Through-space transfer of chiral information mediated by a plasmonic nanomaterial
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26100808
DOI
10.1038/nchem.2280
PII: nchem.2280
Knihovny.cz E-zdroje
- MeSH
- cirkulární dichroismus MeSH
- molekulární modely MeSH
- nanostruktury chemie MeSH
- počítačová simulace MeSH
- povrchová plasmonová rezonance metody MeSH
- stereoizomerie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The ability to detect chirality gives stereochemically attuned nanosensors the potential to revolutionize the study of biomolecular processes. Such devices may structurally characterize the mechanisms of protein-ligand binding, the intermediates of amyloidogenic diseases and the effects of phosphorylation and glycosylation. We demonstrate that single nanoparticle plasmonic reporters, or nanotags, can enable a stereochemical response to be transmitted from a chiral analyte to an achiral benzotriazole dye molecule in the vicinity of a plasmon resonance from an achiral metallic nanostructure. The transfer of chirality was verified by the measurement of mirror image surface enhanced resonance Raman optical activity spectra for the two enantiomers of both ribose and tryptophan. Computational modelling confirms these observations and reveals the novel chirality transfer mechanism responsible. This is the first report of colloidal metal nanoparticles in the form of single plasmonic substrates displaying an intrinsic chiral sensitivity once attached to a chiral molecule.
Zobrazit více v PubMed
Chem Commun (Camb). 2011 Apr 21;47(15):4415-7 PubMed
Phys Chem Chem Phys. 2006 Jun 14;8(22):2624-8 PubMed
Chem Soc Rev. 2009 Mar;38(3):722-36 PubMed
Chirality. 2001 Jun;13(6):329-35 PubMed
Chemistry. 2011 Jun 20;17(26):7205-12 PubMed
Nat Commun. 2014 Jul 18;5:4441 PubMed
J Chem Theory Comput. 2012 May 8;8(5):1714-20 PubMed
Chem Commun (Camb). 2011 Apr 28;47(16):4754-6 PubMed
Nano Lett. 2011 Feb 9;11(2):701-5 PubMed
Acc Chem Res. 2008 Dec;41(12):1653-61 PubMed
Anal Chem. 2009 Apr 15;81(8):3029-34 PubMed
Science. 2009 Sep 18;325(5947):1513-5 PubMed
J Am Chem Soc. 2010 Mar 3;132(8):2502-3 PubMed
Nanoscale. 2013 Aug 21;5(16):7589-95 PubMed
Phys Rev Lett. 2005 Nov 25;95(22):227401 PubMed
J Phys Chem B. 2009 May 7;113(18):6378-96 PubMed
Chem Soc Rev. 2008 May;37(5):980-92 PubMed
Nano Lett. 2012 Feb 8;12(2):977-83 PubMed
Biopolymers. 1995;37(4):265-79 PubMed
Nat Nanotechnol. 2010 Nov;5(11):783-7 PubMed
Prog Biophys Mol Biol. 2000;73(1):1-49 PubMed
Phys Rev Lett. 2003 Dec 12;91(24):247404 PubMed
Anal Bioanal Chem. 2010 Jun;397(4):1595-604 PubMed
J Am Chem Soc. 2010 Jun 30;132(25):8575-80 PubMed
Bisignate Surface-Enhanced Raman Optical Activity with Analyte-Capped Colloids
Recognition of the True and False Resonance Raman Optical Activity