Transfer and Amplification of Chirality Within the "Ring of Fire" Observed in Resonance Raman Optical Activity Experiments

. 2019 Nov 11 ; 58 (46) : 16495-16498. [epub] 20190913

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31460686

Grantová podpora
Natural Sciences and Engineering Research Council of Canada - International
Canada Foundation for Innovation - International
Alberta Enterprise and Advanced Education - International
University of Alberta - International
18-05770S Grantová Agentura České Republiky - International
LTC17012 Ministry of Education - International

We report extremely strong chirality transfer from a chiral nickel complex to solvent molecules detected as Raman optical activity (ROA). Electronic energies of the complex were in resonance with the excitation-laser light. The phenomenon was observed for a wide range of achiral and chiral solvents. For chiral 2-butanol, the induced ROA was even stronger than the natural one. The observations were related to so-called quantum (molecular) plasmons that enable a strong chiral Rayleigh scattering of the resonating complex. According to a model presented here, the maximal induced ROA intensity occurs at a certain distance from the solute, in a three-dimensional "ring of fire", even after rotational averaging. Most experimental ROA signs and relative intensities could be reproduced. The effect might significantly increase the potential of ROA spectroscopy in bioimaging and sensitive detection of chiral molecules.

Zobrazit více v PubMed

L. Pasteur, Théses de chimie et de physique, Bachelier, Paris, 1847.

L. D. Barron, Molecular Light Scattering and Optical Activity, Cambridge University Press, Cambridge, 2004.

L. Nafie, Vibrational optical activity: Principles and applications, Wiley, Chichester, 2011;

J. Haesler, I. Schindelholz, E. Riguet, C. G. Bochet, W. Hug, Nature 2007, 446, 526-529.

A. Baiardi, J. Bloino, V. Barone, J. Chem. Theory Comput. 2018, 14, 6370-6390;

J. Šebestík, J. Kapitán, O. Pačes, P. Bouř, Angew. Chem. Int. Ed. 2016, 55, 3504-3508;

Angew. Chem. 2016, 128, 3565-3569.

S. O. Pour, L. Rocks, K. Faulds, D. Graham, V. Parchaňský, P. Bouř, E. W. Blanch, Nat. Chem. 2015, 7, 591-596;

K. Osińska, M. Pecul, A. Kudelski, Chem. Phys. Lett. 2010, 496, 86-90;

C. Johannessen, P. C. White, S. Abdali, J. Phys. Chem. A 2007, 111, 7771-7776.

M. Dudek, G. Zajac, A. Kaczor, M. Baranska, J. Phys. Chem. B 2016, 120, 7807-7814.

R. Shimada, H. Kano, H. Hamaguchi, J. Chem. Phys. 2008, 140, 204506.

J. Šebestík, F. Teplý, I. Císařová, J. Vávra, D. Koval, P. Bouř, Chem. Commun. 2016, 52, 6257-6260.

K. A. Willets, R. P. VanDuyne, Annu. Rev. Phys. Chem. 2007, 58, 267-297;

S. Y. Ding, E. M. You, Z. Q. Tian, M. Moskovits, Chem. Soc. Rev. 2017, 46, 4042-4076.

C. Merten, H. Li, L. A. Nafie, J. Phys. Chem. A 2012, 116, 7329-7336;

L. N. Vidal, T. Giovannini, C. Cappelli, J. Phys. Chem. Lett. 2016, 7, 3585-3590;

L. A. Nafie, Chem. Phys. 1996, 205, 309-322.

K. D. Chapkin, L. Bursi, G. J. Stec, A. Lauchner, N. J. Hogan, Y. Cui, P. Nordlander, N. J. Halas, Proc. Natl. Acad. Sci. USA 2018, 115, 9134-9139.

C. Zong, M. Xu, L. J. Xu, T. Wei, X. Ma, X. S. Zheng, R. Hu, B. Ren, Chem. Rev. 2018, 118, 4946-4980.

Z. Dezhahang, M. R. Poopari, J. Cheramy, Y. Xu, Inorg. Chem. 2015, 54, 4539-4549.

A. D. Laurent, D. Jacquemin, Int. J. Quantum Chem. 2013, 113, 2019-2039;

H. H. Falden, K. R. Falster-Hansen, K. L. Bak, S. Rettrup, S. P. A. Sauer, J. Phys. Chem. A 2009, 113, 11995-12012.

A. S. Perera, J. Thomas, M. R. Poopari, Y. Xu, Front. Chem. 2016, 4, 9.

Y. Zhang, M. R. Poopari, X. Cai, A. Savin, Z. Dezhahang, J. Cheramy, Y. Xu, J. Nat. Prod. 2016, 79, 1012-1023;

E. Debie, L. Jaspers, P. Bultinck, W. Herrebout, B. V. D. Veken, Chem. Phys. Lett. 2008, 450, 426-430.

S. Yamamoto, P. Bouř, J. Comput. Chem. 2013, 34, 2152-2158;

V. Novák, M. Dendisová, P. Matějka, P. Bouř, J. Phys. Chem. C 2016, 120, 18275-18280;

V. Novák, J. Šebestík, P. Bouř, J. Chem. Theory Comput. 2012, 8, 1714-1720.

P. Bouř, J. Chem. Phys. 2007, 127, 136101;

B. G. Janesko, G. E. Scuseria, J. Chem. Phys. 2006, 125, 124704.

S. Luber, C. Herrmann, M. Reiher, J. Phys. Chem. B 2008, 112, 2218-2232.

M. J. Frisch, et al., Gaussian 16, Wallingford, CT, 2016.

A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652;

T. Yanai, D. Tew, N. C. Handy, Chem. Phys. Lett. 2004, 393, 51-57.

J. R. Cheeseman, M. J. Frisch, J. Chem. Theory Comput. 2011, 7, 3323-3334.

J. B. Foresman, T. A. Keith, K. B. Wiberg, J. Snoonian, M. J. Frisch, J. Phys. Chem. 1996, 100, 16098-16104.

P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299-310.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...