Two Spectroscopies in One: Interference of Circular Dichroism and Raman Optical Activity

. 2020 Dec 01 ; 59 (49) : 21895-21898. [epub] 20201019

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32926516

Previously, we and other laboratories have reported an unusual and strong Raman optical activity (ROA) induced in solvents by chiral dyes. Various theories of the phenomenon appeared, but they were not capable of explaining fully the observed ROA band signs and intensities. In this work, an analysis based both on the light scattering theory and dedicated experiments provides a more complete understanding. For example, double-cell magnetic circular dichroism and magnetic ROA experiments with copper-porphyrin complex show that the induced chirality is observed without any contact of the solvents with the complex. The results thus indicate that a combination of electronic circular dichroism (ECD) with the polarized Raman scattering is responsible for the effect. The degree of circularity of solvent vibrational bands is a principal molecular property participating in the event. The insight and the possibility to predict the chirality transfer promise future applications in spectroscopy, chemical analysis and polarized imaging.

Zobrazit více v PubMed

Pasteur L., Ann. Chim. Phys. 1848, 24, 442–459.

Holzwarth G., Hsu E. C., Mosher H. S., Faulkner T. R., Moscowitz A., J. Am. Chem. Soc. 1974, 96, 251–252.

Krupová M., Kessler J., Bouř P., ChemPlusChem 2020, 85, 561–575. PubMed

Kurouski D., Dukor R. K., Lu X., Nafie L. A., Lednev I. K., Chem. Commun. 2012, 48, 2837–2839. PubMed PMC

Dudek M., Machalska E., Oleszkiewicz T., Grzebelus E., Baranski R., Szcześniak P., Mlynarski J., Zajac G., Kaczor A., Baranska M., Angew. Chem. Int. Ed. 2019, 58, 8383–8388; PubMed

Angew. Chem. 2019, 131, 8471–8476.

Šebestík J., Kapitán J., Pačes O., Bouř P., Angew. Chem. Int. Ed. 2016, 55, 3504–3508; PubMed

Angew. Chem. 2016, 128, 3565–3569.

Zajac G., Kaczor A., Zazo A. P., Mlynarski J., Dudek M., Baranska M., J. Phys. Chem. B 2016, 120, 4028–4033; PubMed

Sadlej J., Dobrowolski J. C., Rode J. E., Chem. Soc. Rev. 2010, 39, 1478–1488; PubMed

Losada M., Xu Y., Phys. Chem. Chem. Phys. 2007, 9, 3127–3135; PubMed

Šebestík J., Teplý F., Císařová I., Vávra J., Koval D., Bouř P., Chem. Commun. 2016, 52, 6257–6260; PubMed

Wu T., Kessler J., Bouř P., Phys. Chem. Chem. Phys. 2016, 18, 23803–23811. PubMed

Dobrowolski J. C., Rode J. E., Sadlej J. in Practical Aspects of Computational Chemistry (Eds.: Leszczynski J., Shukla M. K.), Springer, Dordrecht, 2011, pp. 451–478.

Dolamic I., Varnholt B., Bürgi T., Nat. Commun. 2015, 6, 7117. PubMed PMC

Liu Z., Ai J., Kumar P., You E., Zhou X., Liu X., Tian Z., Bouř P., Duan Y., Han L., Kotov N., Ding S., Che S., Angew. Chem. Int. Ed. 2020, 59, 15226; PubMed

Angew. Chem. 2020, 132, 15338.

Nafie L., Vibrational optical activity: Principles and applications, Wiley, Chichester, 2011;

Hug W., Appl. Spectrosc. 2003, 57, 1–13. PubMed

Li G., Kessler J., Cheramy J., Wu T., Poopari M. R., Bouř P., Xu Y., Angew. Chem. Int. Ed. 2019, 58, 16495–16498; PubMed

Angew. Chem. 2019, 131, 16647–16650.

Barron L. D., Molecular Light Scattering and Optical Activity, Cambridge University Press, Cambridge, UK, 2004.

Kettle S. F. A., Physical Inorganic Chemistry, Springer, Heidelberg, 1996.

Tomeček J., Bouř P., J. Chem. Theory Comput. 2020, 16, 2627–2634. PubMed

Hug W., Hangartner G., J. Raman Spectrosc. 1999, 30, 841–852.

Wu T., Kapitán J., Mašek V., Bouř P., Angew. Chem. Int. Ed. 2015, 54, 14933–14936; PubMed

Angew. Chem. 2015, 127, 15146–15149;

Lunkley J. L., Shirotani D., Yamanari K., Kaizaki S., Muller G., J. Am. Chem. Soc. 2008, 130, 13814–13815. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace