584, 2018. https://pbsociety.org.pl/journals/index.php/asbp/article/view/asbp.3584
Adamiec M., Luciński R., Jackowski G.: The irradiance dependent transcriptional regulation of AtCLPB3 expression. – Plant Sci. 181: 449-456, 2011. https://www.sciencedirect.com/science/article/pii/S0168945211002068?via%3Dihub PubMed
Arana J.L., Vallejos R.H.: Involvement of sulfhydryl groups in the activation mechanism of the ATPase activity of chloroplast coupling factor 1. – J. Biol. Chem. 257: 1125-1127, 1982. https://www.sciencedirect.com/science/article/pii/S0021925819681597?via%3Dihub PubMed
Baranek M., Wyka T.P., Jackowski G.: Downregulation of chloroplast protease AtDeg5 leads to changes in chronological progression of ontogenetic stages, leaf morphology and chloroplast ultrastructure in Arabidopsis. – Acta Soc. Bot. Pol. 84: 59-70, 2015. https://pbsociety.org.pl/journals/index.php/asbp/article/view/asbp.2015.001
Boyes D.C., Zayed A.M., Ascenzi R. et al.: Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. – Plant Cell 13: 1499-1510, 2001. https://academic.oup.com/plcell/article/13/7/1499/6009554 PubMed PMC
Candiano G., Bruschi M., Musante L. et al.: Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. – Electrophoresis 25: 1327-1333, 2004. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/elps.200305844 PubMed DOI
Chen G.G., Jagendorf A.T.: Chloroplast molecular chaperone-assisted refolding and reconstitution of an active multisubunit coupling factor CF1 core. – P. Natl. Acad. Sci. USA 91: 11497-11501, 1994. https://www.pnas.org/content/91/24/11497 PubMed PMC
Daum B., Nicastro D., Austin J. II. et al.: Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. – Plant Cell 22: 1299-1312, 2010. https://academic.oup.com/plcell/article/22/4/1299/6096987 PubMed PMC
Davies M.J.: Reactive species formed on proteins exposed to singlet oxygen. – Photoch. Photobio. Sci. 3: 17-25, 2004. https://pubs.rsc.org/en/content/articlelanding/2004/PP/b307576c PubMed
Davies M.J.: The oxidative environment and protein damage. – BBA-Proteins Proteom. 1703: 93-109, 2005. https://www.sciencedirect.com/science/article/pii/S1570963904002183?via%3Dihub PubMed
Gill S.S., Tuteja N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. – Plant Physiol. Bioch. 48: 909-930, 2010. https://www.sciencedirect.com/science/article/pii/S0981942810001798?via%3Dihub PubMed
Grabsztunowicz M., Górski Z., Luciński R., Jackowski G.: A reversible decrease in ribulose 1,5-bisphosphate carboxylase/oxygenase carboxylation activity caused by the aggregation of the enzyme’s large subunit is triggered in response to the exposure of moderate irradiance-grown plants to low irradiance. – Physiol. Plantarum 154: 591-608, 2015. https://onlinelibrary.wiley.com/doi/10.1111/ppl.12322 PubMed DOI
Grabsztunowicz M., Jackowski G.: Isolation of intact and pure chloroplasts from leaves of Arabidopsis thaliana plants acclimated to low irradiance for studies on Rubisco regulation. – Acta Soc. Bot. Pol. 82: 91-95, 2013. https://pbsociety.org.pl/journals/index.php/asbp/article/view/asbp.2012.043
Haußühl K., Andersson B., Adamska I.: A chloroplast DegP2 protease performs the primary cleavage of the photodamaged D1 protein in plant photosystem II. – EMBO J. 20: 713-722, 2001. https://www.embopress.org/doi/full/10.1093/emboj/20.4.713 PubMed DOI PMC
Hideg É., Barta C., Kálai T. et al.: Detection of singlet oxygen and superoxide with fluorescence sensors in leaves under stress by photoinhibition or UV radiation. – Plant Cell Physiol. l43: 1154-1164, 2002. https://academic.oup.com/pcp/article/43/10/1154/1849368 PubMed
Holmgren A.: Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. – J. Biol. Chem. 254: 9627-9632, 1979. https://www.sciencedirect.com/science/article/pii/S0021925819835627?via%3Dihub PubMed
Inohara N., Iwamoto A., Moriyama Y. et al.: Two genes, atpC1 and atpC2, for the γ subunit of Arabidopsis thaliana chloroplast ATP synthase. – J. Biol. Chem. 25: 7333-7338, 1991. https://www.jbc.org/article/S0021-9258(20)89450-2/fulltext PubMed
Jackowski G., Przymusiński R.: The resolution and biochemical characterization of subcomplexes of the main light-harvesting chlorophyll a/b-protein complex of photosystem II (LHCII). – Photosynth. Res. 43: 41-48, 1995. https://link.springer.com/article/10.1007/BF00029461 PubMed DOI
Jagodzik P., Luciński R., Misztal L., Jackowski G.: The contribution of individual domains of chloroplast protein AtDeg2 to its chaperone and proteolytic activities. – Acta Soc. Bot. Pol. 87: 3570, 2018. https://pbsociety.org.pl/journals/index.php/asbp/article/view/asbp.3570
Jeon S.-J., Ishikawa K.: Identification and characterization of thioredoxin and thioredoxin reductase from Aeropyrum pernix K1. – Eur. J. Biochem. 269: 5423-5430, 2002. https://febs.onlinelibrary.wiley.com/doi/full/10.1046/j.1432-1033.2002.03231.x PubMed DOI
Junesch U., Gräber P.: Influence of the redox state and the activation of the chloroplast ATP synthase on proton-transport-coupled ATP synthesis/hydrolysis. – BBA-Bioenergetics 893: 275-288, 1987. https://www.sciencedirect.com/science/article/pii/0005272887900491
Kohzuma K., Dal Bosco C., Kanazawa A. et al.: Thioredoxin-insensitive plastid ATP synthase that performs moonlighting functions. – P. Natl. Acad. Sci. USA 109: 3293-3298, 2012. https://www.pnas.org/content/109/9/3293 PubMed PMC
Laemmli U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. – Nature 227: 680-685, 1970. PubMed
Lipińska B., King J., Ang D., Georgopoulos C.: Sequence analysis and transcriptional regulation of the Escherichia coli grpE gene, encoding a heat shock protein. – Nucleic Acids Res. 16: 7545-7562, 1988. https://academic.oup.com/nar/article/16/15/7545/1073466 PubMed PMC
Lo Conte M., Carroll K.S.: The redox biochemistry and protein sulfenylation and sulfinylation. – J. Biol.Chem. 288: 26480-26488, 2013. https://www.sciencedirect.com/science/article/pii/S0021925820490532?via%3Dihub PubMed PMC
Luciński R., Misztal L., Samardakiewicz S., Jackowski G.: The thylakoid protease Deg2 is involved in stress-related degradation of photosystem II light-harvesting protein Lhcb6 in Arabidopsis thaliana. – New Phytol. 192: 74-86, 2011. https://nph.onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2011.03782.x PubMed DOI
Mao J., Chi W., Ouyang M. et al.: PAB is an assembly chaperone that functions downstream of chaperonin 60 in the assembly of chloroplast ATP synthase coupling factor 1. – P. Natl. Acad. Sci. USA 112: 4152-4157, 2015. https://www.pnas.org/content/112/13/4152 PubMed PMC
Marín-Navarro J., Moreno J.: Cysteines 449 and 459 modulate the reduction–oxidation conformational changes of ribulose-1,5-bisphosphate carboxylase/oxygenase and the translocation of the enzyme to membranes during stress. – Plant Cell Environ. 29: 898-908, 2006. https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2005.01469.x PubMed DOI
Mittler R., Vanderauwera S., Gollery M., Van Breugesem F.: Reactive oxygen gene network in plants. – Trends Plant Sci. 9: 490-498, 2004. https://www.sciencedirect.com/science/article/pii/S1360138504002043?via%3Dihub PubMed
Nalin C.M., McCarty R.E.: Role of disulfide bond in the gamma subunit in activation of the ATP chloroplast coupling factor 1. – J. Biol. Chem. 259: 7275-7280, 1984. https://www.sciencedirect.com/science/article/pii/S002192581739868X?via%3Dihub PubMed
Nikkanen L., Rintamäki E.: Thioredoxin-dependent regulatory networks in chloroplasts under fluctuating light conditions. – Philos. T. Roy. Soc. B 369: 20130224, 2014. https://royalsocietypublishing.org/doi/10.1098/rstb.2013.0224 PubMed DOI PMC
Ortega J., Iwańczyk J., Jomaa A.: Escherichia coli DegP: a structure-driven functional model. – J. Bacteriol. 191: 4705-4713, 2009. https://journals.asm.org/doi/10.1128/JB.00472-09 PubMed DOI PMC
Rehder D.S., Borges C.R.: Cysteine sulfenic acid as an intermediate in disulfide bond formation and nonenzymatic protein folding. – Biochemistry 49: 7748-7755, 2010. https://pubs.acs.org/doi/10.1021/bi1008694 PubMed DOI PMC
Rouhier N.: Plant glutaredoxins: pivotal players in redox biology and iron–sulphur centre assembly. – New Phytol. 186: 365-372, 2010. https://nph.onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2009.03146.x PubMed DOI
Strauch K.L., Beckwith J.: An Escherichia coli mutation preventing degradation of abnormal periplasmic proteins. – P. Natl. Acad. Sci. USA 85: 1576-1580, 1988. https://www.pnas.org/content/85/5/1576 PubMed PMC
Sun R., Fan H., Gao F. et al.: Crystal structure of Arabidopsis Deg2 protein reveals an internal PDZ ligand locking the hexameric resting state. – J. Biol. Chem. 287: 37564-37569, 2012. https://www.sciencedirect.com/science/article/pii/S0021925820625509?via%3Dihub PubMed PMC