Two Spectroscopies in One: Interference of Circular Dichroism and Raman Optical Activity
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32926516
PubMed Central
PMC7894312
DOI
10.1002/anie.202011146
Knihovny.cz E-zdroje
- Klíčová slova
- chirality transfer, electronic circular dichroism, magnetic circular dichroism, polarized Raman scattering, resonance Raman optical activity,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Previously, we and other laboratories have reported an unusual and strong Raman optical activity (ROA) induced in solvents by chiral dyes. Various theories of the phenomenon appeared, but they were not capable of explaining fully the observed ROA band signs and intensities. In this work, an analysis based both on the light scattering theory and dedicated experiments provides a more complete understanding. For example, double-cell magnetic circular dichroism and magnetic ROA experiments with copper-porphyrin complex show that the induced chirality is observed without any contact of the solvents with the complex. The results thus indicate that a combination of electronic circular dichroism (ECD) with the polarized Raman scattering is responsible for the effect. The degree of circularity of solvent vibrational bands is a principal molecular property participating in the event. The insight and the possibility to predict the chirality transfer promise future applications in spectroscopy, chemical analysis and polarized imaging.
Department of Chemistry University of Alberta Edmonton Alberta T6G 2G2 Canada
Department of Optics Palacký University Olomouc 17 listopadu 12 77146 Olomouc Czech Republic
Institute of Organic Chemistry and Biochemistry Flemingovo náměstí 2 16610 Prague Czech Republic
Zobrazit více v PubMed
Pasteur L., Ann. Chim. Phys. 1848, 24, 442–459.
Holzwarth G., Hsu E. C., Mosher H. S., Faulkner T. R., Moscowitz A., J. Am. Chem. Soc. 1974, 96, 251–252.
Krupová M., Kessler J., Bouř P., ChemPlusChem 2020, 85, 561–575. PubMed
Kurouski D., Dukor R. K., Lu X., Nafie L. A., Lednev I. K., Chem. Commun. 2012, 48, 2837–2839. PubMed PMC
Dudek M., Machalska E., Oleszkiewicz T., Grzebelus E., Baranski R., Szcześniak P., Mlynarski J., Zajac G., Kaczor A., Baranska M., Angew. Chem. Int. Ed. 2019, 58, 8383–8388; PubMed
Angew. Chem. 2019, 131, 8471–8476.
Šebestík J., Kapitán J., Pačes O., Bouř P., Angew. Chem. Int. Ed. 2016, 55, 3504–3508; PubMed
Angew. Chem. 2016, 128, 3565–3569.
Zajac G., Kaczor A., Zazo A. P., Mlynarski J., Dudek M., Baranska M., J. Phys. Chem. B 2016, 120, 4028–4033; PubMed
Sadlej J., Dobrowolski J. C., Rode J. E., Chem. Soc. Rev. 2010, 39, 1478–1488; PubMed
Losada M., Xu Y., Phys. Chem. Chem. Phys. 2007, 9, 3127–3135; PubMed
Šebestík J., Teplý F., Císařová I., Vávra J., Koval D., Bouř P., Chem. Commun. 2016, 52, 6257–6260; PubMed
Wu T., Kessler J., Bouř P., Phys. Chem. Chem. Phys. 2016, 18, 23803–23811. PubMed
Dobrowolski J. C., Rode J. E., Sadlej J. in Practical Aspects of Computational Chemistry (Eds.: Leszczynski J., Shukla M. K.), Springer, Dordrecht, 2011, pp. 451–478.
Dolamic I., Varnholt B., Bürgi T., Nat. Commun. 2015, 6, 7117. PubMed PMC
Liu Z., Ai J., Kumar P., You E., Zhou X., Liu X., Tian Z., Bouř P., Duan Y., Han L., Kotov N., Ding S., Che S., Angew. Chem. Int. Ed. 2020, 59, 15226; PubMed
Angew. Chem. 2020, 132, 15338.
Nafie L., Vibrational optical activity: Principles and applications, Wiley, Chichester, 2011;
Hug W., Appl. Spectrosc. 2003, 57, 1–13. PubMed
Li G., Kessler J., Cheramy J., Wu T., Poopari M. R., Bouř P., Xu Y., Angew. Chem. Int. Ed. 2019, 58, 16495–16498; PubMed
Angew. Chem. 2019, 131, 16647–16650.
Barron L. D., Molecular Light Scattering and Optical Activity, Cambridge University Press, Cambridge, UK, 2004.
Kettle S. F. A., Physical Inorganic Chemistry, Springer, Heidelberg, 1996.
Tomeček J., Bouř P., J. Chem. Theory Comput. 2020, 16, 2627–2634. PubMed
Hug W., Hangartner G., J. Raman Spectrosc. 1999, 30, 841–852.
Wu T., Kapitán J., Mašek V., Bouř P., Angew. Chem. Int. Ed. 2015, 54, 14933–14936; PubMed
Angew. Chem. 2015, 127, 15146–15149;
Lunkley J. L., Shirotani D., Yamanari K., Kaizaki S., Muller G., J. Am. Chem. Soc. 2008, 130, 13814–13815. PubMed PMC
Molecular Vibrations in Chiral Europium Complexes Revealed by Near-Infrared Raman Optical Activity
Recognition of the True and False Resonance Raman Optical Activity