An Effective and Automated Processing of Resonances in Vibrational Perturbation Theory Applied to Spectroscopy

. 2022 Dec 15 ; 126 (49) : 9276-9302. [epub] 20221130

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36450042

The broader availability of cost-effective methodologies like second-order vibrational perturbational theory (VPT2), also in general-purpose quantum chemical programs, has made the inclusion of anharmonic effects in vibrational calculations easier, paving the way to more accurate simulations. Combined with modern computing hardware, VPT2 can be used on relatively complex molecular systems with dozen of atoms. However, the problem of resonances and their corrections remains a critical pitfall of perturbative methods. Recent works have highlighted the sensitivity of band intensities to even subtle resonance effects, underlying the importance of a correct treatment to predict accurate spectral bandshapes. This aspect is even more critical with chiroptical spectroscopies whose signal is weak. This has motivated the present work in exploring robust methods and criteria to identify resonances not only in energy calculations but also on the transition moments. To study their performance, three molecules of representative sizes ranging from ten to several dozens of atoms were chosen. The impact of resonances, as well as the accuracy achievable once they are properly treated, is illustrated by the changes in spectral bandshapes, including chiroptical spectroscopies.

Zobrazit více v PubMed

Roy T. K.; Gerber R. B. Vibrational self-consistent field calculations for spectroscopy of biological molecules: new algorithmic developments and applications. Phys. Chem. Chem. Phys. 2013, 15, 9468–9492. 10.1039/c3cp50739d. PubMed DOI

Zhuang W.; Hayashi T.; Mukamel S. Coherent multidimensional vibrational spectroscopy of biomolecules: Concepts, simulations, and challenges. Angew. Chem., Int. Ed. 2009, 48, 3750–3781. 10.1002/anie.200802644. PubMed DOI PMC

Jeon J.; Yang S.; Choi J.-H.; Cho M. Computational vibrational spectroscopy of peptides and proteins in one and two dimensions. Acc. Chem. Res. 2009, 42, 1280–1289. 10.1021/ar900014e. PubMed DOI

Zhu S.; Sun M. Electronic circular dichroism and raman optical activity: principle and applications. Appl. Spectr. Rev. 2021, 56, 553–587. 10.1080/05704928.2020.1831523. DOI

Krupová M.; Kessler J.; Bouř P. Recent trends in chiroptical spectroscopy: theory and applications of vibrational circular dichroism and Raman optical activity. ChemPlusChem. 2020, 85, 561–575. 10.1002/cplu.202000014. PubMed DOI

Merten C.; Bloino J.; Barone V.; Xu Y. Anharmonicity Effects in the Vibrational CD Spectra of Propylene Oxide. J. Phys. Chem. Lett. 2013, 4, 3424–3428. 10.1021/jz401854y. DOI

Herrebout W. In Halogen Bonding I: Impact on Materials Chemistry and Life Sciences; Metrangolo P., Resnati G., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp 79–154.

Dazzi A.; Prater C. B. AFM-IR: Technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 2017, 117, 5146–5173. 10.1021/acs.chemrev.6b00448. PubMed DOI

Keiderling T. A. Structure of condensed phase peptides: Insights from vibrational circular dichroism and Raman optical activity techniques. Chem. Rev. 2020, 120, 3381–3419. 10.1021/acs.chemrev.9b00636. PubMed DOI

Wu T.; Li G.; Kapitán J.; Kessler J.; Xu Y.; Bouř P. Two spectroscopies in one: Interference of circular dichroism and raman optical activity. Angew. Chem., Int. Ed. 2020, 59, 21895–21898. 10.1002/anie.202011146. PubMed DOI PMC

Bogaerts J.; Desmet F.; Aerts R.; Bultinck P.; Herrebout W.; Johannessen C. A combined Raman optical activity and vibrational circular dichroism study on artemisinin-type products. Phys. Chem. Chem. Phys. 2020, 22, 18014–18024. 10.1039/D0CP03257C. PubMed DOI

Nafie L. A. Vibrational optical activity: From discovery and development to future challenges. Chirality 2020, 32, 667–692. 10.1002/chir.23191. PubMed DOI

Abbate S.; Castiglioni E.; Gangemi F.; Gangemi R.; Longhi G. NIR-VCD, vibrational circular dichroism in the near-infrared: Experiments, theory and calculations. Chirality 2009, 21, E242–E252. 10.1002/chir.20805. PubMed DOI

Bokareva O. S.; Baig O.; Al-Marri M. J.; Kühn O.; González L. The effect of N-heterocyclic carbene units on the absorption spectra of Fe (II) complexes: a challenge for theory. Phys. Chem. Chem. Phys. 2020, 22, 27605–27616. 10.1039/D0CP04781C. PubMed DOI

Sharma A. R.; Braams B. J.; Carter S.; Shepler B. C.; Bowman J. M. Full-dimensional ab initio potential energy surface and vibrational configuration interaction calculations for vinyl. J. Chem. Phys. 2009, 130, 174301.10.1063/1.3120607. PubMed DOI

Barone V.; Bloino J.; Biczysko M. Validation of the DFT/N07D computational model on the magnetic, vibrational and electronic properties of vinyl radical. Phys. Chem. Chem. Phys. 2010, 12, 1092–1101. 10.1039/B915246F. PubMed DOI

Biczysko M.; Bloino J.; Barone V. First principle simulation of vibrationally resolved A2B1 ← X2A1 electronic transition of phenyl radical. Chem. Phys. Lett. 2009, 471, 143–147. 10.1016/j.cplett.2009.01.082. DOI

Kreienborg N. M.; Bloino J.; Osowski T.; Pollok C. H.; Merten C. The vibrational CD spectra of propylene oxide in liquid xenon: a proof-of-principle CryoVCD study that challenges theory. Phys. Chem. Chem. Phys. 2019, 21, 6582–6587. 10.1039/C9CP00537D. PubMed DOI

Ruud K.; Thorvaldsen A. J. Theoretical approaches to the calculation of Raman optical activity spectra. Chirality 2009, 21, E54–E67. 10.1002/chir.20777. PubMed DOI

Puzzarini C.; Bloino J.; Tasinato N.; Barone V. Accuracy and Interpretability: The Devil and the Holy Grail. New Routes across Old Boundaries in Computational Spectroscopy. Chem. Rev. 2019, 119, 8131–8191. 10.1021/acs.chemrev.9b00007. PubMed DOI

Császár A. G.; Fábri C.; Szidarovszky T.; Mátyus E.; Furtenbacher T.; Czakó G. The fourth age of quantum chemistry: molecules in motion. Phys. Chem. Chem. Phys. 2012, 14, 1085–1106. 10.1039/C1CP21830A. PubMed DOI

Carter S.; Handy N. C.; Rosmus P.; Chambaud G. A variational method for the calculation of spin-rovibronic levels of Renner-Teller triatomic molecules. Mol. Phys. 1990, 71, 605–622. 10.1080/00268979000102001. DOI

Carter S.; Handy N. C.; Puzzarini C.; Tarroni R.; Palmieri P. A variational method for the calculation of spin-rovibronic energy levels of triatomic molecules with three interacting electronic states. Mol. Phys. 2000, 98, 1697–1712. 10.1080/00268970009483375. DOI

Mitrushchenkov A. O. A new general Renner–Teller (including ϵ ≳ 1) spectroscopic formalism for triatomic molecules. J. Chem. Phys. 2012, 136, 024108.10.1063/1.3672162. PubMed DOI

Nauts A.; Lauvergnat D. Quantum dynamics of floppy molecular systems with ELVIBROT and TNUM. AIP Conf. Proc. 2012, 1504, 948–952. 10.1063/1.4771853. DOI

Yurchenko S. N.; Lodi L.; Tennyson J.; Stolyarov A. V. Duo: A general program for calculating spectra of diatomic molecules. Comput. Phys. Commun. 2016, 202, 262–275. 10.1016/j.cpc.2015.12.021. DOI

Biczysko M.; Tarroni R.; Carter S. Variational calculations of HBN energy levels in the X2Π and A2Σ+ states. J. Chem. Phys. 2003, 119, 4197–4203. 10.1063/1.1594174. DOI

Matyus E.; Czako G.; Csaszar A. G. Toward black-box-type full- and reduced-dimensional variational (ro)vibrational computations. J. Chem. Phys. 2009, 130, 134112.10.1063/1.3076742. PubMed DOI

Papp D.; Szidarovszky T.; Császár A. G. A general variational approach for computing rovibrational resonances of polyatomic molecules. Application to the weakly bound H2He+ and H2·CO systems. J. Chem. Phys. 2017, 147, 094106.10.1063/1.5000680. PubMed DOI

Erfort S.; Tschöpe M.; Rauhut G. Toward a fully automated calculation of rovibrational infrared intensities for semi-rigid polyatomic molecules. J. Chem. Phys. 2020, 152, 244104.10.1063/5.0011832. PubMed DOI

Krasnoshchekov S. V.; Schutski R. S.; Craig N. C.; Sibaev M.; Crittenden D. L. Comparing the accuracy of perturbative and variational calculations for predicting fundamental vibrational frequencies of dihalomethanes. J. Chem. Phys. 2018, 148, 084102.10.1063/1.5020295. PubMed DOI

Carbonnière P.; Dargelos A.; Pouchan C. The VCI-P code: an iterative variation-perturbation scheme for efficient computations of anharmonic vibrational levels and IR intensities of polyatomic molecules. Theor. Chem. Acc. 2010, 125, 543–554. 10.1007/s00214-009-0689-7. DOI

Biczysko M.; Bloino J.; Puzzarini C. Computational challenges in Astrochemistry. WIREs Comput. Mol. Sci. 2018, 8, e134910.1002/wcms.1349. DOI

Beć K. B.; Huck C. W. Breakthrough Potential in Near-Infrared Spectroscopy: Spectra Simulation. A Review of Recent Developments. Front. Chem. 2019, 7, 48.10.3389/fchem.2019.00048. PubMed DOI PMC

Yang Q.; Fusè M.; Bloino J. Theoretical Investigation of the Circularly Polarized Luminescence of a Chiral Boron Dipyrromethene (BODIPY) Dye. Front. Chem. 2020, 8, 801.10.3389/fchem.2020.00801. PubMed DOI PMC

Barone V.; Ceselin G.; Fusè M.; Tasinato N. Accuracy Meets Interpretability for Computational Spectroscopy by Means of Hybrid and Double-Hybrid Functionals. Front. Chem. 2020, 8, 859.10.3389/fchem.2020.584203. PubMed DOI PMC

Goel P.; Stanton J. F. Semiclassical transition state theory based on fourth order vibrational perturbation theory: Model system studies beyond symmetric Eckart barrier. J. Chem. Phys. 2018, 149, 134109.10.1063/1.5040978. PubMed DOI

Krasnoshchekov S. V.; Isayeva E. V.; Stepanov N. F. Numerical-Analytic Implementation of the Higher-Order Canonical Van Vleck Perturbation Theory for the Interpretation of Medium-Sized Molecule Vibrational Spectra. J. Phys. Chem. A 2012, 116, 3691–3709. 10.1021/jp211400w. PubMed DOI

Franke P. R.; Stanton J. F.; Douberly G. E. How to VPT2: Accurate and Intuitive Simulations of CH Stretching Infrared Spectra Using VPT2+K with Large Effective Hamiltonian Resonance Treatments. J. Phys. Chem. A 2021, 125, 1301–1324. 10.1021/acs.jpca.0c09526. PubMed DOI

Nielsen H. H. The Vibration-Rotation Energies of Molecules. Rev. Mod. Phys. 1951, 23, 90–136. 10.1103/RevModPhys.23.90. DOI

Yu Q.; Bowman J. M. Vibrational second-order perturbation theory (VPT2) using local monomer normal modes. Mol. Phys. 2015, 113, 3964–3971. 10.1080/00268976.2015.1085109. DOI

Puzzarini C.; Tasinato N.; Bloino J.; Spada L.; Barone V. State-of-the-art computation of the rotational and IR spectra of the methyl-cyclopropyl cation: hints on its detection in space. Phys. Chem. Chem. Phys. 2019, 21, 3431–3439. 10.1039/C8CP04629H. PubMed DOI

Martin J. M. L.; Lee T. J.; Taylor P. M.; François J.-P. The anharmonic force field of ethylene, C2H4, by means of accurate ab initio calculations. J. Chem. Phys. 1995, 103, 2589–2602. 10.1063/1.469681. DOI

Barone V. Anharmonic vibrational properties by a fully automated second-order perturbative approach. J. Chem. Phys. 2005, 122, 014108.10.1063/1.1824881. PubMed DOI

Bloino J.; Barone V. A second-order perturbation theory route to vibrational averages and transition properties of molecules: General formulation and application to infrared and vibrational circular dichroism spectroscopies. J. Chem. Phys. 2012, 136, 124108.10.1063/1.3695210. PubMed DOI

Bloino J.; Baiardi A.; Biczysko M. Aiming at an accurate prediction of vibrational and electronic spectra for medium-to-large molecules: An overview. Int. J. Quantum Chem. 2016, 116, 1543–1574. 10.1002/qua.25188. DOI

Krasnoshchekov S. V.; Dobrolyubov E. O.; Syzgantseva M. A.; Palvelev R. V. Rigorous vibrational Fermi resonance criterion revealed: two different approaches yield the same result. Mol. Phys. 2020, 118, e174388710.1080/00268976.2020.1743887. DOI

Yang Q.; Mendolicchio M.; Barone V.; Bloino J. Accuracy and Reliability in the Simulation of Vibrational Spectra: A Comprehensive Benchmark of Energies and Intensities Issuing From Generalized Vibrational Perturbation Theory to Second Order (GVPT2). Front. Astron. Space Sci. 2021, 8, 665232.10.3389/fspas.2021.665232. DOI

Patti A.; Pedotti S.; Mazzeo G.; Longhi G.; Abbate S.; Paoloni L.; Bloino J.; Rampino S.; Barone V. Ferrocenes with simple chiral substituents: an in-depth theoretical and experimental VCD and ECD study. Phys. Chem. Chem. Phys. 2019, 21, 9419–9432. 10.1039/C9CP00437H. PubMed DOI

Fusè M.; Mazzeo G.; Longhi G.; Abbate S.; Masi M.; Evidente A.; Puzzarini C.; Barone V. Unbiased Determination of Absolute Configurations by vis-à-vis Comparison of Experimental and Simulated Spectra: The Challenging Case of Diplopyrone. J. Phys. Chem. B 2019, 123, 9230–9237. 10.1021/acs.jpcb.9b08375. PubMed DOI

Yang Q.; Kapitán J.; Bouř P.; Bloino J. Anharmonic Vibrational Raman Optical Activity of Methyloxirane: Theory and Experiment Pushed to the Limits. J. Phys. Chem. Lett. 2022, 13, 8888–8892. 10.1021/acs.jpclett.2c02320. PubMed DOI PMC

Watson J. K. Simplification of the molecular vibration-rotation hamiltonian. Mol. Phys. 1968, 15, 479–490. 10.1080/00268976800101381. DOI

Bunker P. R.; Jensen P.. Molecular Symmetry and Spectroscopy, 2nd ed.; NRC Research Press: Ottawa, Ontario, Canada, 2006.

Califano S.Vibrational States; John Wiley & Sons: New York, USA, 1976.

Papoušek D.; Aliev M. R.. Molecular Vibrational-rotational Spectra; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands, 1982.

Van Vleck J. H. On σ-Type Doubling and Electron Spin in the Spectra of Diatomic Molecules. Phys. Rev. 1929, 33, 467–506. 10.1103/PhysRev.33.467. DOI

Darling B. T.; Dennison D. M. The Water Vapor Molecule. Phys. Rev. 1940, 57, 128–139. 10.1103/PhysRev.57.128. DOI

Bloino J.; Biczysko M.; Barone V. Anharmonic Effects on Vibrational Spectra Intensities: Infrared, Raman, Vibrational Circular Dichroism, and Raman Optical Activity. J. Phys. Chem. A 2015, 119, 11862–11874. 10.1021/acs.jpca.5b10067. PubMed DOI PMC

Willetts A.; Handy N. C.; Green W. H.; Jayatilaka D. Anharmonic Corrections to Vibrational Transition Intensities. J. Phys. Chem. 1990, 94, 5608–5616. 10.1021/j100377a038. DOI

Vázquez J.; Stanton J. F. Simple(r) algebraic equation for transition moments of fundamental transitions in vibrational second-order perturbation theory. Mol. Phys. 2006, 104, 377–388. 10.1080/00268970500290367. DOI

Bloino J. A. VPT2 Route to Near-Infrared Spectroscopy: The Role of Mechanical and Electrical Anharmonicity. J. Phys. Chem. A 2015, 119, 5269–5287. 10.1021/jp509985u. PubMed DOI

Vázquez J.; Stanton J. F. Treatment of Fermi resonance effects on transition moments in vibrational perturbation theory. Mol. Phys. 2007, 105, 101–109. 10.1080/00268970601135784. DOI

Martin J. M. L.; Taylor P. M. Accurate ab initio quartic force field for trans-HNNH and treatment of resonance polyads. Spectrochim. Acta, Part A 1997, 53, 1039–1050. 10.1016/S1386-1425(96)01869-0. DOI

Kuhler K. M.; Truhlar D. G.; Isaacson A. D. General method for removing resonance singularities in quantum mechanical perturbation theory. J. Chem. Phys. 1996, 104, 4664–4670. 10.1063/1.471161. DOI

Bloino J.; Biczysko M.; Barone V. General Perturbative Approach for Spectroscopy, Thermodynamics, and Kinetics: Methodological Background and Benchmark Studies. J. Chem. Theory Comput. 2012, 8, 1015–1036. 10.1021/ct200814m. PubMed DOI

Fermi E. Über den Ramaneffekt des Kohlendioxyds. Zeitschrift für Physik A Hadrons and Nuclei 1931, 71, 250–259. 10.1007/BF01341712. DOI

Krasnoshchekov S. V.; Isayeva E. V.; Stepanov N. F. Criteria for first- and second-order vibrational resonances and correct evaluation of the Darling-Dennison resonance coefficients using the canonical Van Vleck perturbation theory. J. Chem. Phys. 2014, 141, 234114.10.1063/1.4903927. PubMed DOI

Rosnik A. M.; Polik W. F. VPT2+K spectroscopic constants and matrix elements of the transformed vibrational Hamiltonian of a polyatomic molecule with resonances using Van Vleck perturbation theory. Mol. Phys. 2014, 112, 261–300. 10.1080/00268976.2013.808386. DOI

Mendolicchio M.; Bloino J.; Barone V. General Perturb-Then-Diagonalize Model for the Vibrational Frequencies and Intensities of Molecules Belonging to Abelian and Non-Abelian Symmetry Groups. J. Chem. Theory Comput. 2021, 17, 4332–4358. 10.1021/acs.jctc.1c00240. PubMed DOI PMC

Duschinsky F. On the interpretation of electronic spectra of polyatomic molecules. I. Concerning the Franck-Condon principle. Acta Physicochim. URSS 1937, 7, 551–566.

Carnimeo I.; Biczysko M.; Bloino J.; Barone V. Reliable structural, thermodynamic, and spectroscopic properties of organic molecules adsorbed on silicon surfaces from computational modeling: the case of glycine@Si(100). Phys. Chem. Chem. Phys. 2011, 13, 16713–16727. 10.1039/c1cp21636h. PubMed DOI

Becke A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. 10.1063/1.464913. DOI

Grimme S.; Antony J.; Ehrlich S.; Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.10.1063/1.3382344. PubMed DOI

Grimme S.; Ehrlich S.; Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. 10.1002/jcc.21759. PubMed DOI

Papajak E.; Zheng J.; Xu X.; Leverentz H. R.; Truhlar D. G. Perspectives on Basis Sets Beautiful: Seasonal Plantings of Diffuse Basis Functions. J. Chem. Theory Comput. 2011, 7, 3027–3034. 10.1021/ct200106a. PubMed DOI

Kendall R. A.; Dunning T. H.; Harrison R. J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. 10.1063/1.462569. DOI

Santra G.; Sylvetsky N.; Martin J. M. L. Minimally Empirical Double-Hybrid Functionals Trained against the GMTKN55 Database: revDSD-PBEP86-D4, revDOD-PBE-D4, and DOD-SCAN-D4. J. Phys. Chem. A 2019, 123, 5129–5143. 10.1021/acs.jpca.9b03157. PubMed DOI PMC

Tomasi J.; Mennucci B.; Cammi R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. 10.1021/cr9904009. PubMed DOI

Cancès E.; Mennucci B.; Tomasi J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. 10.1063/1.474659. DOI

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; et al.Gaussian 16, Revision C.01; Gaussian Inc.: Wallingford, CT, 2019.

Bloino J.ESTAMPES: A prototypical and support toolbox for the analysis and processing of spectral data; GitHub repository; https://github.com/jbloino/estampes (accessed 2022-10-15).

Devlin F. J.; Finley J. W.; Stephens P. J.; Frisch M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields: A Comparison of Local, Nonlocal, and Hybrid Density Functionals. J. Phys. Chem. 1995, 99, 16883–16902. 10.1021/j100046a014. DOI

Stephens P.; Devlin F. Determination of the structure of chiral molecules using ab initio vibrational circular dichroism spectroscopy. Chirality 2000, 12, 172–179. 10.1002/(SICI)1520-636X(2000)12:4<172::AID-CHIR3>3.0.CO;2-6. PubMed DOI

Ruud K.; Helgaker T.; Bouř P. Gauge-Origin Independent Density-Functional Theory Calculations of Vibrational Raman Optical Activity. J. Phys. Chem. A 2002, 106, 7448–7455. 10.1021/jp026037i. DOI

Cheeseman J. R.; Frisch M. J. Basis Set Dependence of Vibrational Raman and Raman Optical Activity Intensities. J. Chem. Theory Comput. 2011, 7, 3323–3334. 10.1021/ct200507e. PubMed DOI

Sebestik J.; Bour P. Raman optical activity of methyloxirane gas and liquid. J. Phys. Chem. Lett. 2011, 2, 498–502. 10.1021/jz200108v. DOI

Crawford T. D.; Ruud K. Coupled-Cluster Calculations of Vibrational Raman Optical Activity Spectra. ChemPhysChem 2011, 12, 3442–3448. 10.1002/cphc.201100547. PubMed DOI

Barone V.; Biczysko M.; Bloino J.; Puzzarini C. Accurate molecular structures and infrared spectra of trans-2,3-dideuterooxirane, methyloxirane, and trans-2,3-dimethyloxirane. J. Chem. Phys. 2014, 141, 034107.10.1063/1.4887357. PubMed DOI PMC

Fusè M.; Longhi G.; Mazzeo G.; Stranges S.; Leonelli F.; Aquila G.; Bodo E.; Brunetti B.; Bicchi C.; Cagliero C.; et al. Anharmonic Aspects in Vibrational Circular Dichroism Spectra from 900 to 9000 cm–1 for Methyloxirane and Methylthiirane. J. Phys. Chem. A 2022, 126, 6719–6733. 10.1021/acs.jpca.2c05332. PubMed DOI PMC

Nafie L. A.; Keiderling T. A.; Stephens P. J. Vibrational circular dichroism. J. Am. Chem. Soc. 1976, 98, 2715–2723. 10.1021/ja00426a007. DOI

Schlosser D. W.; Devlin F.; Jalkanen K.; Stephens P. J. Vibrational circular dichroism of matrix-isolated molecules. Chem. Phys. Lett. 1982, 88, 286–291. 10.1016/0009-2614(82)87089-9. DOI

Lipp E. D.; Zimba C. G.; Nafie L. A. Vibrational circular dichroism in the mid-infrared using fourier transform spectroscopy. Chem. Phys. Lett. 1982, 90, 1–5. 10.1016/0009-2614(82)83312-5. DOI

Nafie L. A.; Yu G.-S.; Qu X.; Freedman T. B. Comparison of IR and Raman forms of vibrational optical activity. Faraday Discuss. 1994, 99, 13–34. 10.1039/fd9949900013. PubMed DOI

Devlin F. J.; Stephens P. J.; Cheeseman J. R.; Frisch M. J. Ab Initio Prediction of Vibrational Absorption and Circular Dichroism Spectra of Chiral Natural Products Using Density Functional Theory: α-Pinene. J. Phys. Chem. A 1997, 101, 9912–9924. 10.1021/jp971905a. DOI

Nafie L. A. INFRARED AND RAMAN VIBRATIONAL OPTICAL ACTIVITY: Theoretical and Experimental Aspects. Annu. Rev. Phys. Chem. 1997, 48, 357–386. 10.1146/annurev.physchem.48.1.357. PubMed DOI

Covington C. L.; Polavarapu P. L. Similarity in Dissymmetry Factor Spectra: A Quantitative Measure of Comparison between Experimental and Predicted Vibrational Circular Dichroism. J. Phys. Chem. A 2013, 117, 3377–3386. 10.1021/jp401079s. PubMed DOI

Ziadi K. Anharmonic effects on Vibrational circular dichroism and Raman optical activity spectra of medium-size molecules: Alpha-pinene and beta-pinene. J. Raman Spectrosc. 2022, 53, 222–236. 10.1002/jrs.6269. DOI

Ayala P. Y.; Schlegel H. B. Identification and treatment of internal rotation in normal mode vibrational analysis. J. Chem. Phys. 1998, 108, 2314–2325. 10.1063/1.475616. DOI

Double and triple-ζ basis sets of the SNS family are available for download; https://smart.sns.it/?pag=download.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace