Transfer and Amplification of Chirality Within the "Ring of Fire" Observed in Resonance Raman Optical Activity Experiments
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Natural Sciences and Engineering Research Council of Canada - International
Canada Foundation for Innovation - International
Alberta Enterprise and Advanced Education - International
University of Alberta - International
18-05770S
Grantová Agentura České Republiky - International
LTC17012
Ministry of Education - International
PubMed
31460686
DOI
10.1002/anie.201909603
Knihovny.cz E-zdroje
- Klíčová slova
- chirality transfer, light scattering, nickel complexes, quantum plasmons, resonance Raman optical activity,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We report extremely strong chirality transfer from a chiral nickel complex to solvent molecules detected as Raman optical activity (ROA). Electronic energies of the complex were in resonance with the excitation-laser light. The phenomenon was observed for a wide range of achiral and chiral solvents. For chiral 2-butanol, the induced ROA was even stronger than the natural one. The observations were related to so-called quantum (molecular) plasmons that enable a strong chiral Rayleigh scattering of the resonating complex. According to a model presented here, the maximal induced ROA intensity occurs at a certain distance from the solute, in a three-dimensional "ring of fire", even after rotational averaging. Most experimental ROA signs and relative intensities could be reproduced. The effect might significantly increase the potential of ROA spectroscopy in bioimaging and sensitive detection of chiral molecules.
Department of Chemistry University of Alberta Edmonton Alberta T6G 2G2 Canada
Institute of Organic Chemistry and Biochemistry Flemingovo náměstí 2 16610 Prague Czech Republic
Zobrazit více v PubMed
L. Pasteur, Théses de chimie et de physique, Bachelier, Paris, 1847.
L. D. Barron, Molecular Light Scattering and Optical Activity, Cambridge University Press, Cambridge, 2004.
L. Nafie, Vibrational optical activity: Principles and applications, Wiley, Chichester, 2011;
J. Haesler, I. Schindelholz, E. Riguet, C. G. Bochet, W. Hug, Nature 2007, 446, 526-529.
A. Baiardi, J. Bloino, V. Barone, J. Chem. Theory Comput. 2018, 14, 6370-6390;
J. Šebestík, J. Kapitán, O. Pačes, P. Bouř, Angew. Chem. Int. Ed. 2016, 55, 3504-3508;
Angew. Chem. 2016, 128, 3565-3569.
S. O. Pour, L. Rocks, K. Faulds, D. Graham, V. Parchaňský, P. Bouř, E. W. Blanch, Nat. Chem. 2015, 7, 591-596;
K. Osińska, M. Pecul, A. Kudelski, Chem. Phys. Lett. 2010, 496, 86-90;
C. Johannessen, P. C. White, S. Abdali, J. Phys. Chem. A 2007, 111, 7771-7776.
M. Dudek, G. Zajac, A. Kaczor, M. Baranska, J. Phys. Chem. B 2016, 120, 7807-7814.
R. Shimada, H. Kano, H. Hamaguchi, J. Chem. Phys. 2008, 140, 204506.
J. Šebestík, F. Teplý, I. Císařová, J. Vávra, D. Koval, P. Bouř, Chem. Commun. 2016, 52, 6257-6260.
K. A. Willets, R. P. VanDuyne, Annu. Rev. Phys. Chem. 2007, 58, 267-297;
S. Y. Ding, E. M. You, Z. Q. Tian, M. Moskovits, Chem. Soc. Rev. 2017, 46, 4042-4076.
C. Merten, H. Li, L. A. Nafie, J. Phys. Chem. A 2012, 116, 7329-7336;
L. N. Vidal, T. Giovannini, C. Cappelli, J. Phys. Chem. Lett. 2016, 7, 3585-3590;
L. A. Nafie, Chem. Phys. 1996, 205, 309-322.
K. D. Chapkin, L. Bursi, G. J. Stec, A. Lauchner, N. J. Hogan, Y. Cui, P. Nordlander, N. J. Halas, Proc. Natl. Acad. Sci. USA 2018, 115, 9134-9139.
C. Zong, M. Xu, L. J. Xu, T. Wei, X. Ma, X. S. Zheng, R. Hu, B. Ren, Chem. Rev. 2018, 118, 4946-4980.
Z. Dezhahang, M. R. Poopari, J. Cheramy, Y. Xu, Inorg. Chem. 2015, 54, 4539-4549.
A. D. Laurent, D. Jacquemin, Int. J. Quantum Chem. 2013, 113, 2019-2039;
H. H. Falden, K. R. Falster-Hansen, K. L. Bak, S. Rettrup, S. P. A. Sauer, J. Phys. Chem. A 2009, 113, 11995-12012.
A. S. Perera, J. Thomas, M. R. Poopari, Y. Xu, Front. Chem. 2016, 4, 9.
Y. Zhang, M. R. Poopari, X. Cai, A. Savin, Z. Dezhahang, J. Cheramy, Y. Xu, J. Nat. Prod. 2016, 79, 1012-1023;
E. Debie, L. Jaspers, P. Bultinck, W. Herrebout, B. V. D. Veken, Chem. Phys. Lett. 2008, 450, 426-430.
S. Yamamoto, P. Bouř, J. Comput. Chem. 2013, 34, 2152-2158;
V. Novák, M. Dendisová, P. Matějka, P. Bouř, J. Phys. Chem. C 2016, 120, 18275-18280;
V. Novák, J. Šebestík, P. Bouř, J. Chem. Theory Comput. 2012, 8, 1714-1720.
P. Bouř, J. Chem. Phys. 2007, 127, 136101;
B. G. Janesko, G. E. Scuseria, J. Chem. Phys. 2006, 125, 124704.
S. Luber, C. Herrmann, M. Reiher, J. Phys. Chem. B 2008, 112, 2218-2232.
M. J. Frisch, et al., Gaussian 16, Wallingford, CT, 2016.
A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652;
T. Yanai, D. Tew, N. C. Handy, Chem. Phys. Lett. 2004, 393, 51-57.
J. R. Cheeseman, M. J. Frisch, J. Chem. Theory Comput. 2011, 7, 3323-3334.
J. B. Foresman, T. A. Keith, K. B. Wiberg, J. Snoonian, M. J. Frisch, J. Phys. Chem. 1996, 100, 16098-16104.
P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299-310.
Molecular Vibrations in Chiral Europium Complexes Revealed by Near-Infrared Raman Optical Activity
Recognition of the True and False Resonance Raman Optical Activity
Two Spectroscopies in One: Interference of Circular Dichroism and Raman Optical Activity