Recognition of the True and False Resonance Raman Optical Activity

. 2021 Sep 20 ; 60 (39) : 21205-21210. [epub] 20210821

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34216087

Resonance Raman optical activity (RROA) possesses all aspects of a sensitive tool for molecular detection, but its measurement remains challenging. We demonstrate that reliable recording of RROA of chiral colorful compounds is possible, but only after considering the effect of the electronic circular dichroism (ECD) on the ROA spectra induced by the dissolved chiral compound. We show RROA for a number of model vitamin B12 derivatives that are chemically similar but exhibit distinctively different spectroscopic behavior. The ECD/ROA effect is proportional to the concentration and dependent on the optical pathlength of the light propagating through the sample. It can severely alter relative band intensities and signs in the natural RROA spectra. The spectra analyses are supported by computational modeling based on density functional theory. Neglecting the ECD effect during ROA measurement can lead to misinterpretation of the recorded spectra and erroneous conclusions about the molecular structure.

Zobrazit více v PubMed

Nafie L. A., Vibrational Optical Activity, Wiley, Hoboken, 2011.

Polavarapu P. L., Santoro E., Nat. Prod. Rep. 2020, 37, 1661–1699. PubMed

J. M. Batista, Jr. , Blanch E. W., da S. Bolzani V., Nat. Prod. Rep. 2015, 32, 1280–1302. PubMed

Keiderling T. A., Chem. Rev. 2020, 120, 3381–3419. PubMed

Krupová M., Kessler J., Bouř P., ChemPlusChem 2020, 85, 561–575. PubMed

Stich T. A., Brooks A. J., Buan N. R., Brunold T. C., J. Am. Chem. Soc. 2003, 125, 5897–5914. PubMed

Tatarkovič M., Miškovičová M., Šťovíčková L., Synytsya A., Petruželka L., Setnička V., Analyst 2015, 140, 2287–2293. PubMed

Ostovar pour S., Rocks L., Faulds K., Graham D., Parchaňský V., Bouř P., Blanch E. W., Nat. Chem. 2015, 7, 591–596. PubMed

Haraguchi S., Hara M., Shingae T., Kumauchi M., Hoff W. D., Unno M., Angew. Chem. Int. Ed. 2015, 54, 11555–11558; PubMed

Angew. Chem. 2015, 127, 11717–11720.

Haraguchi S., Shingae T., Fujisawa T., Kasai N., Kumauchi M., Hanamoto T., Hoff W. D., Unno M., Proc. Natl. Acad. Sci. USA 2018, 115, 8671–8675. PubMed PMC

Zajac G., Lasota J., Dudek M., Kaczor A., Baranska M., Spectrochim. Acta Part A 2017, 173, 356–360. PubMed

Merten C., Li H., Nafie L. A., J. Phys. Chem. A 2012, 116, 7329–7336. PubMed

Shen C., Loas G., Srebro-Hooper M., Vanthuyne N., Toupet L., Cador O., Paul F., López Navarrete J. T., Ramírez F. J., Nieto-Ortega B., Casado J., Autschbach J., Vallet M., Crassous J., Angew. Chem. Int. Ed. 2016, 55, 8062–8066; PubMed

Angew. Chem. 2016, 128, 8194–8198.

Shen C., Srebro-Hooper M., Weymuth T., Krausbeck F., Navarrete J. T. L., Ramírez F. J., Nieto-Ortega B., Casado J., Reiher M., Autschbach J., Crassous J., Chem. Eur. J. 2018, 24, 15067–15079. PubMed

Vidal L. N., Egidi F., Barone V., Cappelli C., J. Chem. Phys. 2015, 142, 174101. PubMed

Vidal L. N., Giovannini T., Cappelli C., J. Phys. Chem. Lett. 2016, 7, 3585–3590. PubMed

Baiardi A., Bloino J., Barone V., J. Chem. Theory Comput. 2018, 14, 6370–6390. PubMed

Mattiat J., Luber S., J. Chem. Phys. 2019, 151, 234110. PubMed

Zajac G., Kaczor A., Pallares Zazo A., Mlynarski J., Dudek M., Baranska M., J. Phys. Chem. B 2016, 120, 4028–4033. PubMed

Dudek M., Machalska E., Oleszkiewicz T., Grzebelus E., Baranski R., Szcześniak P., Mlynarski J., Zajac G., Kaczor A., Baranska M., Angew. Chem. Int. Ed. 2019, 58, 8383–8388; PubMed

Angew. Chem. 2019, 131, 8471–8476.

Machalska E., Zajac G., Gruca A., Zobi F., Baranska M., Kaczor A., J. Phys. Chem. Lett. 2020, 11, 5037–5043. PubMed PMC

Šebestík J., Teplý F., Císařová I., Vávra J., Koval D., Bouř P., Chem. Commun. 2016, 52, 6257–6260. PubMed

Machalska E., Zajac G., Halat M., Wierzba A. J., Gryko D., Baranska M., Molecules 2020, 25, 4386. PubMed PMC

Nafie L. A., Chem. Phys. 1996, 205, 309–322.

Vargek M., Freedman T. B., Lee E., Nafie L. A., Chem. Phys. Lett. 1998, 287, 359–364.

Li G., Kessler J., Cheramy J., Wu T., Poopari M. R., Bouř P., Xu Y., Angew. Chem. Int. Ed. 2019, 58, 16495–16498; PubMed

Angew. Chem. 2019, 131, 16647–16650.

Wu T., Li G., Kapitán J., Kessler J., Xu Y., Bouř P., Angew. Chem. Int. Ed. 2020, 59, 21895–21898; PubMed PMC

Angew. Chem. 2020, 132, 22079–22082.

Machalska E., Zajac G., Baranska M., Kaczorek D., Kawęcki R., Lipiński P. F. J., Rode J. E., Dobrowolski J. C., Chem. Sci. 2021, 12, 911–916. PubMed PMC

Wierzba A. J., Wincenciuk A., Karczewski M., Vullev V. I., Gryko D., Chem. Eur. J. 2018, 24, 10344–10356. PubMed

ó Proinsias K., Karczewski M., Zieleniewska A., Gryko D., J. Org. Chem. 2014, 79, 7752–7757. PubMed

Bonnett R., Godfrey J. M., Math V. B., J. Chem. Soc. C 1971, 3736–3743. PubMed

Wierzba A. J., Hassan S., Gryko D., Asian J. Org. Chem. 2019, 8, 6–24.

Równicki M., Wojciechowska M., Wierzba A. J., Czarnecki J., Bartosik D., Gryko D., Trylska J., Sci. Rep. 2017, 7, 7644. PubMed PMC

Wuerges J., Garau G., Geremia S., Fedosov S. N., Petersen T. E., Randaccio L., Proc. Natl. Acad. Sci. USA 2006, 103, 4386–4391. PubMed PMC

Petrus A. K., Fairchild T. J., Doyle R. P., Angew. Chem. Int. Ed. 2009, 48, 1022–1028; PubMed

Angew. Chem. 2009, 121, 1040–1047.

Gupta Y., Kohli D. V., Jain S. K., Crit. Rev. Ther. Drug Carrier Syst. 2008, 25, 347–379. PubMed

Brehm M., Thomas M., J. Chem. Theory Comput. 2019, 15, 3901–3905. PubMed

Wu T., Kessler J., Bouř P., Phys. Chem. Chem. Phys. 2016, 18, 23803–23811. PubMed

Wu T., Kapitán J., Mašek V., Bouř P., Angew. Chem. Int. Ed. 2015, 54, 14933–14936; PubMed

Angew. Chem. 2015, 127, 15146–15149.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Bisignate Surface-Enhanced Raman Optical Activity with Analyte-Capped Colloids

. 2025 Mar 18 ; 19 (10) : 10412-10420. [epub] 20250307

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...