Glucagon-like peptide 1 aggregates into low-molecular-weight oligomers off-pathway to fibrillation

. 2023 Jun 20 ; 122 (12) : 2475-2488. [epub] 20230502

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37138517
Odkazy

PubMed 37138517
PubMed Central PMC10323027
DOI 10.1016/j.bpj.2023.04.027
PII: S0006-3495(23)00298-9
Knihovny.cz E-zdroje

The physical stability of peptide-based drugs is of great interest to the pharmaceutical industry. Glucagon-like peptide 1 (GLP-1) is a 31-amino acid peptide hormone, the analogs of which are frequently used in the treatment of type 2 diabetes. We investigated the physical stability of GLP-1 and its C-terminal amide derivative, GLP-1-Am, both of which aggregate into amyloid fibrils. While off-pathway oligomers have been proposed to explain the unusual aggregation kinetics observed previously for GLP-1 under specific conditions, these oligomers have not been studied in any detail. Such states are important as they may represent potential sources of cytotoxicity and immunogenicity. Here, we identified and isolated stable, low-molecular-weight oligomers of GLP-1 and GLP-1-Am, using size-exclusion chromatography. Under the conditions studied, isolated oligomers were shown to be resistant to fibrillation or dissociation. These oligomers contain between two and five polypeptide chains and they have a highly disordered structure as indicated by a variety of spectroscopic techniques. They are highly stable with respect to time, temperature, or agitation despite their noncovalent character, which was established using liquid chromatography-mass spectrometry and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These results provide evidence of stable, low-molecular-weight oligomers that are formed by an off-pathway mechanism which competes with amyloid fibril formation.

Zobrazit více v PubMed

Drucker D.J. The biology of incretin hormones. Cell Metab. 2006;3:153–165. doi: 10.1016/j.cmet.2006.01.004. PubMed DOI

Holst J.J. The physiology of glucagon-like peptide 1. Physiol. Rev. 2007;87:1409–1439. doi: 10.1152/physrev.00034.2006. PubMed DOI

Yu M., Benjamin M.M., et al. Schwendeman A. Battle of GLP-1 delivery technologies. Adv. Drug Deliv. Rev. 2018;130:113–130. doi: 10.1016/j.addr.2018.07.009. PubMed DOI PMC

Fosgerau K., Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov. Today. 2015;20:122–128. doi: 10.1016/j.drudis.2014.10.003. PubMed DOI

Poon S., Birkett N.R., et al. Zurdo J. Amyloidogenicity and aggregate cytotoxicity of human glucagon-like peptide-1 (hGLP-1) Protein Pept. Lett. 2009;16:1548–1556. doi: 10.2174/092986609789839232. PubMed DOI

Jha N.N., Anoop A., et al. Maji S.K. Characterization of amyloid formation by glucagon-like peptides: role of basic residues in heparin-mediated aggregation. Biochemistry. 2013;52:8800–8810. doi: 10.1021/bi401398k. PubMed DOI

Zapadka K.L., Becher F.J., et al. Jackson S.E. A pH-induced switch in human glucagon-like peptide-1 aggregation kinetics. J. Am. Chem. Soc. 2016;138:16259–16265. doi: 10.1021/jacs.6b05025. PubMed DOI

Ferrone F. Analysis of protein aggregation kinetics. Methods Enzymol. 1999;309:256–274. doi: 10.1016/S0076-6879(99)09019-9. PubMed DOI

Knowles T.P.J., Waudby C.A., et al. Dobson C.M. An analytical solution to the kinetics of breakable filament assembly. Science. 2009;326:1533–1537. doi: 10.1126/science.1178250. PubMed DOI

Morris A.M., Watzky M.A., Finke R.G. Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature. Biochim. Biophys. Acta. 2009;1794:375–397. doi: 10.1016/j.bbapap.2008.10.016. PubMed DOI

Arosio P., Knowles T.P.J., Linse S. On the lag phase in amyloid fibril formation. Phys. Chem. Chem. Phys. 2015;17:7606–7618. doi: 10.1039/C4CP05563B. PubMed DOI PMC

Chiti F., Dobson C.M. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu. Rev. Biochem. 2017;86:27–68. doi: 10.1146/annurev-biochem-061516-045115. PubMed DOI

Cohen S.I.A., Linse S., et al. Knowles T.P.J. Proliferation of amyloid- 42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl. Acad. Sci. USA. 2013;110:9758–9763. doi: 10.1073/pnas.1218402110. PubMed DOI PMC

Vivoli Vega M., Cascella R., et al. Chiti F. The toxicity of misfolded protein oligomers is independent of their secondary structure. ACS Chem. Biol. 2019;14:1593–1600. doi: 10.1021/acschembio.9b00324. PubMed DOI

Mannini B., Mulvihill E., et al. Chiti F. Toxicity of protein oligomers is rationalized by a function combining size and surface hydrophobicity. ACS Chem. Biol. 2014;9:2309–2317. doi: 10.1021/cb500505m. PubMed DOI

Campioni S., Mannini B., et al. Chiti F. A causative link between the structure of aberrant protein oligomers and their toxicity. Nat. Chem. Biol. 2010;6:140–147. doi: 10.1038/nchembio.283. PubMed DOI

Ahmed M., Davis J., et al. Smith S.O. Structural conversion of neurotoxic amyloid-Β 1-42 oligomers to fibrils. Nat. Struct. Mol. Biol. 2010;17:561–567. doi: 10.1038/nsmb.1799. PubMed DOI PMC

Dear A.J., Michaels T.C.T., et al. Knowles T.P.J. Kinetic diversity of amyloid oligomers. Proc. Natl. Acad. Sci. USA. 2020;117:12087–12094. doi: 10.1073/pnas.1922267117. PubMed DOI PMC

Dear A.J., Meisl G., et al. Knowles T.P.J. Identification of on- and off-pathway oligomers in amyloid fibril formation. Chem. Sci. 2020;11:6236–6247. doi: 10.1039/C9SC06501F. PubMed DOI PMC

Eichner T., Radford S.E. A diversity of assembly mechanisms of a generic amyloid fold. Mol. Cell. 2011;43:8–18. doi: 10.1016/j.molcel.2011.05.012. PubMed DOI

Yoo J.M., Lin Y., et al. Lee Y.H. Polymorphism in alpha-synuclein oligomers and its implications in toxicity under disease conditions. Front. Mol. Biosci. 2022;9:959425–959510. doi: 10.3389/fmolb.2022.959425. PubMed DOI PMC

Niyangoda C., Barton J., et al. Muschol M. Origin, toxicity and characteristics of two amyloid oligomer polymorphs. RSC Chem. Biol. 2021;2:1631–1642. doi: 10.1039/d1cb00081k. PubMed DOI PMC

Kjaergaard M., Dear A.J., et al. Klenerman D. Oligomer diversity during the aggregation of the repeat region of tau. ACS Chem. Neurosci. 2018;9:3060–3071. doi: 10.1021/acschemneuro.8b00250. PubMed DOI PMC

Paslawski W., Andreasen M., et al. Otzen D.E. High stability and cooperative unfolding of α-synuclein oligomers. Biochemistry. 2014;53:6252–6263. doi: 10.1021/bi5007833. PubMed DOI

Calabrese M.F., Miranker A.D. Formation of a stable oligomer of β-2 microglobulin requires only transient encounter with Cu(II) J. Mol. Biol. 2007;367:1–7. doi: 10.1016/j.jmb.2006.12.034. PubMed DOI

Karamanos T.K., Jackson M.P., et al. Radford S.E. Structural mapping of oligomeric intermediates in an amyloid assembly pathway. Elife. 2019;8:1–32. doi: 10.7554/eLife.46574.001. PubMed DOI PMC

Miti T., Mulaj M., et al. Muschol M. Stable, metastable, and kinetically trapped amyloid aggregate phases. Biomacromolecules. 2015;16:326–335. doi: 10.1021/bm501521r. PubMed DOI PMC

Nick M., Wu Y., et al. DeGrado W.F. A long-lived Aβ oligomer resistant to fibrillization. Biopolymers. 2018;109:e23096. doi: 10.1002/bip.23096. PubMed DOI PMC

Kuo Y.-M., Webster S., et al. Roher A.E. Irreversible dimerization/tetramerization and post-translational modifications inhibit proteolytic degradation of Aβ peptides of Alzheimer’s disease. Biochim. Biophys. Acta. 1998;1406:291–298. doi: 10.1016/S0925-4439(98)00014-3. PubMed DOI

Ehrnhoefer D.E., Bieschke J., et al. Wanker E.E. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat. Struct. Mol. Biol. 2008;15:558–566. doi: 10.1038/nsmb.1437. PubMed DOI

Nedumpully-Govindan P., Kakinen A., et al. Ding F. Stabilizing off-pathway oligomers by polyphenol nanoassemblies for IAPP aggregation inhibition. Sci. Rep. 2016;6:19463. doi: 10.1038/srep19463. PubMed DOI PMC

Chang X., Keller D., et al. Led J.J. NMR studies of the aggregation of glucagon-like peptide-1: formation of a symmetric helical dimer. FEBS Lett. 2002;515:165–170. doi: 10.1016/S0014-5793(02)02466-3. PubMed DOI

Kamgar-Parsi K., Hong L., et al. Ramamoorthy A. Growth-incompetent monomers of human calcitonin lead to a noncanonical direct relationship between peptide concentration and aggregation lag time. J. Biol. Chem. 2017;292:14963–14976. doi: 10.1074/jbc.M117.791236. PubMed DOI PMC

Deva T., Lorenzen N., et al. Otzen D.E. Off-pathway aggregation can inhibit fibrillation at high protein concentrations. Biochim. Biophys. Acta. 2013;1834:677–687. doi: 10.1016/j.bbapap.2012.12.020. PubMed DOI

Souillac P.O., Uversky V.N., Fink A.L. Structural transformations of oligomeric intermediates in the fibrillation of the immunoglobulin light chain LEN. Biochemistry. 2003;42:8094–8104. doi: 10.1021/bi034652m. PubMed DOI

Bothe J.R., Andrews A., et al. Kashi S. Peptide oligomerization memory effects and their impact on the physical stability of the GLP-1 agonist liraglutide. Mol. Pharm. 2019;16:2153–2161. doi: 10.1021/acs.molpharmaceut.9b00106. PubMed DOI

Gade Malmos K., Blancas-Mejia L.M., et al. Otzen D. ThT 101: a primer on the use of thioflavin T to investigate amyloid formation. Amyloid. 2017;24:1–16. doi: 10.1080/13506129.2017.1304905. PubMed DOI

Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 2000;78:1606–1619. doi: 10.1016/S0006-3495(00)76713-0. PubMed DOI PMC

Ma S., Cao X., et al. Nafie L.A. Vibrational circular dichroism shows unusual sensitivity to protein fibril formation and development in solution. J. Am. Chem. Soc. 2007;129:12364–12365. doi: 10.1021/ja074188z. PubMed DOI

Measey T.J., Smith K.B., et al. Schweitzer-Stenner R. Self-aggregation of a polyalanine octamer promoted by its C-terminal tyrosine and probed by a strongly enhanced vibrational circular dichroism signal. J. Am. Chem. Soc. 2009;131:18218–18219. doi: 10.1021/ja908324m. PubMed DOI PMC

Measey T.J., Schweitzer-Stenner R. Vibrational circular dichroism as a probe of fibrillogenesis: the origin of the anomalous intensity enhancement of amyloid-like fibrils. J. Am. Chem. Soc. 2011;133:1066–1076. doi: 10.1021/ja1089827. PubMed DOI

Keiderling T.A. Structure of condensed phase peptides : insights from vibrational circular dichroism and Raman optical activity techniques. Chem. Rev. 2020;120:3381–3419. doi: 10.1021/acs.chemrev.9b00636. PubMed DOI

Krupová M., Kessler J., Bouř P. Polymorphism of amyloid fibrils induced by catalytic seeding: a vibrational circular dichroism study. ChemPhysChem. 2021;22:83–91. doi: 10.1002/cphc.202000797. PubMed DOI

Van de Vondel E., Baatsen P., et al. Johannessen C. Vibrational circular dichroism sheds new light on the competitive effects of crowding and β-synuclein on the fibrillation process of α-synuclein. Biochemistry. 2018;57:5989–5995. doi: 10.1021/acs.biochem.8b00780. PubMed DOI

Kurouski D., Dukor R.K., et al. Lednev I.K. Normal and reversed supramolecular chirality of insulin fibrils probed by vibrational circular dichroism at the protofilament level of fibril structure. Biophys. J. 2012;103:522–531. doi: 10.1016/j.bpj.2012.04.042. PubMed DOI PMC

Kurouski D., Lombardi R.A., et al. Nafie L.A. Direct observation and pH control of reversed supramolecular chirality in insulin fibrils by vibrational circular dichroism. Chem. Commun. 2010;46:7154–7156. doi: 10.1039/c0cc02423f. PubMed DOI

Pazderková M., Pazderka T., et al. Nafie L.A. Origin of enhanced VCD in amyloid fibril spectra: effect of deuteriation and pH. Chirality. 2017;29:469–475. doi: 10.1002/chir.22722. PubMed DOI

Krupová M., Kessler J., Bouř P. Recent trends in chiroptical spectroscopy: theory and applications of vibrational circular dichroism and Raman optical activity. Chempluschem. 2020;85:561–575. doi: 10.1002/cplu.202000014. PubMed DOI

Raynal B., Lenormand P., et al. England P. Quality assessment and optimization of purified protein samples: why and how? Microb. Cell Fact. 2014;13:180–210. doi: 10.1186/s12934-014-0180-6. PubMed DOI PMC

ROBINSON A.B., RUDD C.J. Current Topics in Cellular Regulation. ACADEMIC PRESS, INC.; 1974. Deamidation of glutaminyl and asparaginyl residues in peptides and proteins; pp. 247–295. PubMed DOI

Robinson N.E., Robinson Z.W., et al. Robinson A.B. Structure-dependent nonenzymatic deamidation of glutaminyl and asparaginyl pentapeptides. J. Pept. Res. 2004;63:426–436. doi: 10.1111/j.1399-3011.2004.00151.x. PubMed DOI

Wright H.T., Urry D.W. Nonenzymatic deamidation of asparaginyl and glutaminyl residues in protein. Crit. Rev. Biochem. Mol. Biol. 1991;26:1–52. doi: 10.3109/10409239109081719. PubMed DOI

Lau J., Bloch P., et al. Kruse T. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J. Med. Chem. 2015;58:7370–7380. doi: 10.1021/acs.jmedchem.5b00726. PubMed DOI

Lau J.L., Dunn M.K. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg. Med. Chem. 2018;26:2700–2707. doi: 10.1016/j.bmc.2017.06.052. PubMed DOI

Kaspar A.A., Reichert J.M. Future directions for peptide therapeutics development. Drug Discov. Today. 2013;18:807–817. doi: 10.1016/j.drudis.2013.05.011. PubMed DOI

Gilroy C.A., Luginbuhl K.M., Chilkoti A. Controlled release of biologics for the treatment of type 2 diabetes. J. Control. Release. 2016;240:151–164. doi: 10.1016/j.jconrel.2015.12.002. PubMed DOI PMC

D’Addio S.M., Bothe J.R., et al. Templeton A.C. New and evolving techniques for the characterization of peptide therapeutics. J. Pharm. Sci. 2016;105:2989–3006. doi: 10.1016/j.xphs.2016.06.011. PubMed DOI

Becher, F.J. 2020. Studies of the physical stability of GLP-1 & chemically modified forms of GLP-1. 10.17863/CAM.78083. DOI

Törnquist M., Michaels T.C.T., et al. Linse S. Secondary nucleation in amyloid formation. Chem. Commun. 2018;54:8667–8684. doi: 10.1039/c8cc02204f. PubMed DOI

Bitan G., Kirkitadze M.D., et al. Teplow D.B. Amyloid -protein (A ) assembly: a 40 and A 42 oligomerize through distinct pathways. Proc. Natl. Acad. Sci. USA. 2003;100:330–335. doi: 10.1073/pnas.222681699. PubMed DOI PMC

Dasari A.K.R., Hughes R.M., et al. Lim K.H. Transthyretin aggregation pathway toward the Formation of distinct cytotoxic oligomers. Sci. Rep. 2019;9:10–33. doi: 10.1038/s41598-018-37230-1. PubMed DOI PMC

Cremades N., Cohen S.I.A., et al. Klenerman D. Direct observation of the interconversion of normal and toxic forms of α-synuclein. Cell. 2012;149:1048–1059. doi: 10.1016/j.cell.2012.03.037. PubMed DOI PMC

Fusco G., Chen S.W., et al. De Simone A. Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science. 2017;358:1440–1443. doi: 10.1126/science.aan6160. PubMed DOI

Wu J.W., Breydo L., et al. Glabe C. Fibrillar oligomers nucleate the oligomerization of monomeric amyloid β but do not seed fibril formation. J. Biol. Chem. 2010;285:6071–6079. doi: 10.1074/jbc.M109.069542. PubMed DOI PMC

Bolognesi B., Kumita J.R., et al. Yerbury J.J. ANS binding reveals common features of cytotoxic amyloid species. ACS Chem. Biol. 2010;5:735–740. doi: 10.1021/cb1001203. PubMed DOI

Hnath B., Dokholyan N.V. Toxic SOD1 trimers are off-pathway in the formation of amyloid-like fibrils in ALS. Biophys. J. 2022;121:2084–2095. doi: 10.1016/j.bpj.2022.04.037. PubMed DOI PMC

Baskakov I.V., Legname G., et al. Cohen F.E. Pathway complexity of prion protein assembly into amyloid. J. Biol. Chem. 2002;277:21140–21148. doi: 10.1074/jbc.M111402200. PubMed DOI

Sanders A., Jeremy Craven C., et al. Staniforth R.A. Cystatin forms a tetramer through structural rearrangement of domain-swapped dimers prior to amyloidogenesis. J. Mol. Biol. 2004;336:165–178. doi: 10.1016/j.jmb.2003.12.011. PubMed DOI

Staniforth R.A., Giannini S., et al. Waltho J.P. Three-dimensional domain swapping in the folded and molten-globule states of cystatins, an amyloid-forming structural superfamily. EMBO J. 2001;20:4774–4781. doi: 10.1093/emboj/20.17.4774. PubMed DOI PMC

Turner A.L., Watson M., et al. Stott K. Highly disordered histone H1−DNA model complexes and their condensates. Proc. Natl. Acad. Sci. USA. 2018;115:11964–11969. doi: 10.1073/pnas.1805943115. PubMed DOI PMC

Borgia A., Borgia M.B., et al. Schuler B. Extreme disorder in an ultrahigh-affinity protein complex. Nature. 2018;555:61–66. doi: 10.1038/nature25762. PubMed DOI PMC

Maya-Martinez R., Xu Y., et al. Radford S.E. Dimers of D76N-β2-microglobulin display potent antiamyloid aggregation activity. J. Biol. Chem. 2022;298:102659. doi: 10.1016/j.jbc.2022.102659. PubMed DOI PMC

Soreghan B., Kosmoski J., Glabe C. Surfactant properties of Alzheimer’s A beta peptides and the mechanism of amyloid aggregation. J. Biol. Chem. 1994;269:28551–28554. doi: 10.1016/S0021-9258(19)61939-3. PubMed DOI

Hasecke F., Miti T., et al. Muschol M. Origin of metastable oligomers and their effects on amyloid fibril self-assembly. Chem. Sci. 2018;9:5937–5948. doi: 10.1039/C8SC01479E. PubMed DOI PMC

Hasecke F., Niyangoda C., et al. Hoyer W. Protofibril–fibril interactions inhibit amyloid fibril assembly by obstructing secondary nucleation. Angew. Chemie. 2021;133:3053–3058. doi: 10.1002/ange.202010098. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...