Glucagon-like peptide 1 aggregates into low-molecular-weight oligomers off-pathway to fibrillation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37138517
PubMed Central
PMC10323027
DOI
10.1016/j.bpj.2023.04.027
PII: S0006-3495(23)00298-9
Knihovny.cz E-zdroje
- Klíčová slova
- aggregation, amyloid, glucagon-like peptide 1, oligomers, self-assembly,
- MeSH
- amyloid chemie MeSH
- amyloidní beta-protein chemie MeSH
- diabetes mellitus 2. typu * MeSH
- gelová chromatografie MeSH
- glukagonu podobný peptid 1 * MeSH
- lidé MeSH
- peptidové fragmenty chemie MeSH
- peptidy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amyloid MeSH
- amyloidní beta-protein MeSH
- glukagonu podobný peptid 1 * MeSH
- peptidové fragmenty MeSH
- peptidy MeSH
The physical stability of peptide-based drugs is of great interest to the pharmaceutical industry. Glucagon-like peptide 1 (GLP-1) is a 31-amino acid peptide hormone, the analogs of which are frequently used in the treatment of type 2 diabetes. We investigated the physical stability of GLP-1 and its C-terminal amide derivative, GLP-1-Am, both of which aggregate into amyloid fibrils. While off-pathway oligomers have been proposed to explain the unusual aggregation kinetics observed previously for GLP-1 under specific conditions, these oligomers have not been studied in any detail. Such states are important as they may represent potential sources of cytotoxicity and immunogenicity. Here, we identified and isolated stable, low-molecular-weight oligomers of GLP-1 and GLP-1-Am, using size-exclusion chromatography. Under the conditions studied, isolated oligomers were shown to be resistant to fibrillation or dissociation. These oligomers contain between two and five polypeptide chains and they have a highly disordered structure as indicated by a variety of spectroscopic techniques. They are highly stable with respect to time, temperature, or agitation despite their noncovalent character, which was established using liquid chromatography-mass spectrometry and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These results provide evidence of stable, low-molecular-weight oligomers that are formed by an off-pathway mechanism which competes with amyloid fibril formation.
AstraZeneca Cambridge United Kingdom
Institute of Organic Chemistry and Biochemistry Academy of Sciences Prague 6 Czech Republic
Yusuf Hamied Department of Chemistry University of Cambridge Cambridge United Kingdom
Zobrazit více v PubMed
Drucker D.J. The biology of incretin hormones. Cell Metab. 2006;3:153–165. doi: 10.1016/j.cmet.2006.01.004. PubMed DOI
Holst J.J. The physiology of glucagon-like peptide 1. Physiol. Rev. 2007;87:1409–1439. doi: 10.1152/physrev.00034.2006. PubMed DOI
Yu M., Benjamin M.M., et al. Schwendeman A. Battle of GLP-1 delivery technologies. Adv. Drug Deliv. Rev. 2018;130:113–130. doi: 10.1016/j.addr.2018.07.009. PubMed DOI PMC
Fosgerau K., Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov. Today. 2015;20:122–128. doi: 10.1016/j.drudis.2014.10.003. PubMed DOI
Poon S., Birkett N.R., et al. Zurdo J. Amyloidogenicity and aggregate cytotoxicity of human glucagon-like peptide-1 (hGLP-1) Protein Pept. Lett. 2009;16:1548–1556. doi: 10.2174/092986609789839232. PubMed DOI
Jha N.N., Anoop A., et al. Maji S.K. Characterization of amyloid formation by glucagon-like peptides: role of basic residues in heparin-mediated aggregation. Biochemistry. 2013;52:8800–8810. doi: 10.1021/bi401398k. PubMed DOI
Zapadka K.L., Becher F.J., et al. Jackson S.E. A pH-induced switch in human glucagon-like peptide-1 aggregation kinetics. J. Am. Chem. Soc. 2016;138:16259–16265. doi: 10.1021/jacs.6b05025. PubMed DOI
Ferrone F. Analysis of protein aggregation kinetics. Methods Enzymol. 1999;309:256–274. doi: 10.1016/S0076-6879(99)09019-9. PubMed DOI
Knowles T.P.J., Waudby C.A., et al. Dobson C.M. An analytical solution to the kinetics of breakable filament assembly. Science. 2009;326:1533–1537. doi: 10.1126/science.1178250. PubMed DOI
Morris A.M., Watzky M.A., Finke R.G. Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature. Biochim. Biophys. Acta. 2009;1794:375–397. doi: 10.1016/j.bbapap.2008.10.016. PubMed DOI
Arosio P., Knowles T.P.J., Linse S. On the lag phase in amyloid fibril formation. Phys. Chem. Chem. Phys. 2015;17:7606–7618. doi: 10.1039/C4CP05563B. PubMed DOI PMC
Chiti F., Dobson C.M. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu. Rev. Biochem. 2017;86:27–68. doi: 10.1146/annurev-biochem-061516-045115. PubMed DOI
Cohen S.I.A., Linse S., et al. Knowles T.P.J. Proliferation of amyloid- 42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl. Acad. Sci. USA. 2013;110:9758–9763. doi: 10.1073/pnas.1218402110. PubMed DOI PMC
Vivoli Vega M., Cascella R., et al. Chiti F. The toxicity of misfolded protein oligomers is independent of their secondary structure. ACS Chem. Biol. 2019;14:1593–1600. doi: 10.1021/acschembio.9b00324. PubMed DOI
Mannini B., Mulvihill E., et al. Chiti F. Toxicity of protein oligomers is rationalized by a function combining size and surface hydrophobicity. ACS Chem. Biol. 2014;9:2309–2317. doi: 10.1021/cb500505m. PubMed DOI
Campioni S., Mannini B., et al. Chiti F. A causative link between the structure of aberrant protein oligomers and their toxicity. Nat. Chem. Biol. 2010;6:140–147. doi: 10.1038/nchembio.283. PubMed DOI
Ahmed M., Davis J., et al. Smith S.O. Structural conversion of neurotoxic amyloid-Β 1-42 oligomers to fibrils. Nat. Struct. Mol. Biol. 2010;17:561–567. doi: 10.1038/nsmb.1799. PubMed DOI PMC
Dear A.J., Michaels T.C.T., et al. Knowles T.P.J. Kinetic diversity of amyloid oligomers. Proc. Natl. Acad. Sci. USA. 2020;117:12087–12094. doi: 10.1073/pnas.1922267117. PubMed DOI PMC
Dear A.J., Meisl G., et al. Knowles T.P.J. Identification of on- and off-pathway oligomers in amyloid fibril formation. Chem. Sci. 2020;11:6236–6247. doi: 10.1039/C9SC06501F. PubMed DOI PMC
Eichner T., Radford S.E. A diversity of assembly mechanisms of a generic amyloid fold. Mol. Cell. 2011;43:8–18. doi: 10.1016/j.molcel.2011.05.012. PubMed DOI
Yoo J.M., Lin Y., et al. Lee Y.H. Polymorphism in alpha-synuclein oligomers and its implications in toxicity under disease conditions. Front. Mol. Biosci. 2022;9:959425–959510. doi: 10.3389/fmolb.2022.959425. PubMed DOI PMC
Niyangoda C., Barton J., et al. Muschol M. Origin, toxicity and characteristics of two amyloid oligomer polymorphs. RSC Chem. Biol. 2021;2:1631–1642. doi: 10.1039/d1cb00081k. PubMed DOI PMC
Kjaergaard M., Dear A.J., et al. Klenerman D. Oligomer diversity during the aggregation of the repeat region of tau. ACS Chem. Neurosci. 2018;9:3060–3071. doi: 10.1021/acschemneuro.8b00250. PubMed DOI PMC
Paslawski W., Andreasen M., et al. Otzen D.E. High stability and cooperative unfolding of α-synuclein oligomers. Biochemistry. 2014;53:6252–6263. doi: 10.1021/bi5007833. PubMed DOI
Calabrese M.F., Miranker A.D. Formation of a stable oligomer of β-2 microglobulin requires only transient encounter with Cu(II) J. Mol. Biol. 2007;367:1–7. doi: 10.1016/j.jmb.2006.12.034. PubMed DOI
Karamanos T.K., Jackson M.P., et al. Radford S.E. Structural mapping of oligomeric intermediates in an amyloid assembly pathway. Elife. 2019;8:1–32. doi: 10.7554/eLife.46574.001. PubMed DOI PMC
Miti T., Mulaj M., et al. Muschol M. Stable, metastable, and kinetically trapped amyloid aggregate phases. Biomacromolecules. 2015;16:326–335. doi: 10.1021/bm501521r. PubMed DOI PMC
Nick M., Wu Y., et al. DeGrado W.F. A long-lived Aβ oligomer resistant to fibrillization. Biopolymers. 2018;109:e23096. doi: 10.1002/bip.23096. PubMed DOI PMC
Kuo Y.-M., Webster S., et al. Roher A.E. Irreversible dimerization/tetramerization and post-translational modifications inhibit proteolytic degradation of Aβ peptides of Alzheimer’s disease. Biochim. Biophys. Acta. 1998;1406:291–298. doi: 10.1016/S0925-4439(98)00014-3. PubMed DOI
Ehrnhoefer D.E., Bieschke J., et al. Wanker E.E. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat. Struct. Mol. Biol. 2008;15:558–566. doi: 10.1038/nsmb.1437. PubMed DOI
Nedumpully-Govindan P., Kakinen A., et al. Ding F. Stabilizing off-pathway oligomers by polyphenol nanoassemblies for IAPP aggregation inhibition. Sci. Rep. 2016;6:19463. doi: 10.1038/srep19463. PubMed DOI PMC
Chang X., Keller D., et al. Led J.J. NMR studies of the aggregation of glucagon-like peptide-1: formation of a symmetric helical dimer. FEBS Lett. 2002;515:165–170. doi: 10.1016/S0014-5793(02)02466-3. PubMed DOI
Kamgar-Parsi K., Hong L., et al. Ramamoorthy A. Growth-incompetent monomers of human calcitonin lead to a noncanonical direct relationship between peptide concentration and aggregation lag time. J. Biol. Chem. 2017;292:14963–14976. doi: 10.1074/jbc.M117.791236. PubMed DOI PMC
Deva T., Lorenzen N., et al. Otzen D.E. Off-pathway aggregation can inhibit fibrillation at high protein concentrations. Biochim. Biophys. Acta. 2013;1834:677–687. doi: 10.1016/j.bbapap.2012.12.020. PubMed DOI
Souillac P.O., Uversky V.N., Fink A.L. Structural transformations of oligomeric intermediates in the fibrillation of the immunoglobulin light chain LEN. Biochemistry. 2003;42:8094–8104. doi: 10.1021/bi034652m. PubMed DOI
Bothe J.R., Andrews A., et al. Kashi S. Peptide oligomerization memory effects and their impact on the physical stability of the GLP-1 agonist liraglutide. Mol. Pharm. 2019;16:2153–2161. doi: 10.1021/acs.molpharmaceut.9b00106. PubMed DOI
Gade Malmos K., Blancas-Mejia L.M., et al. Otzen D. ThT 101: a primer on the use of thioflavin T to investigate amyloid formation. Amyloid. 2017;24:1–16. doi: 10.1080/13506129.2017.1304905. PubMed DOI
Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 2000;78:1606–1619. doi: 10.1016/S0006-3495(00)76713-0. PubMed DOI PMC
Ma S., Cao X., et al. Nafie L.A. Vibrational circular dichroism shows unusual sensitivity to protein fibril formation and development in solution. J. Am. Chem. Soc. 2007;129:12364–12365. doi: 10.1021/ja074188z. PubMed DOI
Measey T.J., Smith K.B., et al. Schweitzer-Stenner R. Self-aggregation of a polyalanine octamer promoted by its C-terminal tyrosine and probed by a strongly enhanced vibrational circular dichroism signal. J. Am. Chem. Soc. 2009;131:18218–18219. doi: 10.1021/ja908324m. PubMed DOI PMC
Measey T.J., Schweitzer-Stenner R. Vibrational circular dichroism as a probe of fibrillogenesis: the origin of the anomalous intensity enhancement of amyloid-like fibrils. J. Am. Chem. Soc. 2011;133:1066–1076. doi: 10.1021/ja1089827. PubMed DOI
Keiderling T.A. Structure of condensed phase peptides : insights from vibrational circular dichroism and Raman optical activity techniques. Chem. Rev. 2020;120:3381–3419. doi: 10.1021/acs.chemrev.9b00636. PubMed DOI
Krupová M., Kessler J., Bouř P. Polymorphism of amyloid fibrils induced by catalytic seeding: a vibrational circular dichroism study. ChemPhysChem. 2021;22:83–91. doi: 10.1002/cphc.202000797. PubMed DOI
Van de Vondel E., Baatsen P., et al. Johannessen C. Vibrational circular dichroism sheds new light on the competitive effects of crowding and β-synuclein on the fibrillation process of α-synuclein. Biochemistry. 2018;57:5989–5995. doi: 10.1021/acs.biochem.8b00780. PubMed DOI
Kurouski D., Dukor R.K., et al. Lednev I.K. Normal and reversed supramolecular chirality of insulin fibrils probed by vibrational circular dichroism at the protofilament level of fibril structure. Biophys. J. 2012;103:522–531. doi: 10.1016/j.bpj.2012.04.042. PubMed DOI PMC
Kurouski D., Lombardi R.A., et al. Nafie L.A. Direct observation and pH control of reversed supramolecular chirality in insulin fibrils by vibrational circular dichroism. Chem. Commun. 2010;46:7154–7156. doi: 10.1039/c0cc02423f. PubMed DOI
Pazderková M., Pazderka T., et al. Nafie L.A. Origin of enhanced VCD in amyloid fibril spectra: effect of deuteriation and pH. Chirality. 2017;29:469–475. doi: 10.1002/chir.22722. PubMed DOI
Krupová M., Kessler J., Bouř P. Recent trends in chiroptical spectroscopy: theory and applications of vibrational circular dichroism and Raman optical activity. Chempluschem. 2020;85:561–575. doi: 10.1002/cplu.202000014. PubMed DOI
Raynal B., Lenormand P., et al. England P. Quality assessment and optimization of purified protein samples: why and how? Microb. Cell Fact. 2014;13:180–210. doi: 10.1186/s12934-014-0180-6. PubMed DOI PMC
ROBINSON A.B., RUDD C.J. Current Topics in Cellular Regulation. ACADEMIC PRESS, INC.; 1974. Deamidation of glutaminyl and asparaginyl residues in peptides and proteins; pp. 247–295. PubMed DOI
Robinson N.E., Robinson Z.W., et al. Robinson A.B. Structure-dependent nonenzymatic deamidation of glutaminyl and asparaginyl pentapeptides. J. Pept. Res. 2004;63:426–436. doi: 10.1111/j.1399-3011.2004.00151.x. PubMed DOI
Wright H.T., Urry D.W. Nonenzymatic deamidation of asparaginyl and glutaminyl residues in protein. Crit. Rev. Biochem. Mol. Biol. 1991;26:1–52. doi: 10.3109/10409239109081719. PubMed DOI
Lau J., Bloch P., et al. Kruse T. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J. Med. Chem. 2015;58:7370–7380. doi: 10.1021/acs.jmedchem.5b00726. PubMed DOI
Lau J.L., Dunn M.K. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg. Med. Chem. 2018;26:2700–2707. doi: 10.1016/j.bmc.2017.06.052. PubMed DOI
Kaspar A.A., Reichert J.M. Future directions for peptide therapeutics development. Drug Discov. Today. 2013;18:807–817. doi: 10.1016/j.drudis.2013.05.011. PubMed DOI
Gilroy C.A., Luginbuhl K.M., Chilkoti A. Controlled release of biologics for the treatment of type 2 diabetes. J. Control. Release. 2016;240:151–164. doi: 10.1016/j.jconrel.2015.12.002. PubMed DOI PMC
D’Addio S.M., Bothe J.R., et al. Templeton A.C. New and evolving techniques for the characterization of peptide therapeutics. J. Pharm. Sci. 2016;105:2989–3006. doi: 10.1016/j.xphs.2016.06.011. PubMed DOI
Becher, F.J. 2020. Studies of the physical stability of GLP-1 & chemically modified forms of GLP-1. 10.17863/CAM.78083. DOI
Törnquist M., Michaels T.C.T., et al. Linse S. Secondary nucleation in amyloid formation. Chem. Commun. 2018;54:8667–8684. doi: 10.1039/c8cc02204f. PubMed DOI
Bitan G., Kirkitadze M.D., et al. Teplow D.B. Amyloid -protein (A ) assembly: a 40 and A 42 oligomerize through distinct pathways. Proc. Natl. Acad. Sci. USA. 2003;100:330–335. doi: 10.1073/pnas.222681699. PubMed DOI PMC
Dasari A.K.R., Hughes R.M., et al. Lim K.H. Transthyretin aggregation pathway toward the Formation of distinct cytotoxic oligomers. Sci. Rep. 2019;9:10–33. doi: 10.1038/s41598-018-37230-1. PubMed DOI PMC
Cremades N., Cohen S.I.A., et al. Klenerman D. Direct observation of the interconversion of normal and toxic forms of α-synuclein. Cell. 2012;149:1048–1059. doi: 10.1016/j.cell.2012.03.037. PubMed DOI PMC
Fusco G., Chen S.W., et al. De Simone A. Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science. 2017;358:1440–1443. doi: 10.1126/science.aan6160. PubMed DOI
Wu J.W., Breydo L., et al. Glabe C. Fibrillar oligomers nucleate the oligomerization of monomeric amyloid β but do not seed fibril formation. J. Biol. Chem. 2010;285:6071–6079. doi: 10.1074/jbc.M109.069542. PubMed DOI PMC
Bolognesi B., Kumita J.R., et al. Yerbury J.J. ANS binding reveals common features of cytotoxic amyloid species. ACS Chem. Biol. 2010;5:735–740. doi: 10.1021/cb1001203. PubMed DOI
Hnath B., Dokholyan N.V. Toxic SOD1 trimers are off-pathway in the formation of amyloid-like fibrils in ALS. Biophys. J. 2022;121:2084–2095. doi: 10.1016/j.bpj.2022.04.037. PubMed DOI PMC
Baskakov I.V., Legname G., et al. Cohen F.E. Pathway complexity of prion protein assembly into amyloid. J. Biol. Chem. 2002;277:21140–21148. doi: 10.1074/jbc.M111402200. PubMed DOI
Sanders A., Jeremy Craven C., et al. Staniforth R.A. Cystatin forms a tetramer through structural rearrangement of domain-swapped dimers prior to amyloidogenesis. J. Mol. Biol. 2004;336:165–178. doi: 10.1016/j.jmb.2003.12.011. PubMed DOI
Staniforth R.A., Giannini S., et al. Waltho J.P. Three-dimensional domain swapping in the folded and molten-globule states of cystatins, an amyloid-forming structural superfamily. EMBO J. 2001;20:4774–4781. doi: 10.1093/emboj/20.17.4774. PubMed DOI PMC
Turner A.L., Watson M., et al. Stott K. Highly disordered histone H1−DNA model complexes and their condensates. Proc. Natl. Acad. Sci. USA. 2018;115:11964–11969. doi: 10.1073/pnas.1805943115. PubMed DOI PMC
Borgia A., Borgia M.B., et al. Schuler B. Extreme disorder in an ultrahigh-affinity protein complex. Nature. 2018;555:61–66. doi: 10.1038/nature25762. PubMed DOI PMC
Maya-Martinez R., Xu Y., et al. Radford S.E. Dimers of D76N-β2-microglobulin display potent antiamyloid aggregation activity. J. Biol. Chem. 2022;298:102659. doi: 10.1016/j.jbc.2022.102659. PubMed DOI PMC
Soreghan B., Kosmoski J., Glabe C. Surfactant properties of Alzheimer’s A beta peptides and the mechanism of amyloid aggregation. J. Biol. Chem. 1994;269:28551–28554. doi: 10.1016/S0021-9258(19)61939-3. PubMed DOI
Hasecke F., Miti T., et al. Muschol M. Origin of metastable oligomers and their effects on amyloid fibril self-assembly. Chem. Sci. 2018;9:5937–5948. doi: 10.1039/C8SC01479E. PubMed DOI PMC
Hasecke F., Niyangoda C., et al. Hoyer W. Protofibril–fibril interactions inhibit amyloid fibril assembly by obstructing secondary nucleation. Angew. Chemie. 2021;133:3053–3058. doi: 10.1002/ange.202010098. PubMed DOI PMC