surface-enhanced Raman optical activity
Dotaz
Zobrazit nápovědu
Efficient separation and sensitive identification of pathogenic bacterial strains is essential for a prosperous modern society, with direct applications in medical diagnostics, drug discovery, biodefense, and food safety. We developed a fast and reliable method for antibody-based selective immobilization of bacteria from suspension onto a gold-plated glass surface, followed by detection using strain-specific antibodies linked to gold nanoparticles decorated with a reporter molecule. The reporter molecules are subsequently detected by surface-enhanced Raman spectroscopy (SERS). Such a multi-functionalized nanoparticle is called a SERS-tag. The presented procedure uses widely accessible and cheap materials for manufacturing and functionalization of the nanoparticles and the immobilization surfaces. Here, we exemplify the use of the produced SERS-tags for sensitive single-cell detection of opportunistic pathogen Escherichia coli, and we demonstrate the selectivity of our method using two other bacterial strains, Staphylococcus aureus and Serratia marcescens, as negative controls. We believe that the described approach has a potential to inspire the development of novel medical diagnostic tools for rapid identification of bacterial pathogens.
MXenes and their related nanocomposites with superior physicochemical properties such as high surface area, ease of synthesis and functionalization, high drug loading capacity, collective therapy potentials, pH-triggered drug release behavior, high photothermal conversion, and excellent photodynamic efficiency have been explored as alluring materials in photomedicine; the application of photons in medicine is facilitated for imaging and various disease treatment methods such as photothermal cancer/tumor ablation. Non-invasive theranostic strategies with synergistic activities have been developed using photothermal, photodynamic, and magnetic therapies together with remotely controlled drug/gene delivery for the diagnosis and treatment of various malignant diseases. Photothermal/photodynamic therapy and photoacoustic imaging using MXene-based structures have shown great promise in cancer phototherapy. However, hybridization and surface functionalization should be further explored to obtain biocompatible MXene-based composites/platforms with unique properties, high stability, and improved functionality in photomedicine. Toxicological and long-term biosafety assessments as well as clinical translation evaluations ought to be given high priority in research. Although some limited studies have revealed the excellent potentials of MXenes and their derivatives in photomedicine, further steps should be taken towards extensive research and detailed analysis in the field of optimizing the properties and improving the performance of these materials with a clinical and industrial outlook. Optical biosensing platforms have been developed along with electrochemical sensors and wearable sensors constructed from MXenes and their derivatives; future studies warrant the comprehensive analysis of optical transduction aspects such as colorimetry, electrochemiluminescence, photoluminescence, surface-enhanced Raman scattering, and surface plasmon resonance. Herein, the potentials of MXenes in photomedicine are deliberated encompassing important challenges and future research directions.
- MeSH
- fotochemoterapie * MeSH
- fototerapie metody MeSH
- indukovaná hypertermie * metody MeSH
- lidé MeSH
- nádory * diagnostické zobrazování farmakoterapie MeSH
- nanokompozity * chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Oxidative stress may cause extended tyrosine posttranslational modifications of peptides and proteins. The 3-nitro-L-tyrosine (Nit), which is typically formed, affects protein behavior during neurodegenerative processes, such as Alzheimer's and Parkinson's diseases. Such metabolic products may be conveniently detected at very low concentrations by surface enhanced Raman spectroscopy (SERS). Previously, we have explored the SERS detection of the Nit NO2 bending vibrational bands in a presence of hydrogen chloride (Niederhafner et al., Amino Acids 53:517-532, 2021, ibid). In this article, we describe performance of a new SERS substrate, "pink silver", synthesized photochemically. It provides SERS even without the HCl induction, and the acid further decreases the detection limit about 9 times. Strong SERS bands were observed in the asymmetric (1550-1475 cm-1) and symmetric (1360-1290 cm-1) NO stretching in the NO2 group. The bending vibration was relatively weak, but appeared stronger when HCl was added. The band assignments were supported by density functional theory modeling.
- MeSH
- oxid dusičitý MeSH
- peptidy MeSH
- proteiny MeSH
- Ramanova spektroskopie * metody MeSH
- stříbro * chemie MeSH
- Publikační typ
- časopisecké články MeSH
Spectroscopic analysis, density functional theory (DFT) studies and surface enhanced Raman scattering (SERS) of antimycobactetial 4-[3-(4-acetylphenyl)ureido]-2-hydroxybenzoic acid (AUHB) have been studied on different silver sols. For Raman and SERS wavenumbers, very large changes are observed. Observed variations in the modes of ring may be due to surface π-electron interactions and presence of this indicated that poly substituted ring is more inclined than para substituted phenyl ring and assumes a inclined position for concentration 10-3 M. Changes in orientation are seen in SERS spectra depending on concentration. In order to find electron-rich and poor sites of AUHB, molecular electrostatic potential was also constructed. The molecular docking results show that binding affinity and interactions with the receptor DprE1 may be supporting evidence for further studies in design further AUHB pharmaceutical applications. Based on antitubercular activity of 4-aminosalicylic acid (PAS) and urea derivatives we designed, synthesized and investigated mutual PAS-urea derivatives as potential antimycobacterial agents.
Oxidative stress can lead to various derivatives of the tyrosine residue in peptides and proteins. A typical product is 3-nitro-L-tyrosine residue (Nit), which can affect protein behavior during neurodegenerative processes, such as those associated with Alzheimer's and Parkinson's diseases. Surface enhanced Raman spectroscopy (SERS) is a technique with potential for detecting peptides and their metabolic products at very low concentrations. To explore the applicability to Nit, we use SERS to monitor tyrosine nitration in Met-Enkephalin, rev-Prion protein, and α-synuclein models. Useful nitration indicators were the intensity ratio of two tyrosine marker bands at 825 and 870 cm-1 and a bending vibration of the nitro group. During the SERS measurement, a conversion of nitrotyrosine to azobenzene containing peptides was observed. The interpretation of the spectra has been based on density functional theory (DFT) simulations. The CAM-B3LYP and ωB97XD functionals were found to be most suitable for modeling the measured data. The secondary structure of the α-synuclein models was monitored by electronic and vibrational circular dichroism (ECD and VCD) spectroscopies and modeled by molecular dynamics (MD) simulations. The results suggest that the nitration in these peptides has a limited effect on the secondary structure, but may trigger their aggregation.
- MeSH
- azosloučeniny chemie MeSH
- cirkulární dichroismus MeSH
- peptidy chemická syntéza chemie MeSH
- Ramanova spektroskopie metody MeSH
- sekundární struktura proteinů MeSH
- simulace molekulární dynamiky MeSH
- teorie funkcionálu hustoty MeSH
- tyrosin analogy a deriváty analýza MeSH
- Publikační typ
- časopisecké články MeSH
There is a constant need for the development of easy-to-operate systems for the rapid and unambiguous identification of bacterial pathogens in drinking water without the requirement for time-consuming culture processes. In this study, we present a disposable and low-cost lab-on-a-chip device utilizing a nanoporous membrane, which connects two stacked perpendicular microfluidic channels. Whereas one of the channels supplies the sample, the second one attracts it by potential-driven forces. Surface-enhanced Raman spectrometry (SERS) is employed as a reliable detection method for bacteria identification. To gain the effect of surface enhancement, silver nanoparticles were added to the sample. The pores of the membrane act as a filter trapping the bodies of microorganisms as well as clusters of nanoparticles creating suitable conditions for sensitive SERS detection. Therein, we focused on the construction and characterization of the device performance. To demonstrate the functionality of the microfluidic chip, we analyzed common pathogens (Escherichia coli DH5α and Pseudomonas taiwanensis VLB120) from spiked tap water using the optimized experimental parameters. The obtained results confirmed our system to be promising for the construction of a disposable optical platform for reliable and rapid pathogen detection which couples their electrokinetic concentration on the integrated nanoporous membrane with SERS detection.
- MeSH
- design vybavení MeSH
- kovové nanočástice chemie MeSH
- laboratoř na čipu * MeSH
- mikrofluidní analytické techniky přístrojové vybavení MeSH
- pitná voda mikrobiologie MeSH
- Ramanova spektroskopie přístrojové vybavení MeSH
- stříbro chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Our recent experience of the COVID-19 pandemic has highlighted the importance of easy-to-use, quick, cheap, sensitive and selective detection of virus pathogens for the efficient monitoring and treatment of virus diseases. Early detection of viruses provides essential information about possible efficient and targeted treatments, prolongs the therapeutic window and hence reduces morbidity. Graphene is a lightweight, chemically stable and conductive material that can be successfully utilized for the detection of various virus strains. The sensitivity and selectivity of graphene can be enhanced by its functionalization or combination with other materials. Introducing suitable functional groups and/or counterparts in the hybrid structure enables tuning of the optical and electrical properties, which is particularly attractive for rapid and easy-to-use virus detection. In this review, we cover all the different types of graphene-based sensors available for virus detection, including, e.g., photoluminescence and colorimetric sensors, and surface plasmon resonance biosensors. Various strategies of electrochemical detection of viruses based on, e.g., DNA hybridization or antigen-antibody interactions, are also discussed. We summarize the current state-of-the-art applications of graphene-based systems for sensing a variety of viruses, e.g., SARS-CoV-2, influenza, dengue fever, hepatitis C virus, HIV, rotavirus and Zika virus. General principles, mechanisms of action, advantages and drawbacks are presented to provide useful information for the further development and construction of advanced virus biosensors. We highlight that the unique and tunable physicochemical properties of graphene-based nanomaterials make them ideal candidates for engineering and miniaturization of biosensors.
- MeSH
- Betacoronavirus genetika izolace a purifikace patogenita MeSH
- biosenzitivní techniky * přístrojové vybavení metody trendy MeSH
- design vybavení MeSH
- DNA virů analýza genetika MeSH
- elektrochemické techniky MeSH
- grafit * chemie MeSH
- hybridizace nukleových kyselin MeSH
- klinické laboratorní techniky * přístrojové vybavení metody statistika a číselné údaje MeSH
- kolorimetrie MeSH
- koronavirové infekce diagnóza epidemiologie virologie MeSH
- kvantové tečky chemie MeSH
- lidé MeSH
- luminiscence MeSH
- nanostruktury chemie MeSH
- pandemie MeSH
- povrchová plasmonová rezonance MeSH
- Ramanova spektroskopie MeSH
- reakce antigenu s protilátkou MeSH
- virologie metody MeSH
- virová pneumonie diagnóza epidemiologie virologie MeSH
- viry genetika izolace a purifikace patogenita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Inclusions in evaporitic minerals sometimes contain remnants of microorganisms or biomarkers, which can be considered as traces of life. Raman spectroscopy with resonance enhancement is one of the best analytical methods to search for such biomarkers in places of interest for astrobiology, including the surface and near subsurface of planet Mars. Portable Raman spectrometers are used as training tools for detection of biomarkers. Investigations of the limits and challenges of detecting biomolecules in crystals using Raman spectroscopy is important because natural occurrences often involve mineral assemblages as well as their fluid and solid inclusions. A portable Raman spectrometer with 532 nm excitation was used for detection of carotenoid biomarkers: salinixanthin of Salinibacter ruber (Bacteroidetes) and α-bacterioruberin of Halorubrum sodomense (Halobacteria) in laboratory-grown artificial inclusions in compound crystals of several chlorides and sulfates, simulating entrapment of microorganisms in evaporitic minerals. Crystals of halite (NaCl), sylvite (KCl), arcanite (K2SO4) and tschermigite ((NH4)Al(SO4)2·12H2O) were grown from synthetic solutions that contained microorganisms. A second crystalline layer of NaCl or K2SO4 was grown subsequently so that primary crystals containing microorganisms are considered as solid inclusions. A portable Raman spectrometer with resonance enabling excitation detected signals of both carotenoid pigments. Correct positions of diagnostic Raman bands corresponding to the specific carotenoids were recorded.
Taking advantage of surface-enhanced Raman scattering (SERS) methodology with its unique ability to collect abundant intrinsic fingerprint information and noninvasive data acquisition we set up a SERS-based approach for recognition of physically induced DNA damage with further incorporation of artificial neural network (ANN). As a proof-of-concept application, we used the DNA molecules, where the one oligonucleotide (OND) was grafted to the plasmonic surface while complimentary OND was exposed to UV illumination with various exposure doses and further hybridized with the grafted counterpart. All SERS spectra of entrapped DNA were collected by several operators using the portable spectrometer, without any optimization of measurements procedure (e.g., optimization of acquisition time, laser intensity, finding of optimal place on substrate, manual baseline correction, etc.) which usually takes a significant amount of operator's time. The SERS spectra were employed as input data for ANN training, and the performance of the system was verified by predicting the class labels for SERS validation data, using a spectra dataset, which has not been involved in the training process. During that phase, accuracy higher than 98% was achieved with a level of confidence exceeding 95%. It should be noted that utilization of the proposed functional-SERS/ANN approach allows identifying even the minor DNA damage, almost invisible by control measurements, performed with common analytical procedures. Moreover, we introduce the advanced ANN design, which allows not only classifying the samples but also providing the ANN analysis feedback, which associates the spectral changes and chemical transformations of DNA structure.
A dual-mode functional chip for chiral sensing based on mobile phone wettability measurements and portable surface-enhanced Raman spectroscopy (SERS) is reported. The plasmon-active regular gold grating surface was covalently grafted with chiral recognition moieties, l- or d-enantiomers of tartaric acid, making stereoselective discrimination of chiral amines possible. Chiral sensing of amines includes two modes of analysis, performed subsequently on the one chip surface with portable instruments (mobile phone equipped with a camera and developed application (app) Dropangle and a portable Raman spectrometer). First, the wettability changes, caused by enantioselective entrapping of chiral amines, are monitored and analyzed via our mobile phone app, allowing detection of the optical configuration and concentration of enantiomers with 1 order of magnitude accuracy. Second, SERS measurement on the same chip provides information about the chemical structure of entrapped amines and allows calculation of the enantiomeric excess with great accuracy. The applicability of the developed chip is demonstrated on a variety of chiral amines, including tyrosine, cysteine, dopamine (DOPA), and dextromethorphan in analytical solutions and in commercially available DOPA-containing drug. Moreover, we demonstrate that the chips could be regenerated and used repeatedly for at least five cycles.