An Effective and Automated Processing of Resonances in Vibrational Perturbation Theory Applied to Spectroscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36450042
PubMed Central
PMC9761684
DOI
10.1021/acs.jpca.2c06460
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The broader availability of cost-effective methodologies like second-order vibrational perturbational theory (VPT2), also in general-purpose quantum chemical programs, has made the inclusion of anharmonic effects in vibrational calculations easier, paving the way to more accurate simulations. Combined with modern computing hardware, VPT2 can be used on relatively complex molecular systems with dozen of atoms. However, the problem of resonances and their corrections remains a critical pitfall of perturbative methods. Recent works have highlighted the sensitivity of band intensities to even subtle resonance effects, underlying the importance of a correct treatment to predict accurate spectral bandshapes. This aspect is even more critical with chiroptical spectroscopies whose signal is weak. This has motivated the present work in exploring robust methods and criteria to identify resonances not only in energy calculations but also on the transition moments. To study their performance, three molecules of representative sizes ranging from ten to several dozens of atoms were chosen. The impact of resonances, as well as the accuracy achievable once they are properly treated, is illustrated by the changes in spectral bandshapes, including chiroptical spectroscopies.
Faculty of Science Scuola Normale Superiore Piazza dei Cavalieri 7 1 56126Pisa Italy
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences 16610Prague Czech Republic
Zobrazit více v PubMed
Roy T. K.; Gerber R. B. Vibrational self-consistent field calculations for spectroscopy of biological molecules: new algorithmic developments and applications. Phys. Chem. Chem. Phys. 2013, 15, 9468–9492. 10.1039/c3cp50739d. PubMed DOI
Zhuang W.; Hayashi T.; Mukamel S. Coherent multidimensional vibrational spectroscopy of biomolecules: Concepts, simulations, and challenges. Angew. Chem., Int. Ed. 2009, 48, 3750–3781. 10.1002/anie.200802644. PubMed DOI PMC
Jeon J.; Yang S.; Choi J.-H.; Cho M. Computational vibrational spectroscopy of peptides and proteins in one and two dimensions. Acc. Chem. Res. 2009, 42, 1280–1289. 10.1021/ar900014e. PubMed DOI
Zhu S.; Sun M. Electronic circular dichroism and raman optical activity: principle and applications. Appl. Spectr. Rev. 2021, 56, 553–587. 10.1080/05704928.2020.1831523. DOI
Krupová M.; Kessler J.; Bouř P. Recent trends in chiroptical spectroscopy: theory and applications of vibrational circular dichroism and Raman optical activity. ChemPlusChem. 2020, 85, 561–575. 10.1002/cplu.202000014. PubMed DOI
Merten C.; Bloino J.; Barone V.; Xu Y. Anharmonicity Effects in the Vibrational CD Spectra of Propylene Oxide. J. Phys. Chem. Lett. 2013, 4, 3424–3428. 10.1021/jz401854y. DOI
Herrebout W. In Halogen Bonding I: Impact on Materials Chemistry and Life Sciences; Metrangolo P., Resnati G., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp 79–154.
Dazzi A.; Prater C. B. AFM-IR: Technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 2017, 117, 5146–5173. 10.1021/acs.chemrev.6b00448. PubMed DOI
Keiderling T. A. Structure of condensed phase peptides: Insights from vibrational circular dichroism and Raman optical activity techniques. Chem. Rev. 2020, 120, 3381–3419. 10.1021/acs.chemrev.9b00636. PubMed DOI
Wu T.; Li G.; Kapitán J.; Kessler J.; Xu Y.; Bouř P. Two spectroscopies in one: Interference of circular dichroism and raman optical activity. Angew. Chem., Int. Ed. 2020, 59, 21895–21898. 10.1002/anie.202011146. PubMed DOI PMC
Bogaerts J.; Desmet F.; Aerts R.; Bultinck P.; Herrebout W.; Johannessen C. A combined Raman optical activity and vibrational circular dichroism study on artemisinin-type products. Phys. Chem. Chem. Phys. 2020, 22, 18014–18024. 10.1039/D0CP03257C. PubMed DOI
Nafie L. A. Vibrational optical activity: From discovery and development to future challenges. Chirality 2020, 32, 667–692. 10.1002/chir.23191. PubMed DOI
Abbate S.; Castiglioni E.; Gangemi F.; Gangemi R.; Longhi G. NIR-VCD, vibrational circular dichroism in the near-infrared: Experiments, theory and calculations. Chirality 2009, 21, E242–E252. 10.1002/chir.20805. PubMed DOI
Bokareva O. S.; Baig O.; Al-Marri M. J.; Kühn O.; González L. The effect of N-heterocyclic carbene units on the absorption spectra of Fe (II) complexes: a challenge for theory. Phys. Chem. Chem. Phys. 2020, 22, 27605–27616. 10.1039/D0CP04781C. PubMed DOI
Sharma A. R.; Braams B. J.; Carter S.; Shepler B. C.; Bowman J. M. Full-dimensional ab initio potential energy surface and vibrational configuration interaction calculations for vinyl. J. Chem. Phys. 2009, 130, 174301.10.1063/1.3120607. PubMed DOI
Barone V.; Bloino J.; Biczysko M. Validation of the DFT/N07D computational model on the magnetic, vibrational and electronic properties of vinyl radical. Phys. Chem. Chem. Phys. 2010, 12, 1092–1101. 10.1039/B915246F. PubMed DOI
Biczysko M.; Bloino J.; Barone V. First principle simulation of vibrationally resolved A2B1 ← X2A1 electronic transition of phenyl radical. Chem. Phys. Lett. 2009, 471, 143–147. 10.1016/j.cplett.2009.01.082. DOI
Kreienborg N. M.; Bloino J.; Osowski T.; Pollok C. H.; Merten C. The vibrational CD spectra of propylene oxide in liquid xenon: a proof-of-principle CryoVCD study that challenges theory. Phys. Chem. Chem. Phys. 2019, 21, 6582–6587. 10.1039/C9CP00537D. PubMed DOI
Ruud K.; Thorvaldsen A. J. Theoretical approaches to the calculation of Raman optical activity spectra. Chirality 2009, 21, E54–E67. 10.1002/chir.20777. PubMed DOI
Puzzarini C.; Bloino J.; Tasinato N.; Barone V. Accuracy and Interpretability: The Devil and the Holy Grail. New Routes across Old Boundaries in Computational Spectroscopy. Chem. Rev. 2019, 119, 8131–8191. 10.1021/acs.chemrev.9b00007. PubMed DOI
Császár A. G.; Fábri C.; Szidarovszky T.; Mátyus E.; Furtenbacher T.; Czakó G. The fourth age of quantum chemistry: molecules in motion. Phys. Chem. Chem. Phys. 2012, 14, 1085–1106. 10.1039/C1CP21830A. PubMed DOI
Carter S.; Handy N. C.; Rosmus P.; Chambaud G. A variational method for the calculation of spin-rovibronic levels of Renner-Teller triatomic molecules. Mol. Phys. 1990, 71, 605–622. 10.1080/00268979000102001. DOI
Carter S.; Handy N. C.; Puzzarini C.; Tarroni R.; Palmieri P. A variational method for the calculation of spin-rovibronic energy levels of triatomic molecules with three interacting electronic states. Mol. Phys. 2000, 98, 1697–1712. 10.1080/00268970009483375. DOI
Mitrushchenkov A. O. A new general Renner–Teller (including ϵ ≳ 1) spectroscopic formalism for triatomic molecules. J. Chem. Phys. 2012, 136, 024108.10.1063/1.3672162. PubMed DOI
Nauts A.; Lauvergnat D. Quantum dynamics of floppy molecular systems with ELVIBROT and TNUM. AIP Conf. Proc. 2012, 1504, 948–952. 10.1063/1.4771853. DOI
Yurchenko S. N.; Lodi L.; Tennyson J.; Stolyarov A. V. Duo: A general program for calculating spectra of diatomic molecules. Comput. Phys. Commun. 2016, 202, 262–275. 10.1016/j.cpc.2015.12.021. DOI
Biczysko M.; Tarroni R.; Carter S. Variational calculations of HBN energy levels in the X2Π and A2Σ+ states. J. Chem. Phys. 2003, 119, 4197–4203. 10.1063/1.1594174. DOI
Matyus E.; Czako G.; Csaszar A. G. Toward black-box-type full- and reduced-dimensional variational (ro)vibrational computations. J. Chem. Phys. 2009, 130, 134112.10.1063/1.3076742. PubMed DOI
Papp D.; Szidarovszky T.; Császár A. G. A general variational approach for computing rovibrational resonances of polyatomic molecules. Application to the weakly bound H2He+ and H2·CO systems. J. Chem. Phys. 2017, 147, 094106.10.1063/1.5000680. PubMed DOI
Erfort S.; Tschöpe M.; Rauhut G. Toward a fully automated calculation of rovibrational infrared intensities for semi-rigid polyatomic molecules. J. Chem. Phys. 2020, 152, 244104.10.1063/5.0011832. PubMed DOI
Krasnoshchekov S. V.; Schutski R. S.; Craig N. C.; Sibaev M.; Crittenden D. L. Comparing the accuracy of perturbative and variational calculations for predicting fundamental vibrational frequencies of dihalomethanes. J. Chem. Phys. 2018, 148, 084102.10.1063/1.5020295. PubMed DOI
Carbonnière P.; Dargelos A.; Pouchan C. The VCI-P code: an iterative variation-perturbation scheme for efficient computations of anharmonic vibrational levels and IR intensities of polyatomic molecules. Theor. Chem. Acc. 2010, 125, 543–554. 10.1007/s00214-009-0689-7. DOI
Biczysko M.; Bloino J.; Puzzarini C. Computational challenges in Astrochemistry. WIREs Comput. Mol. Sci. 2018, 8, e134910.1002/wcms.1349. DOI
Beć K. B.; Huck C. W. Breakthrough Potential in Near-Infrared Spectroscopy: Spectra Simulation. A Review of Recent Developments. Front. Chem. 2019, 7, 48.10.3389/fchem.2019.00048. PubMed DOI PMC
Yang Q.; Fusè M.; Bloino J. Theoretical Investigation of the Circularly Polarized Luminescence of a Chiral Boron Dipyrromethene (BODIPY) Dye. Front. Chem. 2020, 8, 801.10.3389/fchem.2020.00801. PubMed DOI PMC
Barone V.; Ceselin G.; Fusè M.; Tasinato N. Accuracy Meets Interpretability for Computational Spectroscopy by Means of Hybrid and Double-Hybrid Functionals. Front. Chem. 2020, 8, 859.10.3389/fchem.2020.584203. PubMed DOI PMC
Goel P.; Stanton J. F. Semiclassical transition state theory based on fourth order vibrational perturbation theory: Model system studies beyond symmetric Eckart barrier. J. Chem. Phys. 2018, 149, 134109.10.1063/1.5040978. PubMed DOI
Krasnoshchekov S. V.; Isayeva E. V.; Stepanov N. F. Numerical-Analytic Implementation of the Higher-Order Canonical Van Vleck Perturbation Theory for the Interpretation of Medium-Sized Molecule Vibrational Spectra. J. Phys. Chem. A 2012, 116, 3691–3709. 10.1021/jp211400w. PubMed DOI
Franke P. R.; Stanton J. F.; Douberly G. E. How to VPT2: Accurate and Intuitive Simulations of CH Stretching Infrared Spectra Using VPT2+K with Large Effective Hamiltonian Resonance Treatments. J. Phys. Chem. A 2021, 125, 1301–1324. 10.1021/acs.jpca.0c09526. PubMed DOI
Nielsen H. H. The Vibration-Rotation Energies of Molecules. Rev. Mod. Phys. 1951, 23, 90–136. 10.1103/RevModPhys.23.90. DOI
Yu Q.; Bowman J. M. Vibrational second-order perturbation theory (VPT2) using local monomer normal modes. Mol. Phys. 2015, 113, 3964–3971. 10.1080/00268976.2015.1085109. DOI
Puzzarini C.; Tasinato N.; Bloino J.; Spada L.; Barone V. State-of-the-art computation of the rotational and IR spectra of the methyl-cyclopropyl cation: hints on its detection in space. Phys. Chem. Chem. Phys. 2019, 21, 3431–3439. 10.1039/C8CP04629H. PubMed DOI
Martin J. M. L.; Lee T. J.; Taylor P. M.; François J.-P. The anharmonic force field of ethylene, C2H4, by means of accurate ab initio calculations. J. Chem. Phys. 1995, 103, 2589–2602. 10.1063/1.469681. DOI
Barone V. Anharmonic vibrational properties by a fully automated second-order perturbative approach. J. Chem. Phys. 2005, 122, 014108.10.1063/1.1824881. PubMed DOI
Bloino J.; Barone V. A second-order perturbation theory route to vibrational averages and transition properties of molecules: General formulation and application to infrared and vibrational circular dichroism spectroscopies. J. Chem. Phys. 2012, 136, 124108.10.1063/1.3695210. PubMed DOI
Bloino J.; Baiardi A.; Biczysko M. Aiming at an accurate prediction of vibrational and electronic spectra for medium-to-large molecules: An overview. Int. J. Quantum Chem. 2016, 116, 1543–1574. 10.1002/qua.25188. DOI
Krasnoshchekov S. V.; Dobrolyubov E. O.; Syzgantseva M. A.; Palvelev R. V. Rigorous vibrational Fermi resonance criterion revealed: two different approaches yield the same result. Mol. Phys. 2020, 118, e174388710.1080/00268976.2020.1743887. DOI
Yang Q.; Mendolicchio M.; Barone V.; Bloino J. Accuracy and Reliability in the Simulation of Vibrational Spectra: A Comprehensive Benchmark of Energies and Intensities Issuing From Generalized Vibrational Perturbation Theory to Second Order (GVPT2). Front. Astron. Space Sci. 2021, 8, 665232.10.3389/fspas.2021.665232. DOI
Patti A.; Pedotti S.; Mazzeo G.; Longhi G.; Abbate S.; Paoloni L.; Bloino J.; Rampino S.; Barone V. Ferrocenes with simple chiral substituents: an in-depth theoretical and experimental VCD and ECD study. Phys. Chem. Chem. Phys. 2019, 21, 9419–9432. 10.1039/C9CP00437H. PubMed DOI
Fusè M.; Mazzeo G.; Longhi G.; Abbate S.; Masi M.; Evidente A.; Puzzarini C.; Barone V. Unbiased Determination of Absolute Configurations by vis-à-vis Comparison of Experimental and Simulated Spectra: The Challenging Case of Diplopyrone. J. Phys. Chem. B 2019, 123, 9230–9237. 10.1021/acs.jpcb.9b08375. PubMed DOI
Yang Q.; Kapitán J.; Bouř P.; Bloino J. Anharmonic Vibrational Raman Optical Activity of Methyloxirane: Theory and Experiment Pushed to the Limits. J. Phys. Chem. Lett. 2022, 13, 8888–8892. 10.1021/acs.jpclett.2c02320. PubMed DOI PMC
Watson J. K. Simplification of the molecular vibration-rotation hamiltonian. Mol. Phys. 1968, 15, 479–490. 10.1080/00268976800101381. DOI
Bunker P. R.; Jensen P.. Molecular Symmetry and Spectroscopy, 2nd ed.; NRC Research Press: Ottawa, Ontario, Canada, 2006.
Califano S.Vibrational States; John Wiley & Sons: New York, USA, 1976.
Papoušek D.; Aliev M. R.. Molecular Vibrational-rotational Spectra; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands, 1982.
Van Vleck J. H. On σ-Type Doubling and Electron Spin in the Spectra of Diatomic Molecules. Phys. Rev. 1929, 33, 467–506. 10.1103/PhysRev.33.467. DOI
Darling B. T.; Dennison D. M. The Water Vapor Molecule. Phys. Rev. 1940, 57, 128–139. 10.1103/PhysRev.57.128. DOI
Bloino J.; Biczysko M.; Barone V. Anharmonic Effects on Vibrational Spectra Intensities: Infrared, Raman, Vibrational Circular Dichroism, and Raman Optical Activity. J. Phys. Chem. A 2015, 119, 11862–11874. 10.1021/acs.jpca.5b10067. PubMed DOI PMC
Willetts A.; Handy N. C.; Green W. H.; Jayatilaka D. Anharmonic Corrections to Vibrational Transition Intensities. J. Phys. Chem. 1990, 94, 5608–5616. 10.1021/j100377a038. DOI
Vázquez J.; Stanton J. F. Simple(r) algebraic equation for transition moments of fundamental transitions in vibrational second-order perturbation theory. Mol. Phys. 2006, 104, 377–388. 10.1080/00268970500290367. DOI
Bloino J. A. VPT2 Route to Near-Infrared Spectroscopy: The Role of Mechanical and Electrical Anharmonicity. J. Phys. Chem. A 2015, 119, 5269–5287. 10.1021/jp509985u. PubMed DOI
Vázquez J.; Stanton J. F. Treatment of Fermi resonance effects on transition moments in vibrational perturbation theory. Mol. Phys. 2007, 105, 101–109. 10.1080/00268970601135784. DOI
Martin J. M. L.; Taylor P. M. Accurate ab initio quartic force field for trans-HNNH and treatment of resonance polyads. Spectrochim. Acta, Part A 1997, 53, 1039–1050. 10.1016/S1386-1425(96)01869-0. DOI
Kuhler K. M.; Truhlar D. G.; Isaacson A. D. General method for removing resonance singularities in quantum mechanical perturbation theory. J. Chem. Phys. 1996, 104, 4664–4670. 10.1063/1.471161. DOI
Bloino J.; Biczysko M.; Barone V. General Perturbative Approach for Spectroscopy, Thermodynamics, and Kinetics: Methodological Background and Benchmark Studies. J. Chem. Theory Comput. 2012, 8, 1015–1036. 10.1021/ct200814m. PubMed DOI
Fermi E. Über den Ramaneffekt des Kohlendioxyds. Zeitschrift für Physik A Hadrons and Nuclei 1931, 71, 250–259. 10.1007/BF01341712. DOI
Krasnoshchekov S. V.; Isayeva E. V.; Stepanov N. F. Criteria for first- and second-order vibrational resonances and correct evaluation of the Darling-Dennison resonance coefficients using the canonical Van Vleck perturbation theory. J. Chem. Phys. 2014, 141, 234114.10.1063/1.4903927. PubMed DOI
Rosnik A. M.; Polik W. F. VPT2+K spectroscopic constants and matrix elements of the transformed vibrational Hamiltonian of a polyatomic molecule with resonances using Van Vleck perturbation theory. Mol. Phys. 2014, 112, 261–300. 10.1080/00268976.2013.808386. DOI
Mendolicchio M.; Bloino J.; Barone V. General Perturb-Then-Diagonalize Model for the Vibrational Frequencies and Intensities of Molecules Belonging to Abelian and Non-Abelian Symmetry Groups. J. Chem. Theory Comput. 2021, 17, 4332–4358. 10.1021/acs.jctc.1c00240. PubMed DOI PMC
Duschinsky F. On the interpretation of electronic spectra of polyatomic molecules. I. Concerning the Franck-Condon principle. Acta Physicochim. URSS 1937, 7, 551–566.
Carnimeo I.; Biczysko M.; Bloino J.; Barone V. Reliable structural, thermodynamic, and spectroscopic properties of organic molecules adsorbed on silicon surfaces from computational modeling: the case of glycine@Si(100). Phys. Chem. Chem. Phys. 2011, 13, 16713–16727. 10.1039/c1cp21636h. PubMed DOI
Becke A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. 10.1063/1.464913. DOI
Grimme S.; Antony J.; Ehrlich S.; Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.10.1063/1.3382344. PubMed DOI
Grimme S.; Ehrlich S.; Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. 10.1002/jcc.21759. PubMed DOI
Papajak E.; Zheng J.; Xu X.; Leverentz H. R.; Truhlar D. G. Perspectives on Basis Sets Beautiful: Seasonal Plantings of Diffuse Basis Functions. J. Chem. Theory Comput. 2011, 7, 3027–3034. 10.1021/ct200106a. PubMed DOI
Kendall R. A.; Dunning T. H.; Harrison R. J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. 10.1063/1.462569. DOI
Santra G.; Sylvetsky N.; Martin J. M. L. Minimally Empirical Double-Hybrid Functionals Trained against the GMTKN55 Database: revDSD-PBEP86-D4, revDOD-PBE-D4, and DOD-SCAN-D4. J. Phys. Chem. A 2019, 123, 5129–5143. 10.1021/acs.jpca.9b03157. PubMed DOI PMC
Tomasi J.; Mennucci B.; Cammi R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. 10.1021/cr9904009. PubMed DOI
Cancès E.; Mennucci B.; Tomasi J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. 10.1063/1.474659. DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; et al.Gaussian 16, Revision C.01; Gaussian Inc.: Wallingford, CT, 2019.
Bloino J.ESTAMPES: A prototypical and support toolbox for the analysis and processing of spectral data; GitHub repository; https://github.com/jbloino/estampes (accessed 2022-10-15).
Devlin F. J.; Finley J. W.; Stephens P. J.; Frisch M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields: A Comparison of Local, Nonlocal, and Hybrid Density Functionals. J. Phys. Chem. 1995, 99, 16883–16902. 10.1021/j100046a014. DOI
Stephens P.; Devlin F. Determination of the structure of chiral molecules using ab initio vibrational circular dichroism spectroscopy. Chirality 2000, 12, 172–179. 10.1002/(SICI)1520-636X(2000)12:4<172::AID-CHIR3>3.0.CO;2-6. PubMed DOI
Ruud K.; Helgaker T.; Bouř P. Gauge-Origin Independent Density-Functional Theory Calculations of Vibrational Raman Optical Activity. J. Phys. Chem. A 2002, 106, 7448–7455. 10.1021/jp026037i. DOI
Cheeseman J. R.; Frisch M. J. Basis Set Dependence of Vibrational Raman and Raman Optical Activity Intensities. J. Chem. Theory Comput. 2011, 7, 3323–3334. 10.1021/ct200507e. PubMed DOI
Sebestik J.; Bour P. Raman optical activity of methyloxirane gas and liquid. J. Phys. Chem. Lett. 2011, 2, 498–502. 10.1021/jz200108v. DOI
Crawford T. D.; Ruud K. Coupled-Cluster Calculations of Vibrational Raman Optical Activity Spectra. ChemPhysChem 2011, 12, 3442–3448. 10.1002/cphc.201100547. PubMed DOI
Barone V.; Biczysko M.; Bloino J.; Puzzarini C. Accurate molecular structures and infrared spectra of trans-2,3-dideuterooxirane, methyloxirane, and trans-2,3-dimethyloxirane. J. Chem. Phys. 2014, 141, 034107.10.1063/1.4887357. PubMed DOI PMC
Fusè M.; Longhi G.; Mazzeo G.; Stranges S.; Leonelli F.; Aquila G.; Bodo E.; Brunetti B.; Bicchi C.; Cagliero C.; et al. Anharmonic Aspects in Vibrational Circular Dichroism Spectra from 900 to 9000 cm–1 for Methyloxirane and Methylthiirane. J. Phys. Chem. A 2022, 126, 6719–6733. 10.1021/acs.jpca.2c05332. PubMed DOI PMC
Nafie L. A.; Keiderling T. A.; Stephens P. J. Vibrational circular dichroism. J. Am. Chem. Soc. 1976, 98, 2715–2723. 10.1021/ja00426a007. DOI
Schlosser D. W.; Devlin F.; Jalkanen K.; Stephens P. J. Vibrational circular dichroism of matrix-isolated molecules. Chem. Phys. Lett. 1982, 88, 286–291. 10.1016/0009-2614(82)87089-9. DOI
Lipp E. D.; Zimba C. G.; Nafie L. A. Vibrational circular dichroism in the mid-infrared using fourier transform spectroscopy. Chem. Phys. Lett. 1982, 90, 1–5. 10.1016/0009-2614(82)83312-5. DOI
Nafie L. A.; Yu G.-S.; Qu X.; Freedman T. B. Comparison of IR and Raman forms of vibrational optical activity. Faraday Discuss. 1994, 99, 13–34. 10.1039/fd9949900013. PubMed DOI
Devlin F. J.; Stephens P. J.; Cheeseman J. R.; Frisch M. J. Ab Initio Prediction of Vibrational Absorption and Circular Dichroism Spectra of Chiral Natural Products Using Density Functional Theory: α-Pinene. J. Phys. Chem. A 1997, 101, 9912–9924. 10.1021/jp971905a. DOI
Nafie L. A. INFRARED AND RAMAN VIBRATIONAL OPTICAL ACTIVITY: Theoretical and Experimental Aspects. Annu. Rev. Phys. Chem. 1997, 48, 357–386. 10.1146/annurev.physchem.48.1.357. PubMed DOI
Covington C. L.; Polavarapu P. L. Similarity in Dissymmetry Factor Spectra: A Quantitative Measure of Comparison between Experimental and Predicted Vibrational Circular Dichroism. J. Phys. Chem. A 2013, 117, 3377–3386. 10.1021/jp401079s. PubMed DOI
Ziadi K. Anharmonic effects on Vibrational circular dichroism and Raman optical activity spectra of medium-size molecules: Alpha-pinene and beta-pinene. J. Raman Spectrosc. 2022, 53, 222–236. 10.1002/jrs.6269. DOI
Ayala P. Y.; Schlegel H. B. Identification and treatment of internal rotation in normal mode vibrational analysis. J. Chem. Phys. 1998, 108, 2314–2325. 10.1063/1.475616. DOI
Double and triple-ζ basis sets of the SNS family are available for download; https://smart.sns.it/?pag=download.