Recent Trends in Chiroptical Spectroscopy: Theory and Applications of Vibrational Circular Dichroism and Raman Optical Activity
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
32187832
DOI
10.1002/cplu.202000014
Knihovny.cz E-zdroje
- Klíčová slova
- Raman optical activity, chirality, circular dichroism, spectroscopy, vibrational spectra,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Chiroptical spectroscopy exploring the interaction of matter with polarized light provides many tools for molecular structure and interaction studies. Here, some recent discoveries are reviewed, primarily in the field of vibrational optical activity. Technological advances results in the development of more sensitive vibrational circular dichroism (VCD), Raman optical activity (ROA) or circular polarized luminescence (CPL) spectrometers. Significant contributions to the field also come from the light scattering and electronic structure theories, and their implementation in computer systems. Finally, new chiroptical phenomena have been observed, such as enhanced circular dichroism of biopolymers (protein fibrils, nucleic acids), plasmonic and resonance chirality-transfer ROA experiments. Some of them are not yet understood or attributed to instrumental artifacts so far. Nevertheless, these unknown territories also indicate the vast potential of the chiroptical spectroscopy, and their investigation is even more challenging.
Zobrazit více v PubMed
M. Quack in Molecular Parity Violation and Chirality: The Asymmetry of Life and the Symmetry Violations in Physics, Vol. 26 (Eds.: K. Nishikawa, J. Maruani, E. J. Brändas, G. Delgado-Barrio, P. Piecuch), Springer Science, Dordrecht, 2012, pp.47-76.
N. A. McGuire, P. B. Carroll, R. A. Loomis, I. A. Finneran, P. R. Jewell, A. J. Remijan, G. A. Blake, Science 2016, 352, 1449-1452.
J. H. Christenson, J. W. Cronin, V. L. Fitch, R. Turlay, Phys. Rev. Lett. 1964, 13, 138-140.
L. Pasteur, Ann. Chim. Phys. 1848, 24, 442-459.
M. Mansuripur, Optics Photonics News 1999, 10, 32-36.
H. Rhee, Y. G. June, J. S. Lee, K. K. Lee, J. H. Ha, Z. H. Kim, S. J. Jeon, M. Cho, Nature 2009, 458, 310-313.
M. Oppermann, J. Spekowius, B. Bauer, R. Pfister, M. Chergui, J. Helbing, J. Phys. Chem. Lett. 2019, 10, 2700-2705.
G. Holzwarth, E. C. Hsu, H. S. Mosher, T. R. Faulkner, A. Moscowitz, J. Am. Chem. Soc. 1974, 96, 251-252.
L. A. Nafie, X. H. Qu, F. J. Long, T. B. Freedman, Mikrochim. Acta 1997, S14, 803-805.
L. D. Barron, M. P. Bogaard, A. D. Buckingham, J. Am. Chem. Soc. 1973, 95, 603-605.
W. Hug, G. Hangartner, J. Raman Spectrosc. 1999, 30, 841-852.
T. R. Devine, T. A. Keiderling, J. Phys. Chem. 1984, 88, 390-394.
T. A. Keiderling, P. Bouř, Phys. Rev. Lett. 2018, 121, 073201.
L. D. Barron, Molecular Light Scattering and Optical Activity, Cambridge University Press, Cambridge, UK, 2004.
J. Šebestík, J. Kapitán, O. Pačes, P. Bouř, Angew. Chem. Int. Ed. 2016, 55, 3504-3508;
Angew. Chem. 2016, 128, 3565-3569.
J. Šebestík, P. Bouř, Angew. Chem. Int. Ed. 2014, 53, 9236-9239;
Angew. Chem. 2014, 126, 9390-9393.
D. P. Craig, T. Thirunamachandran, Molecular quantum electrodynamics, Dover Publications, New York, 1998.
T. A. Keiderling in Circular Dichroism, Vol. (Eds.: N. Berova, K. Nakanishi, R. W. Woody), Wiley, New York, 2000, pp.621-666.
T. A. Keiderling in Vibrational circular dichroism applications to conformational analysis of biomolecules, Vol. (Ed. G. D. Fasman), Plenum, New York, 1996, pp.555-598.
W. R. Salzman, J. Chem. Phys. 1997, 107, 2175-2179.
P. J. Stephens, J. Phys. Chem. 1985, 89, 748-752.
R. D. Singh, T. A. Keiderling, Biopolymers 1981, 20, 237-240.
B. B. Lal, L. A. Nafie, Biopolymers 1982, 21, 2161-2183.
A. C. Sen, T. A. Keiderling, Biopolymers 1984, 23, 1519-1532.
A. C. Sen, T. A. Keiderling, Biopolymers 1984, 23, 1533-1545.
P. Pančoška, S. C. Yasui, T. A. Keiderling, Biochemistry 1989, 28, 5917-5923.
P. Pančoška, S. C. Yasui, T. A. Keiderling, Biochemistry 1991, 30, 5089-5103.
R. K. Dukor, T. A. Keiderling, Biopolymers 1991, 31, 1747-1761.
V. P. Gupta, T. A. Keiderling, Biopolymers 1992, 32, 239-248.
A. Annamalai, T. A. Keiderling, J. Am. Chem. Soc. 1987, 109, 3125-3132.
M. Gulotta, D. J. Goss, M. Diem, Biopolymers 1989, 28, 2047-2058.
W. Zhong, M. Gulotta, D. J. Goss, M. Diem, Biochemistry 1990, 29, 7485-7491.
L. Wang, T. A. Keiderling, Biochemistry 1992, 31, 10265-10271.
L. Yang, T. A. Keiderling, Biopolymers 1993, 33, 315-327.
L. J. Wang, L. G. Yang, T. A. Keiderling, Biophys. J. 1994, 67, 2460-2467.
V. Andrushchenko, D. Tsankov, M. Krasteva, H. Wieser, P. Bouř, J. Am. Chem. Soc. 2011, 133, 15055-15064.
J. R. Cheeseman, M. J. Frisch, F. J. Devlin, P. J. Stephens, Chem. Phys. Lett. 1996, 252, 211-220.
L. Nafie, Vibrational optical activity: Principles and applications, Wiley, Chichester, 2011.
G. Holzwarth, I. Chabay, J. Chem. Phys. 1972, 57, 1632-1635.
U. Narayanan, T. A. Keiderling, J. Am. Chem. Soc. 1983, 105, 6406-6410.
P. Bouř, J. Sopková, L. Bednárová, P. Maloň, T. A. Keiderling, J. Comput. Chem. 1997, 18, 646-659.
N. S. Bieler, M. P. Haag, C. R. Jacob, M. Reiher, J. Chem. Theory Comput. 2011, 7, 1867-1881.
S. Yamamoto, X. Li, K. Ruud, P. Bouř, J. Chem. Theory Comput. 2012, 8, 977-985.
R. A. G. D. Silva, J. Kubelka, S. M. Decatur, P. Bouř, T. A. Keiderling, Proc. Natl. Acad. Sci. USA 2000, 97, 8318-8323.
S. Yamamoto, M. Straka, H. Watarai, P. Bouř, Phys. Chem. Chem. Phys. 2010, 12, 11021-11032.
J. Kessler, V. Andrushchenko, J. Kapitán, P. Bouř, Phys. Chem. Chem. Phys. 2018, 20, 4926-4935.
V. Andrushchenko, P. Bouř, J. Phys. Chem. A 2007, 111, 9714-9723.
V. Andrushchenko, P. Bouř, Chirality 2010, 22, E96-E114.
K. V. J. Jose, D. Beckett, K. Raghavachari, J. Chem. Theory Comput. 2015, 11, 4238-4247.
K. V. J. Jose, K. Raghavachari, Chirality 2016, 28, 755-768.
B. Thapa, D. Beckett, K. V. J. Jose, K. Raghavachari, J. Chem. Theory Comput. 2018, 14, 1383-1394.
P. Wang, P. L. Polavarapu, J. Phys. Chem. A 2000, 104, 6189-6196.
J. R. Aviles-Moreno, E. U. Horno, F. P. Urena, J. J. L. Gonzalez, Spectrochim. Acta Part A 2011, 79, 767-776.
V. P. Nicu, E. J. Baerends, P. L. Polavarapu, J. Phys. Chem. A 2012, 116, 8366-8373.
M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2002, 24, 669-681.
J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999-3093.
M. L. Sanchez, M. A. Aguilar, F. J. Olivares del Valle, J. Comput. Chem. 1997, 18, 313-322.
A. Monari, J. L. Rivail, X. Assfeld, Acc. Chem. Res. 2013, 46, 596-603.
H. Gattuso, X. Assfeld, A. Monari in Modeling DNA electronic circular dichroism by QM/MM methods and Frenkel Hamiltonian, Vol. (Eds.: M. F. Ruiz-Lopez, F. J. Olivares del Valle), Springer Berlin Heidelberg, Berlin, Heidelberg, 2016, pp.225-232.
J. Sjoqvist, M. Linares, K. V. Mikkelsen, P. Norman, J. Phys. Chem. A 2014, 118, 3419-3428.
T. A. Halgren, W. Damm, Curr. Opin. Struct. Biol. 2001, 11, 236-242.
C. Cappelli, Int. J. Quantum Chem. 2016, 116, 1532-1542.
T. Giovannini, M. Olszòwka, C. Cappelli, J. Chem. Theory Comput. 2016, 12, 5483-5492.
S. W. Rick, B. J. Berne, J. Am. Chem. Soc. 1996, 118, 672-679.
V. Andrushchenko, L. Benda, O. Páv, M. Dračínský, P. Bouř, J. Phys. Chem. B 2015, 119, 10682-10692.
K. H. Hopmann, K. Ruud, M. Pecul, A. Kudelski, M. Dračínský, P. Bouř, J. Phys. Chem. B 2011, 115, 4128-4137.
I. Shahriar, M. K. Bin Islam, M. Iqfath, A. Rahman, M. A. Halim, Theor. Chem. Acc. 2019, 138, 32.
A. Scherrer, F. Agostini, D. Sebastiani, E. K. U. Gross, R. Vuilleumier, J. Chem. Phys. 2015, 143, 074106.
A. Scherrer, R. Vuilleumier, D. Sebastiani, J. Chem. Phys. 2016, 145, 084101.
M. Thomas, B. Kirchner, J. Phys. Chem. Lett. 2016, 7, 509-513.
S. Luber, J. Chem. Theory Comput. 2017, 13, 1254-1262.
M. Brehm, M. Thomas, J. Phys. Chem. Lett. 2017, 8, 3409-3414.
L. S. Lerman, Proc. Natl. Acad. Sci. USA 1971, 68, 1886-1890.
M. H. Kim, L. Ulibarri, D. Keller, M. F. Maestre, C. Bustamante, J. Chem. Phys. 1986, 84, 2981-2989.
D. Keller, C. Bustamante, J. Chem. Phys. 1986, 84, 2972-2980.
D. Keller, C. Bustamante, J. Chem. Phys. 1986, 84, 2961-2971.
V. Andrushchenko, P. Bouř, J. Comput. Chem. 2008, 29, 2693-2703.
J. Průša, P. Bouř, Chirality 2018, 30, 55-64.
V. Andrushchenko, Z. Leonenko, D. Cramb, H. van de Sande, H. Wieser, Biopolymers 2002, 61, 243-260.
V. Andrushchenko, D. Tsankov, H. Wieser, J. Mol. Struct. 2003, 661, 541-560.
S. Ma, X. Cao, M. Mak, A. Sadik, C. Walkner, T. B. Freedman, I. K. Lednev, R. K. Dukor, L. A. Nafie, J. Am. Chem. Soc. 2007, 129, 12364-12365.
W. Dzwolak, Chirality 2014, 26, 580-587.
J. A. Hardy, G. A. Higgins, Science 1992, 256, 184-185.
C. M. Dobson, Semin. Cell Dev. Biol. 2004, 15, 3-16.
F. Chiti, C. M. Dobson, Nat. Chem. Biol. 2009, 5, 15-22.
A. Aguzzi, T. O′Connor, Nat. Rev. Drug Discovery 2010, 9, 237-248.
A. D. Wechalekar, J. D. Gillmore, P. N. Hawkins, Lancet 2016, 387, 2641-2654.
M. P. Mattson, Nature 2004, 430, 631-639.
[L. Breydo, J. W. Wu, V. N. Uversky, Bba-Mol Basis Dis 2012, 1822, 261-285.
P. M. Harrison, P. Bamborough, V. Daggett, S. B. Prusiner, F. E. Cohen, Curr. Opin. Struct. Biol. 1997, 7, 53-59.
M. Fandrich, M. A. Fletcher, C. M. Dobson, Nature 2001, 410, 165-166.
J. Goers, S. E. Permyakov, E. A. Permyakov, V. N. Uversky, A. L. Fink, Biochemistry 2002, 41, 12546-12551.
J. J. Lai, C. Zheng, D. H. Liang, Y. B. Huang, Biomacromolecules 2013, 14, 4515-4519.
L. Tjernberg, W. Hosia, N. Bark, J. Thyberg, J. Johansson, J. Biol. Chem. 2002, 277, 43243-43246.
V. Babenko, M. Piejko, S. Wójcik, P. Mak, W. Dzwolak, Langmuir 2013, 29, 5271-5278.
A. Fulara, A. Lakhani, S. Wójcik, H. Nieznańska, T. A. Keiderling, W. Dzwolak, J. Phys. Chem. B 2011, 115, 11010-11016.
D. Kurouski, K. Kar, R. Wetzel, R. K. Dukor, I. K. Lednev, L. A. Nafie, FEBS Lett. 2013, 578, 1638-1643.
D. Kurouski, X. F. Lu, L. Popova, W. Wan, M. Shanmugasundaram, G. Stubbs, R. K. Dukor, I. K. Lednev, L. A. Nafie, J. Am. Chem. Soc. 2014, 136, 2302-2312.
E. Van de Vondel, P. Baatsen, R. Van Elzen, A. M. Lambeir, T. A. Keiderling, W. A. Herrebout, C. Johannessen, Biochemistry 2018, 57, 5989-5995.
R. Kodali, R. Wetzel, Curr. Opin. Struct. Biol. 2007, 17, 48-57.
B. Nieto-Ortega, V. J. Nebot, J. F. Miravet, B. Escuder, J. T. L. Navarrete, J. Casado, F. J. Ramirez, J. Phys. Chem. Lett. 2012, 3, 2120-2124.
D. Kurouski, R. K. Dukor, X. Lu, L. A. Nafie, I. K. Lednev, Chem. Commun. 2012, 48, 2837-2839.
M. Krupová, J. Kapitán, P. Bouř, ACS Omega 2019, 4, 1265-1271.
M. Shanmugasundaram, D. Kurouski, W. Wan, G. Stubbs, R. K. Dukor, L. A. Nafie, I. K. Lednev, J. Phys. Chem. B 2015, 119, 8521-8525.
M. Pazderková, T. Pazderka, M. Shanmugasundaram, R. K. Dukor, I. K. Lednev, L. A. Nafie, Chirality 2017, 29, 469-475.
T. Measey, R. Schweitzer-Stenner, J. Am. Chem. Soc. 2011, 133, 1066-1076.
C. Dryzun, D. Avnir, Chem. Commun. 2012, 48, 5874-5876.
H. D. Flack, Helv. Chim. Acta 2003, 86, 905-921.
A. G. Shtukenberg, Y. O. Punin, A. Gujral, B. Kahr, Angew. Chem. Int. Ed. 2014, 53, 672-699;
Angew. Chem. 2014, 126, 686-715.
D. Kurouski, J. D. Handen, R. K. Dukor, L. A. Nafie, I. K. Lednev, Chem. Commun. 2015, 51, 89-92.
J. Frelek, M. Gorecki, M. Laszcz, A. Suszczynska, E. Vass, W. J. Szczepek, Chem. Commun. 2012, 48, 5295-5297.
I. Kawamura, H. Sato, Anal. Biochem. 2019, 580, 14-20.
V. Declerck, A. Perez-Mellor, R. Guillot, D. J. Aitken, M. Mons, A. Zehnacker, Chirality 2019, 31, 547-560.
J. J. L. González, F. P. Urena, J. R. A. Moreno, I. Mata, E. Molins, R. M. Claramunt, C. López, I. Alkorta, J. Elguero, New J. Chem. 2012, 36, 749-758.
S. Jähnigen, A. Scherrer, R. Vuilleumier, D. Sebastiani, Angew. Chem. Int. Ed. 2018, 57, 13344-13348.
R. Berardozzi, E. Badetti, N. A. C. dos Santos, K. Wurst, G. Licini, G. Pescitelli, C. Zonta, L. Di Bari, Chem. Commun. 2016, 52, 8428-8431.
S. R. Domingos, A. Huerta-Viga, L. Baij, S. Amirjalayer, D. A. Dunnebier, A. J. Walters, M. Finger, L. A. Nafie, B. de Bruin, W. J. Buma, S. Woutersen, J. Am. Chem. Soc. 2014, 136, 3530-3535.
Y. He, X. Cao, L. A. Nafie, T. B. Freedman, J. Am. Chem. Soc. 2001, 123, 11320-11321.
C. Johannessen, P. W. Thulstrup, Dalton Trans. 2007, 1028-1033.
C. J. Barnett, A. F. Drake, R. Kuroda, S. F. Mason, S. Savage, Chem. Phys. Lett. 1980, 70, 8-10.
M. C. K. Hiller, Y. Xu, Phys. Chem. Chem. Phys. 2012, 14, 12884-12891.
S. Lo Piano, S. Di Pietro, L. Di Bari, Chem. Commun. 2012, 48, 11996-11998.
H. Sato, T. Taniguchi, A. Nakahashi, K. Monde, A. Yamagishi, Inorg. Chem. 2007, 46, 6755-6766.
L. A. Nafie, J. Phys. Chem. A 2004, 108, 7222-7231.
L. Arrico, G. Angelici, L. Di Bari, Org. Biomol. Chem. 2017, 15, 9800-9803.
G. Pescitelli, S. Ludeke, M. Gorecki, L. Di Bari, J. Phys. Chem. Lett. 2019, 10, 650-654.
V. P. Nicu, J. Autschbach, E. J. Baerends, Phys. Chem. Chem. Phys. 2009, 11, 1526-1538.
T. B. Freedman, X. L. Cao, D. A. Young, L. A. Nafie, J. Phys. Chem. A 2002, 106, 3560-3565.
D. A. Young, T. B. Freedman, E. D. Lipp, L. A. Nafie, J. Am. Chem. Soc. 1986, 108, 7255-7263.
V. P. Nicu, M. Heshmat, E. J. Baerends, Phys. Chem. Chem. Phys. 2011, 13, 8811-8825.
X. F. Lu, H. G. Li, J. W. Nafie, T. Pazderka, M. Pazderková, R. K. Dukor, L. A. Nafie, Appl. Spectrosc. 2017, 71, 1117-1126.
L. A. Nafie, Appl. Spectrosc. 2000, 54, 1634-1645.
P. Wasserscheid, W. Keim, Angew. Chem. Int. Ed. 2000, 39, 3772-3789;
Angew. Chem. 2000, 112, 3926-3945.
H. Weingaertner, Angew. Chem. Int. Ed. 2008, 47, 654-670;
Angew. Chem. 2008, 120, 664-682.
Y. Jeong, Y. Park, J. S. Ryu, Molecules 2019, 24, 3349.
S. Z. Luo, X. L. Mi, L. Zhang, S. Liu, H. Xu, J. P. Cheng, Angew. Chem. Int. Ed. 2006, 45, 3093-3097;
Angew. Chem. 2006, 118, 3165-3169.
M. Schmitkamp, D. Chen, W. Leitner, J. Klankermayer, G. Francio, Chem. Commun. 2007, 4012-4014.
A. Hussain, M. F. AlAjmi, I. Hussain, I. Ali, Crit. Rev. Anal. Chem. 2019, 49, 289-305.
A. Singh, N. Kaur, H. K. Chopra, Crit. Rev. Anal. Chem. 2019, 49, 553-569.
P. Oulevey, S. Luber, B. Varnholt, T. Burgi, Angew. Chem. Int. Ed. 2016, 55, 11787-11790;
Angew. Chem. 2016, 128, 11962-11966.
E. Yashima, K. Maeda, Macromolecules 2008, 41, 3-12.
[P. Rizzo, G. Guerra, Chirality 2016, 28, 29-38.
E. Yashima, T. Matsushima, Y. Okamoto, J. Am. Chem. Soc. 1997, 119, 6345-6359.
E. Yashima, T. Matsushima, Y. Okamoto, J. Am. Chem. Soc. 1995, 117, 11596-11597.
O. Tarallo, V. Petraccone, C. Daniel, G. Fasano, P. Rizzo, G. Guerra, J. Mater. Chem. 2012, 22, 11672-11680.
E. Yashima, K. Maeda, T. Yamanaka, J. Am. Chem. Soc. 2000, 122, 7813-7814.
R. Sakai, T. Satoh, R. Kakuchi, H. Kaga, T. Kakuchi, Macromolecules 2003, 36, 3709-3713.
R. Sakai, T. Satoh, R. Kakuchi, H. Kaga, T. Kakuchi, Macromolecules 2004, 37, 3996-4003.
D. S. Schlitzer, B. M. Novak, J. Am. Chem. Soc. 1998, 120, 2196-2197.
E. Yashima, K. Maeda, Y. Okamoto, Nature 1999, 399, 449-451.
K. Maeda, K. Morino, Y. Okamoto, T. Sato, E. Yashima, J. Am. Chem. Soc. 2004, 126, 4329-4342.
H. Onouchi, D. Kashiwagi, K. Hayashi, K. Maeda, E. Yashima, Macromolecules 2004, 37, 5495-5503.
L. Guadagno, M. Raimondo, C. Silvestre, I. Immediata, P. Rizzo, G. Guerra, J. Mater. Chem. 2008, 18, 567-572.
P. Rizzo, E. Lepera, G. Guerra, Chem. Commun. 2014, 50, 8185-8188.
T. A. Keiderling, J. Chem. Phys. 1981, 75, 3639-3641.
T. A. Keiderling, Appl. Spectrosc. Rev. 1981, 17, 189-226.
T. R. Devine, T. A. Keiderling, J. Chem. Phys. 1983, 79, 5796-5801.
T. R. Devine, T. A. Keiderling, Spectrochim. Acta Part A 1987, 43, 627-629.
T. R. Devine, T. A. Keiderling, J. Chem. Phys. 1985, 83, 3749-3754.
P. V. Croatto, T. A. Keiderling, Chem. Phys. Lett. 1988, 144, 455-560.
C. N. Tam, B. Wang, T. A. Keiderling, W. G. Golden, Chem. Phys. Lett. 1992, 198, 123-127.
B. Wang, R. K. Yoo, P. V. Croatto, T. A. Keiderling, Chem. Phys. Lett. 1991, 180, 339-343.
B. L. Wang, T. A. Keiderling, J. Phys. Chem. 1994, 98, 3957-3963.
B. Wang, P. V. Croatto, R. K. Yoo, T. A. Keiderling, J. Phys. Chem. 1992, 96, 2422-2429.
B. Wang, T. A. Keiderling, J. Chem. Phys. 1993, 98, 903-911.
C. N. Tam, T. A. Keiderling, J. Mol. Spectrosc. 1993, 157, 391-401.
C. N. Tam, T. A. Keiderling, Chem. Phys. Lett. 1995, 243, 55-58.
P. Bouř, C. N. Tam, B. Wang, T. A. Keiderling, Mol. Phys. 1996, 87, 299-318.
C. N. Tam, P. Bouř, T. A. Keiderling, J. Chem. Phys. 1996, 104, 1813-1824.
[P. Bouř, C. N. Tam, T. A. Keiderling, J. Phys. Chem. 1996, 100, 2062-2065.
B. Wang, P. Bouř, T. A. Keiderling, Phys. Chem. Chem. Phys. 2012, 14, 9586-9593.
L. Laux, V. Pultz, C. Marcott, J. Overend, A. Moscowitz, J. Chem. Phys. 1983, 78, 4096-4102.
M. Pawlikowski, T. A. Keiderling, J. Chem. Phys. 1984, 81, 4765-4773.
P. J. Stephens, Annu. Rev. Phys. Chem. 1974, 25, 201-232.
L. D. Barron, A. R. Gargaro, Z. Q. Wen, Carbohydr. Res. 1991, 210, 39-49.
E. W. Blanch, L. Hecht, L. D. Barron, Protein Sci. 1999, 8, 1362-1367.
A. F. Bell, L. Hecht, L. D. Barron, J. Am. Chem. Soc. 1994, 116, 5155-5161.
A. F. Bell, L. Hecht, L. D. Barron, J. Raman Spectrosc. 1995, 26, 1071-1074.
A. F. Bell, L. Hecht, L. D. Barron, Chem. Eur. J. 1997, 3, 1292-1298.
T. R. Rudd, R. Hussain, G. Siligardi, E. A. Yates, Chem. Commun. 2010, 46, 4124-4126.
F. Zhu, N. W. Isaacs, L. Hecht, L. D. Barron, J. Am. Chem. Soc. 2005, 127, 6142-6143.
S. Luber, M. Reiher, J. Phys. Chem. A 2009, 113, 8268-8277.
J. Kaminský, J. Kapitán, V. Baumruk, L. Bednárová, P. Bouř, J. Phys. Chem. A 2009, 113, 3594-3601.
J. R. Cheeseman, M. S. Shaik, P. L. A. Popelier, E. W. Blanch, J. Am. Chem. Soc. 2011, 133, 4991-4997.
A. Melcerová, J. Kessler, P. Bouř, J. Kaminský, Phys. Chem. Chem. Phys. 2016, 18, 2130-2142.
V. Palivec, V. Kopecký, P. Jungwirth, P. Bouř, J. Kaminský, H. Martinez-Seara, Phys. Chem. Chem. Phys. 2020, 10.1039/c9cp05682c.
N. R. Yaffe, A. Almond, E. W. Blanch, J. Am. Chem. Soc. 2010, 132, 10654-10655.
C. Johannessen, R. Pendrill, G. Widmalm, L. Hecht, L. D. Barron, Angew. Chem. Int. Ed. 2011, 50, 5349-5351;
Angew. Chem. 2011, 123, 5461-5463.
V. Profant, C. Johannessen, E. W. Blanch, P. Bouř, V. Baumruk, Phys. Chem. Chem. Phys. 2019, 21, 7367-7377.
L. Ashton, P. D. A. Pudney, E. W. Blanch, G. E. Yakubov, Adv. Colloid Interface Sci. 2013, 199-200, 66-77.
A. F. Bell, L. Hecht, L. D. Barron, J. Am. Chem. Soc. 1997, 119, 6006-6013.
A. F. Bell, L. Hecht, L. D. Barron, Biospectroscopy 1998, 4, 107-111.
A. F. Bell, L. Hecht, L. D. Barron, J. Am. Chem. Soc. 1998, 120, 5820-5821.
A. F. Bell, L. Hecht, L. D. Barron, J. Raman Spectrosc. 1999, 30, 651-656.
K. J. Jalkanen, V. Würtz Jürgensen, A. Claussen, A. Rahim, G. M. Jensen, R. C. Wade, F. Nardi, C. Jung, I. M. Degtyarenko, R. M. Nieminen, F. Herrmann, M. Knapp-Mohammady, T. A. Niehaus, K. Frimand, S. Suhai, Int. J. Quantum Chem. 2006, 106, 1160-1198.
E. W. Blanch, A. F. Bell, L. Hecht, L. A. Day, L. D. Barron, J. Mol. Biol. 1999, 290, 1-7.
E. W. Blanch, D. J. Robinson, L. Hecht, L. D. Barron, J. Gen. Virol. 2001, 82, 1499-1502.
E. W. Blanch, D. J. Robinson, L. Hecht, C. D. Syme, K. Nielsen, L. D. Barron, J. Gen. Virol. 2002, 83, 241-246.
E. W. Blanch, L. Hecht, C. D. Syme, V. Volpetti, G. P. Lomonossoff, K. Nielsen, L. D. Barron, J. Gen. Virol. 2002, 83, 2593-2600.
A. J. Hobro, M. Rouhi, E. W. Blanch, G. L. Conn, Nucleic Acids Res. 2007, 35, 1169-1177.
A. J. Hobro, M. Rouhi, G. L. Conn, E. W. Blanch, Vib. Spectrosc. 2008, 48, 37-43.
L. D. Barron, L. Hecht, I. H. McColl, E. W. Blanch, Mol. Phys. 2004, 102, 731-744.
M. Kinalwa, E. W. Blanch, A. J. Doig, Protein Sci. 2011, 20, 1668.
V. Profant, V. Baumruk, X. Li, M. Šafařík, P. Bouř, J. Phys. Chem. B 2011, 115, 15079-11589.
A. Lorna, C. Johannessen, R. Goodacre, Anal. Chem. 2011, 83, 7978.
M. Tatarkovič, Z. Fišar, J. Raboch, R. Jirák, V. Setnička, Chirality 2012, 24, 951-955.
L. Habartová, B. Bunganic, M. Tatarkovič, M. Zavoral, J. Vondroušová, K. Syslová, V. Setnička, Chirality 2018, 30, 581-591.
A. Synytsya, M. Judexová, T. Hrubý, M. Tatarkovič, M. Miškovicová, L. Petruzelka, V. Setnička, Analyt. Bioanalyt. Chem. 2013, 405, 5441-5453.
C. Mensch, A. Konijnenberg, R. Van Elzen, A. M. Lambeir, F. Sobott, C. Johannessen, J. Raman Spectrosc. 2017, 48, 910-918.
S. Yamamoto, J. Kaminský, P. Bouř, Anal. Chem. 2012, 84, 2440-2451.
S. Yamamoto, H. Watarai, Chirality 2012, 24, 97-103.
Z. Q. Wen, L. Hecht, L. D. Barron, Protein Sci. 1994, 3, 435-439.
S. Luber, M. Reiher, J. Phys. Chem. B 2010, 114, 1057-1063.
S. Yamamoto, P. Bouř, Collect. Czech. Chem. Commun. 2011, 76, 567-583.
J. Kessler, J. Kapitán, P. Bouř, J. Phys. Chem. Lett. 2015, 6, 3314-3319.
C. Mensch, L. D. Barron, C. Johannessen, Phys. Chem. Chem. Phys. 2016, 18, 31757-31768.
C. Mensch, C. Johannessen, ChemPhysChem 2018, 19, 3134-3143.
L. A. Nafie, Chem. Phys. 1996, 205, 309-322.
A. Baiardi, J. Bloino, V. Barone, J. Chem. Theory Comput. 2018, 14, 6370-6390.
J. Mattiat, S. Luber, J. Chem. Phys. 2019, 151, 234110.
C. Merten, H. Li, X. Lu, A. Hartwiga, L. A. Nafie, J. Raman Spectrosc. 2010, 41, 1563-1565.
G. Zajac, A. Kaczor, S. Buda, J. Młynarski, J. Frelek, J. Dobrowolski, M. Baranska, J. Phys. Chem. B 2015, 119, 12193-12201.
C. Merten, H. Li, L. A. Nafie, J. Phys. Chem. A 2012, 116, 7329-7336.
J. Kapitán, L. D. Barron, L. Hecht, J. Raman Spectrosc. 2015, 46, 392-399.
K. Kneipp, H. Kneipp, S. Abdali, R. W. Berg, H. Bohr, Spectroscopy 2004, 18, 433-440.
Z. Q. Wen, X. Cao, A. Vance, J. Pharm. Sci. 2008, 97, 2228-2241.
S. O. Pour, S. E. J. Bell, E. W. Blanch, Chem. Commun. 2011, 47, 4754-4756.
S. Abdali, J. Raman Spectrosc. 2006, 37, 1341-1345.
K. Osinska, M. Pecul, A. Kudelski, Chem. Phys. Lett. 2010, 496, 86-90.
S. O. Pour, L. Rocks, K. Faulds, D. Graham, V. Parchaňský, P. Bouř, E. W. Blanch, Nat. Chem. Biol. 2015, 7, 591-596.
L. Zhao, L. Jensen, G. C. Schatz, J. Am. Chem. Soc. 2006, 128, 2911-2919.
M. B. Jacobs, P. W. Jagodzinski, T. E. Jones, M. E. Eberhart, J. Phys. Chem. C 2011, 49, 24115-24122.
B. G. Janesko, G. E. Scuseria, J. Chem. Phys. 2006, 125, 124704.
S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, R. P. Van Duyne, J. Am. Chem. Soc. 2010, 133, 4115-4122.
V. Novák, J. Šebestík, P. Bouř, J. Chem. Theory Comput. 2012, 8, 1714-1720.
J. Šebestík, P. Bouř, J. Phys. Chem. Lett. 2011, 2, 498-502.
T. D. Crawford, K. Ruud, ChemPhysChem 2011, 12, 3442-3448.
J. Šebestík, F. Teplý, I. Císařová, J. Vávra, D. Koval, P. Bouř, Chem. Commun. 2016, 52, 6257-6260.
G. Li, J. Kessler, J. Cheramy, T. Wu, M. R. Poopari, P. Bouř, Y. Xu, Angew. Chem. Int. Ed. 2019, 58, 16495-16498.
[M. Dudek, E. Machalska, T. Oleszkiewicz, E. Grzebelus, R. Baranski, P. Szcześniak, J. Mlynarski, G. Zajac, A. Kaczor, M. Baranska, Angew. Chem. Int. Ed. 2019, 58, 8383-8388.
G. Zajac, E. Machalska, A. Kaczor, J. Kessler, P. Bouř, M. Baranska, Phys. Chem. Chem. Phys. 2018, 20, 18038-18046.
M. Unno, T. Kikukawa, M. Kumauchi, N. Kamo, J. Phys. Chem. B 2013, 117, 1321-1325.
T. Uchida, M. Unno, K. Ishimori, I. Morishima, Biochemistry 1997, 36, 324-332.
[G. Longhi, E. Castiglioni, J. Koshoubu, G. Mazzeo, S. Abbate, Chirality 2016, 28, 696-707.
T. Wu, J. Kapitán, V. Mašek, P. Bouř, Angew. Chem. Int. Ed. 2015 54, 14933-14936.
T. Wu, P. Bouř, V. Andrushchenko, Sci. Rep. 2019, 9, 1068.
T. Wu, J. Kessler, J. Kaminský, P. Bouř, Chem. Asian J. 2018, 13, 3865-3870.
E. Brichtová, H. J. N. Vršková, J. Šebestík, P. Bouř, T. Wu, Chem. Eur. J. 2018, 24, 8664-8669.
T. Wu, P. Bouř, Chem. Commun. 2018, 54, 1790-1792.
T. Wu, J. Kapitán, V. Andrushchenko, P. Bouř, Anal. Chem. 2017, 89, 5043-5049.
T. Wu, J. Kessler, P. Bouř, Phys. Chem. Chem. Phys. 2016, 18, 23803-23811.
T. Wu, J. Průša, J. Kessler, M. Dračínský, J. Valenta, P. Bouř Anal. Chem. 2016, 88, 8878-8885.
J. Hudecová, V. Profant, P. Novotná, V. Baumruk, M. Urbanová, P. Bouř, J. Chem. Theory Comput. 2013, 9, 3096-3108.
P. Michal, R. Čelechovský, M. Dudka, J. Kapitán, M. Vůjtek, M. Berešová, J. Šebestík, K. Thangavel, P. Bouř, J. Phys. Chem. B 2019, 123, 2147-2156.
M. Hope, J. Šebestík, J. Kapitán, P. Bouř, J. Phys. Chem. A 2020, 124, 674-683.
Molecular Vibrations in Chiral Europium Complexes Revealed by Near-Infrared Raman Optical Activity
Glucagon-like peptide 1 aggregates into low-molecular-weight oligomers off-pathway to fibrillation
Recognition of the True and False Resonance Raman Optical Activity
Two Spectroscopies in One: Interference of Circular Dichroism and Raman Optical Activity