Anharmonic Vibrational Raman Optical Activity of Methyloxirane: Theory and Experiment Pushed to the Limits
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36125432
PubMed Central
PMC9531246
DOI
10.1021/acs.jpclett.2c02320
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Combining Raman scattering and Raman optical activity (ROA) with computer simulations reveals fine structural and physicochemical properties of chiral molecules. Traditionally, the region of interest comprised fundamental transitions within 200-1800 cm-1. Only recently, nonfundamental bands could be observed as well. However, theoretical tools able to match the observed spectral features and thus assist their assignment are rather scarce. In this work, we present an accurate and simple protocol based on a three-quanta anharmonic perturbative approach that is fully fit to interpret the observed signals of methyloxirane within 150-4500 cm-1. An unprecedented agreement even for the low-intensity combination and overtone transitions has been achieved, showing that anharmonic Raman and ROA spectroscopies can be valuable tools to understand vibrations of chiral molecules or to calibrate computational models.
Department of Optics Palacký University Olomouc 17 listopadu 12 77146 Olomouc Czech Republic
Scuola Normale Superiore di Pisa Piazza dei Cavalieri 7 56126 Pisa Italy
Zobrazit více v PubMed
Barron L. D.Molecular Light Scattering and Optical Activity; Cambridge University Press: Cambridge, England, 2009.
Nafie L. A.Vibrational Optical Activity: Principles and Applications; John Wiley & Sons: Hoboken, NJ, 2011.
Nafie L. A. Vibrational Optical Activity: From Discovery and Development to Future Challenges. Chirality 2020, 32 (5), 667–692. 10.1002/chir.23191. PubMed DOI
Krupová M.; Kessler J.; Bouř P. Recent Trends in Chiroptical Spectroscopy: Theory and Applications of Vibrational Circular Dichroism and Raman Optical Activity. ChemPlusChem. 2020, 85 (3), 561–575. 10.1002/cplu.202000014. PubMed DOI
Michal P.; Čelechovský R.; Dudka M.; Kapitán J.; Vůjtek M.; Berešová M.; Šebestík J.; Thangavel K.; Bouř P. Vibrational Optical Activity of Intermolecular, Overtone, and Combination Bands: 2-Chloropropionitrile and α-Pinene. J. Phys. Chem. B 2019, 123 (9), 2147–2156. 10.1021/acs.jpcb.9b00403. PubMed DOI
Bloino J.; Biczysko M.; Barone V. Anharmonic Effects on Vibrational Spectra Intensities: Infrared, Raman, Vibrational Circular Dichroism, and Raman Optical Activity. J. Phys. Chem. A 2015, 119 (49), 11862–11874. 10.1021/acs.jpca.5b10067. PubMed DOI PMC
Merten C.; Bloino J.; Barone V.; Xu Y. Anharmonicity Effects in the Vibrational CD Spectra of Propylene Oxide. J. Phys. Chem. Lett. 2013, 4 (20), 3424–3428. 10.1021/jz401854y. DOI
Puzzarini C.; Bloino J.; Tasinato N.; Barone V. undefined. Accuracy and Interpretability: The Devil and the Holy Grail. New Routes across Old Boundaries in Computational Spectroscopy. Chem. Rev. 2019, 119 (13), 8131–8191. 10.1021/acs.chemrev.9b00007. PubMed DOI
Bloino J.; Biczysko M.; Barone V. General Perturbative Approach for Spectroscopy, Thermodynamics, and Kinetics: Methodological Background and Benchmark Studies. J. Chem. Theory Comput. 2012, 8 (3), 1015–1036. 10.1021/ct200814m. PubMed DOI
Yang Q.; Mendolicchio M.; Barone V.; Bloino J. Accuracy and Reliability in the Simulation of Vibrational Spectra: A Comprehensive Benchmark of Energies and Intensities Issuing from Generalized Vibrational Perturbation Theory to Second Order (GVPT2). Front. Astron. Space Sci. 2021, 8, 77.10.3389/fspas.2021.665232. DOI
Barone V.; Biczysko M.; Bloino J.; Puzzarini C. Accurate Molecular Structures and Infrared Spectra of Trans-2,3-Dideuterooxirane, Methyloxirane, and Trans-2,3-Dimethyloxirane. J. Chem. Phys. 2014, 141 (3), 034107.10.1063/1.4887357. PubMed DOI PMC
Paoloni L.; Mazzeo G.; Longhi G.; Abbate S.; Fusè M.; Bloino J.; Barone V. Toward Fully Unsupervised Anharmonic Computations Complementing Experiment for Robust and Reliable Assignment and Interpretation of IR and VCD Spectra from Mid-IR to NIR: The Case of 2, 3-Butanediol and Trans-1, 2-Cyclohexanediol. J. Phys. Chem. A 2020, 124 (5), 1011–1024. 10.1021/acs.jpca.9b11025. PubMed DOI PMC
Krasnoshchekov S. v; Isayeva E. v; Stepanov N. F. Criteria for First-and Second-Order Vibrational Resonances and Correct Evaluation of the Darling-Dennison Resonance Coefficients Using the Canonical Van Vleck Perturbation Theory. J. Chem. Phys. 2014, 141 (23), 234114.10.1063/1.4903927. PubMed DOI
Beć K. B.; Huck C. W. Breakthrough Potential in Near-Infrared Spectroscopy: Spectra Simulation. A Review of Recent Developments. Front. Chem. 2019, 7, 48.10.3389/fchem.2019.00048. PubMed DOI PMC
Grabska J.; Bec K. B.; Ozaki Y.; Huck C. W. Anharmonic DFT Study of Near-Infrared Spectra of Caffeine: Vibrational Analysis of the Second Overtones and Ternary Combinations. Molecules 2021, 26, 5212.10.3390/molecules26175212. PubMed DOI PMC
Biczysko M.; Panek P.; Scalmani G.; Bloino J.; Barone V. Harmonic and Anharmonic Vibrational Frequency Calculations with the Double-Hybrid B2PLYP Method: Analytic Second Derivatives and Benchmark Studies. J. Chem. Theory Comput. 2010, 6 (7), 2115–2125. 10.1021/ct100212p. PubMed DOI
Morgante P.; Ludowieg H. D.; Autschbach J. Comparative Study of Vibrational Raman Optical Activity with Different Time-Dependent Density Functional Approximations: The VROA36 Database. J. Phys. Chem. A 2022, 126 (19), 2909–2927. 10.1021/acs.jpca.2c00951. PubMed DOI
Crawford T. D.; Ruud K. Coupled-cluster Calculations of Vibrational Raman Optical Activity Spectra. ChemPhysChem 2011, 12 (17), 3442–3448. 10.1002/cphc.201100547. PubMed DOI
Ruud K.; Helgaker T.; Bouř P. Gauge-Origin Independent Density-Functional Theory Calculations of Vibrational Raman Optical Activity. J. Phys. Chem. A 2002, 106 (32), 7448–7455. 10.1021/jp026037i. DOI
Kreienborg N. M.; Bloino J.; Osowski T.; Pollok C. H.; Merten C. The Vibrational CD Spectra of Propylene Oxide in Liquid Xenon: A Proof-of-Principle CryoVCD Study That Challenges Theory. Phys. Chem. Chem. Phys. 2019, 21 (12), 6582–6587. 10.1039/C9CP00537D. PubMed DOI
Šebestík J.; Bouř P. Raman Optical Activity of Methyloxirane Gas and Liquid. J. Phys. Chem. Lett. 2011, 2 (5), 498–502. 10.1021/jz200108v. DOI
Ruud K.; Zanasi R. The Importance of Molecular Vibrations: The Sign Change of the Optical Rotation of Methyloxirane. Angew. Chem., Int. Ed. 2005, 117 (23), 3660–3662. 10.1002/ange.200500642. PubMed DOI
Hodecker M.; Biczysko M.; Dreuw A.; Barone V. Simulation of Vacuum UV Absorption and Electronic Circular Dichroism Spectra of Methyl Oxirane: The Role of Vibrational Effects. J. Chem. Theory Comput. 2016, 12 (6), 2820–2833. 10.1021/acs.jctc.6b00121. PubMed DOI PMC
Cances E.; Mennucci B.; Tomasi J. A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics. J. Chem. Phys. 1997, 107 (8), 3032.10.1063/1.474659. DOI
Scalmani G.; Frisch M. J.; Mennucci B.; Tomasi J.; Cammi R.; Barone V. Geometries and Properties of Excited States in the Gas Phase and in Solution: Theory and Application of a Time-Dependent Density Functional Theory Polarizable Continuum Model. J. Chem. Phys. 2006, 124 (9), 094107.10.1063/1.2173258. PubMed DOI
Barone V.; Cossi M.; Tomasi J. A New Definition of Cavities for the Computation of Solvation Free Energies by the Polarizable Continuum Model. J. Chem. Phys. 1997, 107 (8), 3210.10.1063/1.474671. DOI