Surface-Enhanced Raman Spectroscopy for Adenine Detection in Five Selected Bacterial Strains Under Stress Conditions
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
101135175
EU Horizont Europe
LM2023050
MEYS CZE
PubMed
40807793
PubMed Central
PMC12349020
DOI
10.3390/s25154629
PII: s25154629
Knihovny.cz E-zdroje
- Klíčová slova
- Ag-NPs, Au-NPs, Escherichia coli, SERS, Staphylococcus aureus, phenylalanine,
- MeSH
- adenin * analýza izolace a purifikace metabolismus MeSH
- Bacteria * metabolismus MeSH
- fyziologický stres * MeSH
- kovové nanočástice chemie MeSH
- Ramanova spektroskopie * metody MeSH
- stříbro chemie MeSH
- zlato chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenin * MeSH
- stříbro MeSH
- zlato MeSH
This pilot study investigated the metabolic responses of five selected bacteria to physiological stress. Surface-enhanced Raman spectroscopy was used to analyze spectral changes associated with the release of adenine, a key metabolite indicative of stress conditions. Laboratory-synthesized spherical silver and gold nanoparticles, which remained stable over an extended period, were employed as enhanced surfaces. Bacterial cultures were analyzed under standard conditions and in the presence of a selected stressor-demineralized water-inducing osmotic stress. The results showed that the adenine signal originated from metabolites released into the surrounding environment rather than directly from the bacterial cell wall. The study confirms the suitability of these cost-effective and easily synthesized stable nanoparticles for the qualitative detection of bacterial metabolites using a commercially available Raman instrument.
Zobrazit více v PubMed
Lee K.S., Landry Z., Pereira F.C., Wagner M., Berry D., Huang W.E., Taylor G.T., Kneipp J., Popp J., Zhang M., et al. Raman microspectroscopy for microbiology. Nat. Rev. Methods Prim. 2021;1:80. doi: 10.1038/s43586-021-00075-6. DOI
Madzharova F., Heiner Z., Gühlke M., Kneipp J. Surface-Enhanced Hyper-Raman Spectra of Adenine, Guanine, Cytosine, Thymine, and Uracil. J. Phys. Chem. C Nanomater Interfaces. 2016;120:15415–15423. doi: 10.1021/acs.jpcc.6b02753. (In English) PubMed DOI PMC
Lin L.L., Alvarez-Puebla R., Liz-Marzán L.M., Trau M., Wang J., Fabris L., Wang X., Liu G., Xu S., Han X.X., et al. Surface-enhanced Raman spectroscopy for biomedical applications: Recent advances and future challenges. ACS Appl. Mater. Interfaces. 2025;17:16287–16379. doi: 10.1021/acsami.4c17502. PubMed DOI PMC
Ježek J., Pilát Z., Bernatová S., Kirchhoff J., Tannert A., Neugebauer U., Samek O., Zemánek P. Laser tweezers Raman spectroscopy of E. coli under antibiotic stress in microfluidic chips; Proceedings of the 21st Czech-Polish-Slovak Optical Conference on Wave and Quantum Aspects of Contemporary Optics, SPIE; Lednice, Czech Republic. 3–7 September 2018.
Samek O., Bernatova S., Dohnal F. The potential of SERS as an AST methodology in clinical settings. Nanophotonics. 2021;10:20210095. doi: 10.1515/nanoph-2021-0095. DOI
Wang C., Weng G., Li J., Zhu J., Zhao J. A review of SERS coupled microfluidic platforms: From configurations to applications. Anal. Chim. Acta. 2024;1296:342291. doi: 10.1016/j.aca.2024.342291. PubMed DOI
Schlücker S. Surface-enhanced Raman spectroscopy: Concepts and chemical applications. Angew. Chem. Int. Ed. Engl. 2014;53:4756–4795. doi: 10.1002/anie.201205748. (In English) PubMed DOI
Chen X., Tang M., Liu Y., Huang J., Liu Z., Tian H., Zheng Y., de la Chapelle M.L., Zhang Y., Fu W. Surface-enhanced Raman scattering method for the identification of methicillin-resistant Staphylococcus aureus using positively charged silver nanoparticles. Mikrochim Acta. 2019;186:102. doi: 10.1007/s00604-018-3150-6. (In English) PubMed DOI
Efrima S., Zeiri L. Understanding SERS of bacteria. J. Raman Spectrosc. 2008;40:277–288. doi: 10.1002/jrs.2121. DOI
Paccotti N., Boschetto F., Horiguchi S., Marin E., Chiadò A., Novara C., Geobaldo F., Giorgis F., Pezzotti G. Label-Free SERS Discrimination and In Situ Analysis of Life Cycle in Escherichia coli and Staphylococcus epidermidis. Biosensors. 2018;8:131. doi: 10.3390/bios8040131. PubMed DOI PMC
Zhou H., Yang D., Ivleva N.P., Mircescu N.E., Niessner R., Haisch C. SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Anal. Chem. 2014;86:1525–1533. doi: 10.1021/ac402935p. (In English) PubMed DOI
Burnstock G., Verkhratsky A. Evolutionary origins of the purinergic signalling system. Acta Physiol. 2009;195:415–447. doi: 10.1111/j.1748-1716.2009.01957.x. PubMed DOI
Skaldin M., Tuittila M., Zavialov A.V., Zavialov A.V., Perna N. Secreted Bacterial Adenosine Deaminase Is an Evolutionary Precursor of Adenosine Deaminase Growth Factor. Mol. Biol. Evol. 2018;35:2851–2861. doi: 10.1093/molbev/msy193. PubMed DOI
Onyemaobi I.M., Xie Y., Zhang J., Xu L., Xiang L., Lin J., Wu A. Nanomaterials and clinical SERS technology: Broad applications in disease diagnosis. J. Mater. Chem. B. 2025;13:2890–2911. doi: 10.1039/D4TB02525C. PubMed DOI
Premasiri W.R., Chen Y., Williamson P.M., Bandarage D.C., Pyles C., Ziegler L.D. Rapid urinary tract infection diagnostics by surface-enhanced Raman spectroscopy (SERS): Identification and antibiotic susceptibilities. Anal. Bioanal. Chem. 2017;409:3043–3054. doi: 10.1007/s00216-017-0244-7. (In English) PubMed DOI
Yang D., Zhou H., Haisch C., Niessner R., Ying Y. Reproducible E. coli detection based on label-free SERS and mapping. Talanta. 2016;146:457–463. doi: 10.1016/j.talanta.2015.09.006. (In English) PubMed DOI
Premasiri W.R., Gebregziabher Y., Ziegler L.D. On the difference between surface-enhanced raman scattering (SERS) spectra of cell growth media and whole bacterial cells. Appl. Spectrosc. 2011;65:493–499. doi: 10.1366/10-06173. (In English) PubMed DOI PMC
Cheng H.-W., Tsai H.-M., Wang Y.-L. Exploiting Purine as an Internal Standard for SERS Quantification of Purine Derivative Molecules Released by Bacteria. Anal. Chem. 2023;95:16967–16975. doi: 10.1021/acs.analchem.3c03259. PubMed DOI PMC
Lee P.C., Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 1982;86:3391–3395. doi: 10.1021/j100214a025. DOI
Rebrosova K., Samek O., Kizovsky M., Bernatova S., Hola V., Ruzicka F. Raman Spectroscopy—A Novel Method for Identification and Characterization of Microbes on a Single-Cell Level in Clinical Settings. Front. Cell. Infect. Microbiol. 2022;12:866463. doi: 10.3389/fcimb.2022.866463. (In English) PubMed DOI PMC
Brandt N.N., Brovko O.O., Chikishev A.Y., Paraschuk O.D. Optimization of the rolling-circle filter for Raman background subtraction. Appl. Spectrosc. 2006;60:288–293. doi: 10.1366/000370206776342553. (In English) PubMed DOI
Schafer R.W. What Is a Savitzky-Golay Filter? [Lecture Notes] IEEE Signal Process. Mag. 2011;28:111–117. doi: 10.1109/MSP.2011.941097. DOI
Terán M., Ruiz J.J., Loza-Álvarez P., Masip D., Merino D. Open Raman spectral library for biomolecule identification. Chemom. Intell. Lab. Syst. 2025;264:105476. doi: 10.1016/j.chemolab.2025.105476. DOI
Vinod M., Gopchandran K.G. Au, Ag and Au:Ag colloidal nanoparticles synthesized by pulsed laser ablation as SERS substrates. Prog. Nat. Sci. 2014;24:569–578. doi: 10.1016/j.pnsc.2014.10.003. DOI
Graves J.L., Jr., Tajkarimi M., Cunningham Q., Campbell A., Nonga H., Harrison S.H., Barrick J.E. Rapid evolution of silver nanoparticle resistance in Escherichia coli. Front. Genet. 2015;6:42. doi: 10.3389/fgene.2015.00042. (In English) PubMed DOI PMC
Zheng Y., Carey P.R., Palfey B.A. Raman spectrum of fully reduced flavin. J. Raman Spectrosc. 2004;35:521–524. doi: 10.1002/jrs.1218. DOI
Itoh T., Procházka M., Dong Z.-C., Ji W., Yamamoto Y.S., Zhang Y., Ozaki Y. Toward a New Era of SERS and TERS at the Nanometer Scale: From Fundamentals to Innovative Applications. Chem. Rev. 2023;123:1552–1634. doi: 10.1021/acs.chemrev.2c00316. (In English) PubMed DOI PMC
Bickerstaff-Westbrook E., Tukova A., Lyu N., Shen C., Rodger A., Wang Y. Advancing SERS label-free detection of bacteria: Sensing in liquid vs drop-cast. Mater. Today Sustain. 2024;27:100912. doi: 10.1016/j.mtsust.2024.100912. DOI
Percot A., Maurel M., Lambert J., Zins E. New insights into the surface Enhanced Raman Scattering (SERS) response of adenine using chemometrics. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024;314:124177. doi: 10.1016/j.saa.2024.124177. (In English) PubMed DOI
Kubryk P., Niessner R., Ivleva N.P. The origin of the band at around 730 cm−1 in the SERS spectra of bacteria: A stable isotope approach. Analyst. 2016;141:2874–2878. doi: 10.1039/C6AN00306K. PubMed DOI
Link H., Fuhrer T., Gerosa L., Zamboni N., Sauer U. Real-time metabolome profiling of the metabolic switch between starvation and growth. Nat. Methods. 2015;12:1091–1097. doi: 10.1038/nmeth.3584. (In English) PubMed DOI
Vaculík O., Bernatová S., Rebrošová K., Samek O., Šilhan L., Růžička F., Šerý M., Šiler M., Ježek J., Zemánek P. Rapid identification of pathogens in blood serum via Raman tweezers in combination with advanced processing methods. Biomed. Opt. Express. 2023;14:6410–6421. doi: 10.1364/BOE.503628. (In English) PubMed DOI PMC
Liu W., Wei L., Wang D., Zhu C., Huang Y., Gong Z., Tang C., Fan M. Phenotyping Bacteria through a Black-Box Approach: Amplifying Surface-Enhanced Raman Spectroscopy Spectral Differences among Bacteria by Inputting Appropriate Environmental Stress. Anal. Chem. 2022;94:6791–6798. doi: 10.1021/acs.analchem.2c00502. (In English) PubMed DOI
Dina N.E., Tahir M.A., Bajwa S.Z., Amin I., Valev V.K., Zhang L. SERS-based antibiotic susceptibility testing: Towards point-of-care clinical diagnosis. Biosens. Bioelectron. 2023;219:114843. doi: 10.1016/j.bios.2022.114843. PubMed DOI
Raman Base: Open Online Database of Raman Spectra Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic. [(accessed on 20 July 2025)]. Available online: https://ramanbase.org.