Mal de Río Cuarto virus infection causes hormone imbalance and sugar accumulation in wheat leaves
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PNBIO 1131022
Instituto National de Tecnología Agropecuaria (INTA)
PICT 2012 N 0391
Agencia Nacional de Promoción Científica y Tecnológica
PubMed
30902042
PubMed Central
PMC6431059
DOI
10.1186/s12870-019-1709-y
PII: 10.1186/s12870-019-1709-y
Knihovny.cz E-zdroje
- Klíčová slova
- Disease symptoms, Fijivirus, MRCV, Plant hormones, Reoviridae, SWEET transporters, Sucrose metabolism, Trehalose 6-phosphate, Wheat,
- MeSH
- brassinosteroidy metabolismus MeSH
- cukry metabolismus MeSH
- cytokininy metabolismus MeSH
- gibereliny metabolismus MeSH
- interakce hostitele a patogenu fyziologie MeSH
- kyseliny indoloctové metabolismus MeSH
- listy rostlin metabolismus virologie MeSH
- nemoci rostlin virologie MeSH
- pšenice genetika metabolismus virologie MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin metabolismus MeSH
- Reoviridae patogenita MeSH
- stanovení celkové genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- brassinosteroidy MeSH
- cukry MeSH
- cytokininy MeSH
- gibereliny MeSH
- kyseliny indoloctové MeSH
- regulátory růstu rostlin MeSH
BACKGROUND: Mal de Río Cuarto virus (MRCV) infects several monocotyledonous species including maize and wheat. Infected plants show shortened internodes, partial sterility, increased tillering and reduced root length. To better understand the molecular basis of the plant-virus interactions leading to these symptoms, we combined RNA sequencing with metabolite and hormone measurements. RESULTS: More than 3000 differentially accumulated transcripts (DATs) were detected in MRCV-infected wheat plants at 21 days post inoculation compared to mock-inoculated plants. Infected plants exhibited decreased levels of TaSWEET13 transcripts, which are involved in sucrose phloem loading. Soluble sugars, starch, trehalose 6-phosphate (Tre6P), and organic and amino acids were all higher in MRCV-infected plants. In addition, several transcripts related to plant hormone metabolism, transport and signalling were increased upon MRCV infection. Transcripts coding for GA20ox, D14, MAX2 and SMAX1-like proteins involved in gibberellin biosynthesis and strigolactone signalling, were reduced. Transcripts involved in jasmonic acid, ethylene and brassinosteroid biosynthesis, perception and signalling and in auxin transport were also altered. Hormone measurements showed that jasmonic acid, brassinosteroids, abscisic acid and indole-3-acetic acid were significantly higher in infected leaves. CONCLUSIONS: Our results indicate that MRCV causes a profound hormonal imbalance that, together with alterations in sugar partitioning, could account for the symptoms observed in MRCV-infected plants.
Department of Soil and Crop Sciences Colorado State University Fort Collins CO USA
Instituto de Agrobiotecnología del Litoral UNL CONICET FBCB Santa Fe Argentina
Instituto de Biotecnología CICVyA INTA CONICET Hurlingham Buenos Aires Argentina
Instituto de Patología Vegetal CIAP INTA Córdoba Argentina
Max Planck Institute of Molecular Plant Physiology Potsdam Golm Germany
Zobrazit více v PubMed
Lenardón SL, March GJ, Nome SF, Ornaghi JA. Recent outbreak of “Mal de Río Cuarto” virus on corn in Argentina. Plant Dis. 1998;82(4):448. doi: 10.1094/PDIS.1998.82.4.448C. PubMed DOI
Wang HD, Chen JP, Wang AG, Jiang XH, Adams MJ. Studies on the epidemiology and yield losses from rice black-streaked dwarf disease in a recent epidemic in Zhejiang province. China Plant Pathol. 2009;58(5):815–825. doi: 10.1111/j.1365-3059.2009.02091.x. DOI
Zhou G, Xu D, Xu D, Zhang M. Southern rice black-streaked dwarf virus: A white-backed planthopper-transmitted fijivirus threatening rice production in Asia. Front Microbiol. 2013;4(SEP):1–9. PubMed PMC
Truol GA, Usugi T, Hirao J, Arneodo JD, Gimenez Pecci M, Laguna IG. Transmisión experimental del virus del Mal de Río Cuarto por Delphacodes kuscheli. Phytopatologia Bras. 2001;26(1):39–44. doi: 10.1590/S0100-41582001000100007. DOI
Rodriguez Pardina PE, Gimenez Pecci MP, Laguna IG, Dagoberto E, Truol G. Wheat: a new natural host for the Mal de Río Cuarto virus in the endemic disease area, Río Cuarto, Córdoba Province, Argentina. Plant Dis. 1998;82:149–152. doi: 10.1094/PDIS.1998.82.2.149. PubMed DOI
Mattio MF, Cassol A, Marino de Remes Lenicov AN, Truol G. Tagosodes orizicolus: nuevo vector potencial del Mal de Río Cuarto virus. Trop Plant Pathol. 2008;33(3):237–240. doi: 10.1590/S1982-56762008000300010. DOI
Velázquez PD, Arneodo JD, Guzmán FA, Conci LR, Truol GA. Delphacodes haywardi muir, a new natural vector of Mal de Río Cuarto virus in Argentina. J Phytopathol. 2003;151:669–672. doi: 10.1046/j.1439-0434.2003.00786.x. DOI
Velázquez PD, De Remes Lenicov AMM, Truol GA. Caenodelphax teapae (fowler) (hemiptera: delphacidae): a new natural vector of the Mal de Río Cuarto virus (MRCV, fijivirus) in Argentina. AgriScientia. 2017;34:39. doi: 10.31047/1668.298x.v34.n1.17357. DOI
Marino de Remes Lenicov AM, Tesón A, Dagoberto E, Huguet N. Hallazgo de uno de los vectores del Mal de Río Cuarto virus en maíz. Gac Agronómica. 1985;25:251–258.
Arneodo JD, Guzmán FA, Conci LR, Laguna IG, Truol GA. Transmission features of Mal de Río Cuarto virus in wheat by its planthopper vector Delphacodes kuscheli. Ann Appl Biol. 2002;141:195–200. doi: 10.1111/j.1744-7348.2002.tb00212.x. DOI
Uauy C, Wulff BBH, Dubcovsky J. Combining Traditional Mutagenesis with New High-Throughput Sequencing and Genome Editing to Reveal Hidden Variation in Polyploid Wheat. Annu Rev Genet. 2017;51(September):435–454. doi: 10.1146/annurev-genet-120116-024533. PubMed DOI
Clavijo BJ, Venturini L, Schudoma C, Accinelli GG, Kaithakottil G, Wright J, et al. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res. 2017;27(5):885–896. doi: 10.1101/gr.217117.116. PubMed DOI PMC
Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361(6403):eaar7191. doi: 10.1126/science.aar7191. PubMed DOI
de Haro LA, Dumón AD, Mattio MF, Argüello Caro EB, Llauger G, Zavallo D, et al. Mal de Río Cuarto virus infection triggers the production of distinctive viral-derived siRNA profiles in wheat and its planthopper vector. Front Plant Sci. 2017;8(May):1–11. PubMed PMC
Culver JN, Padmanabhan MS. Virus-induced disease: altering host physiology one interaction at a time. Annu Rev Phytopathol. 2007;45(1):221–243. doi: 10.1146/annurev.phyto.45.062806.094422. PubMed DOI
Mandadi KK, Scholthof K-BG. Plant immune responses against viruses: how does a virus cause disease? Plant Cell. 2013;25(5):1489–1505. doi: 10.1105/tpc.113.111658. PubMed DOI PMC
Wang A. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu Rev Phytopathol. 2015;53:45. doi: 10.1146/annurev-phyto-080614-120001. PubMed DOI
Alazem M, Lin NS. Roles of plant hormones in the regulation of host-virus interactions. Mol Plant Pathol. 2015;16(5):529–540. doi: 10.1111/mpp.12204. PubMed DOI PMC
Alazem M, Lin N-S. Antiviral roles of abscisic acid in plants. Front Plant Sci. 2017;8(October):1–10. PubMed PMC
Biemelt S, Sonnewald U. Plant-microbe interactions to probe regulation of plant carbon metabolism. J Plant Physiol. 2006;163:307. doi: 10.1016/j.jplph.2005.10.011. PubMed DOI
Lemoine R, La Camera S, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, et al. Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci. 2013;4:272. doi: 10.3389/fpls.2013.00272. PubMed DOI PMC
Bezrutczyk M, Yang J, Eom J-SS, Prior M, Sosso D, Hartwig T, et al. Sugar flux and signaling in plant-microbe interactions. Plant J. 2018;93(4):675–85. PubMed
Llave C. Dynamic cross-talk between host primary metabolism and viruses during infections in plants. Curr Opin Virol. 2016;19:50–55. doi: 10.1016/j.coviro.2016.06.013. PubMed DOI
Tccsi L, Smith AM, Maule AJ, Leegood RC. A spatial analysis of physiological changes associated with infection of cotyledons of marrow plants with cucumber mosaic virus. Plant Physiol. 1996;11(1):975–985. doi: 10.1104/pp.111.4.975. PubMed DOI PMC
Balachandran S, Hurry VM, Kelley SE, Osmond CB, Robinson SA, Rohozinski J, et al. Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from the perspective of photosynthesis. Physiol Plant. 1997;100(2):203–213. doi: 10.1111/j.1399-3054.1997.tb04776.x. DOI
Herbers K, Takahata Y, Melzer M, Mock H-P, Hajirezaei M, Sonnewald U. Regulation of carbohydrate partitioning during the interaction of potato virus Y with tobacco. Mol Plant Pathol. 2000;1:51. doi: 10.1046/j.1364-3703.2000.00007.x. PubMed DOI
Borrill P, Harrington SA, Uauy C. Genome-Wide Sequence and Expression Analysis of the NAC Transcription Factor Family in Polyploid Wheat. G3. 2017;7(September). 10.1534/g3.117.043679. PubMed PMC
Lunn JE. Sucrose Metabolism. eLS. 2016;(2008):1–9.
Huynh BL, Mather DE, Schreiber AW, Toubia J, Baumann U, Shoaei Z, et al. Clusters of genes encoding fructan biosynthesizing enzymes in wheat and barley. Plant Mol Biol. 2012;80(3):299–314. doi: 10.1007/s11103-012-9949-3. PubMed DOI
Wan H, Wu L, Yang Y, Zhou G, Ruan YL. Evolution of sucrose metabolism: the dichotomy of Invertases and beyond. Trends Plant Sci. 2018;23(2):163–177. doi: 10.1016/j.tplants.2017.11.001. PubMed DOI
Yadav UP, Ivakov A, Feil R, Duan GY, Walther D, Giavalisco P, et al. The sucrose-trehalose 6-phosphate (Tre6P) nexus: specificity and mechanisms of sucrose signalling by. J Exp Bot. 2014;65(4):1051–1068. doi: 10.1093/jxb/ert457. PubMed DOI PMC
Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M. Trehalose metabolism in plants. Plant J. 2014;79:544. doi: 10.1111/tpj.12509. PubMed DOI
Figueroa CM, Feil R, Ishihara H, Watanabe M, Kölling K, Krause U, et al. Trehalose 6-phosphate coordinates organic and amino acid metabolism with carbon availability. Plant J. 2016;85(3):410–423. doi: 10.1111/tpj.13114. PubMed DOI
Fichtner F, Barbier FF, Feil R, Watanabe M, Annunziata MG, Chabikwa TG, et al. Trehalose 6-phosphate is involved in triggering axillary bud outgrowth in garden pea (Pisum sativum L.) Plant J. 2017;92(4):611–623. doi: 10.1111/tpj.13705. PubMed DOI
Lunn JE. Gene families and evolution of trehalose metabolism in plants. Funct Plant Biol. 2007;34(6):550–563. doi: 10.1071/FP06315. PubMed DOI
Yang HL, Liu YJ, Wang CL, Zeng QY. Molecular evolution of Trehalose-6-phosphate synthase (TPS) gene family in populus, arabidopsis and rice. PLoS One. 2012;7(8):e42438. doi: 10.1371/journal.pone.0042438. PubMed DOI PMC
Ramon M, De Smet I, Vandesteene L, Naudts M, Leyman B, Van Dijck P, et al. Extensive expression regulation and lack of heterologous enzymatic activity of the class II trehalose metabolism proteins from Arabidopsis thaliana. Plant Cell Environ. 2009;32(8):1015–1032. doi: 10.1111/j.1365-3040.2009.01985.x. PubMed DOI
Delorge I, Figueroa CM, Feil R, Lunn JE, Van Dijck P. Trehalose-6-phosphate synthase 1 is not the only active TPS in Arabidopsis thaliana. Biochem J. 2015;466:283. doi: 10.1042/BJ20141322. PubMed DOI
Barraza A, Contreras-Cubas C, Estrada-Navarrete G, Reyes JL, Juárez-Verdayes MA, Avonce N, et al. The class II trehalose 6-phosphate synthase gene PvTPS9 modulates trehalose metabolism in Phaseolus vulgaris nodules. Front Plant Sci. 2016;7:1589. doi: 10.3389/fpls.2016.01589. PubMed DOI PMC
Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, et al. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature. 2010;468(7323):527–532. doi: 10.1038/nature09606. PubMed DOI PMC
Chen LQ. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytol. 2014;201(4):1150–1155. doi: 10.1111/nph.12445. PubMed DOI
Chen L-Q, Qu X-Q, Hou B-H, Sosso D, Osorio S, Fernie AR, et al. Sucrose Efflux Mediated by SWEET Proteins as a Key Step for Phloem Transport. Science. 2012;335(6065):207–211. doi: 10.1126/science.1213351. PubMed DOI
Chen L-Q, Cheung LS, Feng L, Tanner W, Frommer WB. Transport of sugars. Annu Rev Biochem. 2015;84(1):865–894. doi: 10.1146/annurev-biochem-060614-033904. PubMed DOI
Lin IW, Sosso D, Chen LQ, Gase K, Kim SG, Kessler D, et al. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature. 2014;508(7497):546–549. doi: 10.1038/nature13082. PubMed DOI
Wan Y, King R, Mitchell RAC, Hassani-Pak K, Hawkesford MJ. Spatiotemporal expression patterns of wheat amino acid transporters reveal their putative roles in nitrogen transport and responses to abiotic stress. Sci Rep. 2017;7(1):1–13. doi: 10.1038/s41598-016-0028-x. PubMed DOI PMC
Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, et al. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature. 2007;445(7128):652–655. doi: 10.1038/nature05504. PubMed DOI
Mason MG, Mathews DE, Argyros DA, Maxwell BB, Kieber JJ, Alonso JM, et al. Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell. 2005;17(11):3007–3018. doi: 10.1105/tpc.105.035451. PubMed DOI PMC
Choe S, Dilkes BP, Gregory BD, Ross AS, Yuan H, Noguchi T, et al. The Arabidopsis dwarf1 Mutant Is Defective in the Conversion of 24-Methylenecholesterol to Campesterol in Brassinosteroid Biosynthesis Published by: American Society of Plant Biologists (ASPB). 2016; 10.1104/pp.119.3.897. PubMed PMC
Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, Hasegawa Y, et al. The Rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell. 2005;17(8):2243–2254. doi: 10.1105/tpc.105.030973. PubMed DOI PMC
Choe S, Tanaka A, Noguchi T, Fujioka S, Takatsuto S, Ross AS, et al. Lesions in the sterol D 7 reductase gene of Arabidopsis cause dwar ® sm due to a block in brassinosteroid biosynthesis. 2000. p. 21. PubMed
Li J, Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell. 1997;90:929–938. doi: 10.1016/S0092-8674(00)80357-8. PubMed DOI
Bai M-Y, Zhang L-Y, Gampala SS, Zhu S-W, Song W-Y, Chong K, et al. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci U S A. 2007;104(34):13839–13844. doi: 10.1073/pnas.0706386104. PubMed DOI PMC
Ranocha P, Dima O, Nagy R, Felten J, Corratge-Faillie C, Novak O, et al. Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nat Commun. 2013;4:2625. doi: 10.1038/ncomms3625. PubMed DOI PMC
Kepinski S, Leyser O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature. 2005;435(7041):446–451. doi: 10.1038/nature03542. PubMed DOI
Mravec J, Skůpa P, Bailly A, Hoyerová K, Křeček P, Bielach A, et al. Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature. 2009;459(7250):1136–1140. doi: 10.1038/nature08066. PubMed DOI
Barbez E, Kubeš M, Rolčík J, Béziat C, Pěnčík A, Wang B, et al. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature. 2012;485(7396):119–122. doi: 10.1038/nature11001. PubMed DOI
Lavy M, Estelle M. Mechanisms of auxin signaling. Development. 2016;143:3226. doi: 10.1242/dev.131870. PubMed DOI PMC
Mano Y, Nemoto K. The pathway of auxin biosynthesis in plants. J Exp Bot. 2012;63(8):2853–2872. doi: 10.1093/jxb/ers091. PubMed DOI
Xu Z, Yoo Y, Hwang I. Abscisic Acid: Metabolism, Transport and Signaling. 2014. pp. 77–87.
Park S, Fung P, Nishimura N, Jensen DR, Zhao Y, Lumba S, et al. Abscisic acid inhibits PP2Cs via the PYR/PYL family of ABA- binding START proteins. Science. 2010;324(5930):1068–1071. PubMed PMC
Li C, Liu Z, Zhang Q, Wang R, Xiao L, Ma H, et al. SKP1 is involved in abscisic acid signalling to regulate seed germination, stomatal opening and root growth in Arabidopsis thaliana. Plant Cell Environ. 2012;35:952. doi: 10.1111/j.1365-3040.2011.02464.x. PubMed DOI
Zhang C, Zhang F, Zhou J, Fan Z, Chen F, Ma H, et al. Overexpression of a phytochrome-regulated tandem zinc finger protein gene, OsTZF1, confers hypersensitivity to ABA and hyposensitivity to red light and far-red light in rice seedlings. Plant Cell Rep. 2012;31(7):1333–1343. doi: 10.1007/s00299-012-1252-x. PubMed DOI
Rzewuski G, Sauter M. Ethylene biosynthesis and signaling in rice. Plant Sci. 2008;175(1–2):32–42. doi: 10.1016/j.plantsci.2008.01.012. DOI
Rashid M, Guangyuan H, Guangxiao Y, Hussain J, Xu Y. AP2/ERF transcription factor in rice: genome-wide anvas and yntenic relationships between monocots and udicots. Evol Bioinforma. 2012;2012(8):321–355. PubMed PMC
Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Ann Bot. 2013;6:1021–1058. doi: 10.1093/aob/mct067. PubMed DOI PMC
Liu H, Carvalhais LC, Kazan K, Schenk PM. Development of marker genes for jasmonic acid signaling in shoots and roots of wheat. Plant Signal Behav. 2016;11(5):1–8. PubMed PMC
Seo HS, Song JT, Cheong J-J, Lee Y-H, Lee Y-W, Hwang I, et al. Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci. 2001;98(8):4788–4793. doi: 10.1073/pnas.081557298. PubMed DOI PMC
Pearce S, Huttly AK, Prosser IM, Li Y, Vaughan SP, Gallova B, et al. Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family. BMC Plant Biol. 2015;15:130. doi: 10.1186/s12870-015-0520-7. PubMed DOI PMC
Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature. 2005;437(7059):693–698. doi: 10.1038/nature04028. PubMed DOI
Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, et al. Strigolactone inhibition of shoot branching. Nature. 2008;455:189. doi: 10.1038/nature07271. PubMed DOI
Bennett T, Leyser O. Strigolactone signalling: standing on the shoulders of DWARFs. Curr Opin Plant Biol. 2014;22:7. doi: 10.1016/j.pbi.2014.08.001. PubMed DOI
Teichmann T, Muhr M. Shaping plant architecture. Front Plant Sci. 2015;6:233. doi: 10.3389/fpls.2015.00233. PubMed DOI PMC
Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, et al. D14, a strigolactone-Insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol. 2009;50(8):1416–1424. doi: 10.1093/pcp/pcp091. PubMed DOI
Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, et al. D14-SCF D3 -dependent degradation of D53 regulates strigolactone signalling. Nature. 2013;504:406. doi: 10.1038/nature12878. PubMed DOI PMC
Stirnberg P, van De Sande K, Leyser HMO. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development. 2002;129(5):1131–1141. PubMed
Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol. 2005;46(1):79–86. doi: 10.1093/pcp/pci022. PubMed DOI
Soundappan I, Bennett T, Morffy N, Liang Y, Stanga JP, Abbas A, et al. SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to Strigolactones and Karrikins in Arabidopsis. Plant Cell. 2015;27(11):3143–3159. doi: 10.1105/tpc.15.00562. PubMed DOI PMC
Wang L, Wang B, Jiang L, Liu X, Li X, Lu Z, et al. Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-like SMXL repressor proteins for ubiquitination and degradation. Plant Cell. 2015;27(11):3128–3142. doi: 10.1105/tpc.15.00605. PubMed DOI PMC
Awika JM. Major cereal grains production and use around the world. Adv Cereal Sci Implic to food Process Heal Promot. 2011;1089:1–13. doi: 10.1021/bk-2011-1089.ch001. DOI
Maroniche G, Mongelli VC, Llauger G, Alfonso V, Taboga O, del Vas M. In vivo subcellular localization of Mal de Río Cuarto virus (MRCV) non-structural proteins in insect cells reveals their putative functions. Virology. 2012;430(2):81–89. doi: 10.1016/j.virol.2012.04.016. PubMed DOI
Pons ABS. Inmunodetección y localización subcelular in vivo de las proteínas codificadas por el segmento bicistrónico S7 del Mal de Río Cuarto virus (MRCV) en hospedantes vegetales. Córdoba: Universidad Nacional de Córdoba; 2012.
Liu H, Wei C, Zhong Y, Li Y. Rice black-streaked dwarf virus minor core protein P8 is a nuclear dimeric protein and represses transcription in tobacco protoplasts. FEBS Lett. 2007;581(13):2534–2540. doi: 10.1016/j.febslet.2007.04.071. PubMed DOI
Jones JDG, Dangl JL. The plant immune system. Nature. 2006;444(7117):323–329. doi: 10.1038/nature05286. PubMed DOI
Dodds PN, Rathjen JP. Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet. 2010;11(8):539–548. doi: 10.1038/nrg2812. PubMed DOI
Di Feo L, Laguna IG, Biderbost EB. Alteraciones fisiológicas asociadas a la infección con Mal de Río Cuarto virus (MRCV) y a fitotoxicidad provocada por su insecto vector (Delphacodes kuscheli Fennah) en trigo. Trop Plant Pathol. 2010;35(2):79–87. doi: 10.1590/S1982-56762010000200002. DOI
Shen J, Chen X, Chen J, Sun L. A phloem-limited fijivirus induces the formation of neoplastic phloem tissues that house virus multiplication in the host plant. Sci Rep. 2016;6(May):29848. doi: 10.1038/srep29848. PubMed DOI PMC
Martins MCM, Hejazi M, Fettke J, Steup M, Feil R, Krause U, et al. Feedback inhibition of starch degradation in Arabidopsis leaves mediated by Trehalose 6-phosphate. Plant Physiol. 2013;163(3):1142–63. doi: 10.1104/pp.113.226787. PubMed DOI PMC
dos Anjos L, Pandey PK, Moraes TA, Feil R, Lunn JE, Stitt M. Feedback regulation by trehalose 6-phosphate slows down starch mobilization below the rate that would exhaust starch reserves at dawn in Arabidopsis leaves. Plant Direct. 2018;2(8):e00078. doi: 10.1002/pld3.78. PubMed DOI PMC
Bledsoe SW, Henry C, Griffiths CA, Paul MJ, Feil R, Lunn JE, et al. The role of Tre6P and SnRK1 in maize early kernel development and events leading to stress-induced kernel abortion. BMC Plant Biol. 2017;17:74. doi: 10.1186/s12870-017-1018-2. PubMed DOI PMC
Lauxmann MA, Annunziata MG, Brunoud G, Wahl V, Koczut A, Burgos A, et al. Reproductive failure in Arabidopsis thaliana under transient carbohydrate limitation: flowers and very young siliques are jettisoned and the meristem is maintained to allow successful resumption of reproductive growth. Plant Cell Environ. 2016;39:745. doi: 10.1111/pce.12634. PubMed DOI
Harthill JE, Meek SEM, Morrice N, Peggie MW, Borch J, Wong BHC, et al. Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase 5 in response to 2-deoxyglucose. Plant J. 2006;47(2):211–223. doi: 10.1111/j.1365-313X.2006.02780.x. PubMed DOI
Vandesteene L, Ramon M, Le Roy K, Van Dijck P, Rolland F. A single active trehalose-6-P synthase (TPS) and a family of putative regulatory TPS-like proteins in arabidopsis. Mol Plant. 2010;3(2):406–419. doi: 10.1093/mp/ssp114. PubMed DOI
Krasileva KV, Vasquez-Gross HA, Howell T, Bailey P, Paraiso F, Clissold L, et al. Uncovering hidden variation in polyploid wheat. Proc Natl Acad Sci. 2017:201619268 Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1619268114. PubMed DOI PMC
Chandran D. Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance. IUBMB Life. 2015;67(7):461–471. doi: 10.1002/iub.1394. PubMed DOI
Yuan M, Wang S. Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms. Mol Plant. 2013;6(3):665–674. doi: 10.1093/mp/sst035. PubMed DOI
Mizuno H, Kasuga S, Kawahigashi H. The sorghum SWEET gene family: stem sucrose accumulation as revealed through transcriptome profiling. Biotechnol Biofuels. 2016;9(1):127. doi: 10.1186/s13068-016-0546-6. PubMed DOI PMC
Gebauer P, Korn M, Engelsdorf T, Sonnewald U, Koch C, Voll LM. Sugar accumulation in leaves of Arabidopsis sweet11/sweet12 double mutants enhances priming of the salicylic acid-mediated defense response. Front Plant Sci. 2017;8(August):1–13. PubMed PMC
Bezrutczyk M, Hartwig T, Horschman M, Char SN, Yang J, Yang B, et al. Impaired phloem loading in zmsweet13a, b, c sucrose transporter triple knock-out mutants in Zea mays. New Phytol. 2018;218(2):594–603. doi: 10.1111/nph.15021. PubMed DOI
Kanno Y, Oikawa T, Chiba Y, Ishimaru Y, Shimizu T, Sano N, et al. AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nat Commun. 2016;7:1–11. doi: 10.1038/ncomms13245. PubMed DOI PMC
Noël G, Tognetti JA, Pontis HG. Protein kinase and phosphatase activities are involved in fructan synthesis initiation mediated by sugars. Planta. 2001;213(4):640–646. doi: 10.1007/s004250100550. PubMed DOI
Blasing OE. Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. Plant Cell Online. 2005;17(12):3257–3281. doi: 10.1105/tpc.105.035261. PubMed DOI PMC
Bolouri Moghaddam MR, Van Den Ende W. Sweet immunity in the plant circadian regulatory network. J Exp Bot. 2013;64(6):1439–1449. doi: 10.1093/jxb/ert046. PubMed DOI
Wang H, Xu D, Pu L, Zhou G. Southern rice black-streaked dwarf virus alters insect vectors’ host orientation preferences to enhance spread and increase Rice ragged stunt virus co-infection. Phytopathology. 2014;104(2):196–201. doi: 10.1094/PHYTO-08-13-0227-R. PubMed DOI
Lu G, Zhang T, He Y, Zhou G. Virus altered rice attractiveness to planthoppers is mediated by volatiles and related to virus titre and expression of defence and volatile-biosynthesis genes. Sci Rep. 2016;6(November):1–10. PubMed PMC
Ljung K, Nemhauser JL, Perata P. New mechanistic links between sugar and hormone signalling networks. Curr Opin Plant Biol. 2015;25:130–7. PubMed
Ueguchi-Tanaka M, Nakajima M, Motoyuki A, Matsuoka M. Gibberellin receptor and its role in gibberellin signaling in plants. Annu Rev Plant Biol. 2007;58:183–198. doi: 10.1146/annurev.arplant.58.032806.103830. PubMed DOI
Tao T, Zhou CJ, Wang Q, Chen XR, Sun Q, Zhao TY, et al. Rice black streaked dwarf virus P7-2 forms a SCF complex through binding to Oryza sativa SKP1-like proteins, and interacts with GID2 involved in the gibberellin pathway. PLoS One. 2017;12(5):1–16. doi: 10.1371/journal.pone.0177518. PubMed DOI PMC
Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol. 2008;59(1):225–251. doi: 10.1146/annurev.arplant.59.032607.092804. PubMed DOI
Spielmeyer W, Ellis MH, Chandler PM. Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci. 2002;99(13):9043–9048. doi: 10.1073/pnas.132266399. PubMed DOI PMC
Jia QJ, Zhang JJ, Westcott S, Zhang XQ, Bellgard M, Lance R, et al. GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Funct Integr Genomics. 2009;9(2):255–262. doi: 10.1007/s10142-009-0120-4. PubMed DOI
Riefler M. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell Online. 2006;18(1):40–54. doi: 10.1105/tpc.105.037796. PubMed DOI PMC
Bartrina I, Jensen H, Novák O, Strnad M, Werner T, Schmülling T. Gain-of-function mutants of the Cytokinin receptors AHK2 and AHK3 regulate plant organ size, flowering time and plant longevity. Plant Physiol. 2017;173(3):1783–1797. doi: 10.1104/pp.16.01903. PubMed DOI PMC
Brenner WG, Ramireddy E, Heyl A, Schmülling T. Gene regulation by cytokinin in Arabidopsis. Front Plant Sci. 2012;3(January):1–22. PubMed PMC
Singh A, Breja P, Khurana JP, Khurana P. Wheat Brassinosteroid-Insensitive1 (TaBRI1) interacts with members of TaSERK gene family and cause early flowering and seed yield enhancement in arabidopsis. PLoS One. 2016;11(6):1–22. PubMed PMC
Mauch-Mani B, Mauch F. The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol. 2005;8(4):409–414. doi: 10.1016/j.pbi.2005.05.015. PubMed DOI
Xie B, Wang X, Zhu M, Zhang Z, Hong Z. CalS7 encodes a callose synthase responsible for callose deposition in the phloem. Plant J. 2011;65(1):1–14. doi: 10.1111/j.1365-313X.2010.04399.x. PubMed DOI
Achon MA, Serrano L, Sabate J, Porta C. Understanding the epidemiological factors that intensify the incidence of maize rough dwarf disease in Spain. Ann Appl Biol. 2015;166(2):311–320. doi: 10.1111/aab.12184. DOI
Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol. 2014;32(9):947–951. doi: 10.1038/nbt.2969. PubMed DOI
Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, et al. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun. 2017;8:1–5. doi: 10.1038/s41467-016-0009-6. PubMed DOI PMC
Argüello Caro EB, Maroniche GA, Dumón AD, Sagadín MB, del Vas M, Truol G. High viral load in the Planthopper vector Delphacodes kuscheli (Hemiptera: Delphacidae) is associated with successful transmission of Mal de Río Cuarto virus. Ann Entomol Soc Am. 2013;106(1):93–99. doi: 10.1603/AN12076. DOI
Pearce S, Kippes N, Chen A, Debernardi JM, Dubcovsky J. RNA-seq studies using wheat PHYTOCHROME B and PHYTOCHROME C mutants reveal shared and specific functions in the regulation of flowering and shade-avoidance pathways. BMC Plant Biol. 2016;16(1):1–19. doi: 10.1186/s12870-016-0831-3. PubMed DOI PMC
Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics. 2010;26(7):873–881. doi: 10.1093/bioinformatics/btq057. PubMed DOI PMC
Anders S, Pyl PT, Huber W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–169. doi: 10.1093/bioinformatics/btu638. PubMed DOI PMC
Pearce S, Vazquez-Gross H, Herin SY, Hane D, Wang Y, Gu YQ, et al. WheatExp: an RNA-seq expression database for polyploid wheat. BMC Plant Biol. 2015;15(1):1–8. doi: 10.1186/s12870-014-0410-4. PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):1–21. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Kinsella RJ, Kähäri A, Haider S, Zamora J, Proctor G, Spudich G, et al. Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database. 2011;2011(February):1–9. PubMed PMC
Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/ Bioconductor package biomaRt. Nat Protoc. 2009;4(8):1184–1191. doi: 10.1038/nprot.2009.97. PubMed DOI PMC
Luo MC, Gu YQ, Puiu D, Wang H, Twardziok SO, Deal KR, et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature. 2017;551(7681):498–502. doi: 10.1038/nature24486. PubMed DOI PMC
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3-new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):1–12. doi: 10.1093/nar/gks596. PubMed DOI PMC
Ramakers C, Ruijter JM, Lekanne Deprez RH, Moorman AFM. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett. 2003;339(1):62–66. doi: 10.1016/S0304-3940(02)01423-4. PubMed DOI
Zhang K, Niu S, Di D, Shi L, Liu D, Cao X, et al. Selection of reference genes for gene expression studies in virus-infected monocots using quantitative real-time PCR. J Biotechnol. 2013;168(1):7–14. doi: 10.1016/j.jbiotec.2013.08.008. PubMed DOI
Di Rienzo JA. fgStatistics [Internet] 2009.
Stitt M, Lilley RMC, Gerhardt R, Heldt HW. Metabolite levels in specific cells and subcellular compartments of plant leaves. Methods Enzymol. 1989;174(C):518–552. doi: 10.1016/0076-6879(89)74035-0. DOI
Cross JM, von Korff M, Altmann T, Bartzetko L, Sulpice R, Gibon Y, et al. Variation of enzyme activities and metabolite levels in 24 Arabidopsis accessions growing in carbon-limited conditions. Plant Physiol. 2006;142(4):1574–1588. doi: 10.1104/pp.106.086629. PubMed DOI PMC
Lunn JE, Feil R, Hendriks JHM, Gibon Y, Morcuende R, Osuna D, et al. Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADPglucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem J. 2006;397(1):139–148. doi: 10.1042/BJ20060083. PubMed DOI PMC
Gouy M, Guindon S, Gascuel O. Sea view version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27(2):221–224. doi: 10.1093/molbev/msp259. PubMed DOI
Antoniadi I, Plačková L, Simonovik B, Doležal K, Turnbull C, Ljung K, et al. Cell-type-specific Cytokinin distribution within the Arabidopsis primary root apex. Plant Cell. 2015;27(7):1955–1967. doi: 10.1105/tpc.15.00176. PubMed DOI PMC
Svačinová J, Novák O, Plačková L, Lenobel R, Holík J, Strnad M, et al. A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods. 2012;8(1):1–14. doi: 10.1186/1746-4811-8-17. PubMed DOI PMC
Hoyerová K, Gaudinová A, Malbeck J, Dobrev PI, Kocábek T, Šolcová B, et al. Efficiency of different methods of extraction and purification of cytokinins. Phytochemistry. 2006;67(11):1151–1159. doi: 10.1016/j.phytochem.2006.03.010. PubMed DOI
Floková K, Tarkowská D, Miersch O, Strnad M, Wasternack C, Novák O. UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry. 2014;105:147–157. doi: 10.1016/j.phytochem.2014.05.015. PubMed DOI
Tarkowská D, Novák O, Oklestkova J, Strnad M. The determination of 22 natural brassinosteroids in a minute sample of plant tissue by UHPLC–ESI–MS/MS. Anal Bioanal Chem. 2016;408(24):6799–6812. doi: 10.1007/s00216-016-9807-2. PubMed DOI