Surface-Enhanced Raman Spectroscopy for Adenine Detection in Five Selected Bacterial Strains Under Stress Conditions

. 2025 Jul 26 ; 25 (15) : . [epub] 20250726

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40807793

Grantová podpora
101135175 EU Horizont Europe
LM2023050 MEYS CZE

This pilot study investigated the metabolic responses of five selected bacteria to physiological stress. Surface-enhanced Raman spectroscopy was used to analyze spectral changes associated with the release of adenine, a key metabolite indicative of stress conditions. Laboratory-synthesized spherical silver and gold nanoparticles, which remained stable over an extended period, were employed as enhanced surfaces. Bacterial cultures were analyzed under standard conditions and in the presence of a selected stressor-demineralized water-inducing osmotic stress. The results showed that the adenine signal originated from metabolites released into the surrounding environment rather than directly from the bacterial cell wall. The study confirms the suitability of these cost-effective and easily synthesized stable nanoparticles for the qualitative detection of bacterial metabolites using a commercially available Raman instrument.

Zobrazit více v PubMed

Lee K.S., Landry Z., Pereira F.C., Wagner M., Berry D., Huang W.E., Taylor G.T., Kneipp J., Popp J., Zhang M., et al. Raman microspectroscopy for microbiology. Nat. Rev. Methods Prim. 2021;1:80. doi: 10.1038/s43586-021-00075-6. DOI

Madzharova F., Heiner Z., Gühlke M., Kneipp J. Surface-Enhanced Hyper-Raman Spectra of Adenine, Guanine, Cytosine, Thymine, and Uracil. J. Phys. Chem. C Nanomater Interfaces. 2016;120:15415–15423. doi: 10.1021/acs.jpcc.6b02753. (In English) PubMed DOI PMC

Lin L.L., Alvarez-Puebla R., Liz-Marzán L.M., Trau M., Wang J., Fabris L., Wang X., Liu G., Xu S., Han X.X., et al. Surface-enhanced Raman spectroscopy for biomedical applications: Recent advances and future challenges. ACS Appl. Mater. Interfaces. 2025;17:16287–16379. doi: 10.1021/acsami.4c17502. PubMed DOI PMC

Ježek J., Pilát Z., Bernatová S., Kirchhoff J., Tannert A., Neugebauer U., Samek O., Zemánek P. Laser tweezers Raman spectroscopy of E. coli under antibiotic stress in microfluidic chips; Proceedings of the 21st Czech-Polish-Slovak Optical Conference on Wave and Quantum Aspects of Contemporary Optics, SPIE; Lednice, Czech Republic. 3–7 September 2018.

Samek O., Bernatova S., Dohnal F. The potential of SERS as an AST methodology in clinical settings. Nanophotonics. 2021;10:20210095. doi: 10.1515/nanoph-2021-0095. DOI

Wang C., Weng G., Li J., Zhu J., Zhao J. A review of SERS coupled microfluidic platforms: From configurations to applications. Anal. Chim. Acta. 2024;1296:342291. doi: 10.1016/j.aca.2024.342291. PubMed DOI

Schlücker S. Surface-enhanced Raman spectroscopy: Concepts and chemical applications. Angew. Chem. Int. Ed. Engl. 2014;53:4756–4795. doi: 10.1002/anie.201205748. (In English) PubMed DOI

Chen X., Tang M., Liu Y., Huang J., Liu Z., Tian H., Zheng Y., de la Chapelle M.L., Zhang Y., Fu W. Surface-enhanced Raman scattering method for the identification of methicillin-resistant Staphylococcus aureus using positively charged silver nanoparticles. Mikrochim Acta. 2019;186:102. doi: 10.1007/s00604-018-3150-6. (In English) PubMed DOI

Efrima S., Zeiri L. Understanding SERS of bacteria. J. Raman Spectrosc. 2008;40:277–288. doi: 10.1002/jrs.2121. DOI

Paccotti N., Boschetto F., Horiguchi S., Marin E., Chiadò A., Novara C., Geobaldo F., Giorgis F., Pezzotti G. Label-Free SERS Discrimination and In Situ Analysis of Life Cycle in Escherichia coli and Staphylococcus epidermidis. Biosensors. 2018;8:131. doi: 10.3390/bios8040131. PubMed DOI PMC

Zhou H., Yang D., Ivleva N.P., Mircescu N.E., Niessner R., Haisch C. SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Anal. Chem. 2014;86:1525–1533. doi: 10.1021/ac402935p. (In English) PubMed DOI

Burnstock G., Verkhratsky A. Evolutionary origins of the purinergic signalling system. Acta Physiol. 2009;195:415–447. doi: 10.1111/j.1748-1716.2009.01957.x. PubMed DOI

Skaldin M., Tuittila M., Zavialov A.V., Zavialov A.V., Perna N. Secreted Bacterial Adenosine Deaminase Is an Evolutionary Precursor of Adenosine Deaminase Growth Factor. Mol. Biol. Evol. 2018;35:2851–2861. doi: 10.1093/molbev/msy193. PubMed DOI

Onyemaobi I.M., Xie Y., Zhang J., Xu L., Xiang L., Lin J., Wu A. Nanomaterials and clinical SERS technology: Broad applications in disease diagnosis. J. Mater. Chem. B. 2025;13:2890–2911. doi: 10.1039/D4TB02525C. PubMed DOI

Premasiri W.R., Chen Y., Williamson P.M., Bandarage D.C., Pyles C., Ziegler L.D. Rapid urinary tract infection diagnostics by surface-enhanced Raman spectroscopy (SERS): Identification and antibiotic susceptibilities. Anal. Bioanal. Chem. 2017;409:3043–3054. doi: 10.1007/s00216-017-0244-7. (In English) PubMed DOI

Yang D., Zhou H., Haisch C., Niessner R., Ying Y. Reproducible E. coli detection based on label-free SERS and mapping. Talanta. 2016;146:457–463. doi: 10.1016/j.talanta.2015.09.006. (In English) PubMed DOI

Premasiri W.R., Gebregziabher Y., Ziegler L.D. On the difference between surface-enhanced raman scattering (SERS) spectra of cell growth media and whole bacterial cells. Appl. Spectrosc. 2011;65:493–499. doi: 10.1366/10-06173. (In English) PubMed DOI PMC

Cheng H.-W., Tsai H.-M., Wang Y.-L. Exploiting Purine as an Internal Standard for SERS Quantification of Purine Derivative Molecules Released by Bacteria. Anal. Chem. 2023;95:16967–16975. doi: 10.1021/acs.analchem.3c03259. PubMed DOI PMC

Lee P.C., Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 1982;86:3391–3395. doi: 10.1021/j100214a025. DOI

Rebrosova K., Samek O., Kizovsky M., Bernatova S., Hola V., Ruzicka F. Raman Spectroscopy—A Novel Method for Identification and Characterization of Microbes on a Single-Cell Level in Clinical Settings. Front. Cell. Infect. Microbiol. 2022;12:866463. doi: 10.3389/fcimb.2022.866463. (In English) PubMed DOI PMC

Brandt N.N., Brovko O.O., Chikishev A.Y., Paraschuk O.D. Optimization of the rolling-circle filter for Raman background subtraction. Appl. Spectrosc. 2006;60:288–293. doi: 10.1366/000370206776342553. (In English) PubMed DOI

Schafer R.W. What Is a Savitzky-Golay Filter? [Lecture Notes] IEEE Signal Process. Mag. 2011;28:111–117. doi: 10.1109/MSP.2011.941097. DOI

Terán M., Ruiz J.J., Loza-Álvarez P., Masip D., Merino D. Open Raman spectral library for biomolecule identification. Chemom. Intell. Lab. Syst. 2025;264:105476. doi: 10.1016/j.chemolab.2025.105476. DOI

Vinod M., Gopchandran K.G. Au, Ag and Au:Ag colloidal nanoparticles synthesized by pulsed laser ablation as SERS substrates. Prog. Nat. Sci. 2014;24:569–578. doi: 10.1016/j.pnsc.2014.10.003. DOI

Graves J.L., Jr., Tajkarimi M., Cunningham Q., Campbell A., Nonga H., Harrison S.H., Barrick J.E. Rapid evolution of silver nanoparticle resistance in Escherichia coli. Front. Genet. 2015;6:42. doi: 10.3389/fgene.2015.00042. (In English) PubMed DOI PMC

Zheng Y., Carey P.R., Palfey B.A. Raman spectrum of fully reduced flavin. J. Raman Spectrosc. 2004;35:521–524. doi: 10.1002/jrs.1218. DOI

Itoh T., Procházka M., Dong Z.-C., Ji W., Yamamoto Y.S., Zhang Y., Ozaki Y. Toward a New Era of SERS and TERS at the Nanometer Scale: From Fundamentals to Innovative Applications. Chem. Rev. 2023;123:1552–1634. doi: 10.1021/acs.chemrev.2c00316. (In English) PubMed DOI PMC

Bickerstaff-Westbrook E., Tukova A., Lyu N., Shen C., Rodger A., Wang Y. Advancing SERS label-free detection of bacteria: Sensing in liquid vs drop-cast. Mater. Today Sustain. 2024;27:100912. doi: 10.1016/j.mtsust.2024.100912. DOI

Percot A., Maurel M., Lambert J., Zins E. New insights into the surface Enhanced Raman Scattering (SERS) response of adenine using chemometrics. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024;314:124177. doi: 10.1016/j.saa.2024.124177. (In English) PubMed DOI

Kubryk P., Niessner R., Ivleva N.P. The origin of the band at around 730 cm−1 in the SERS spectra of bacteria: A stable isotope approach. Analyst. 2016;141:2874–2878. doi: 10.1039/C6AN00306K. PubMed DOI

Link H., Fuhrer T., Gerosa L., Zamboni N., Sauer U. Real-time metabolome profiling of the metabolic switch between starvation and growth. Nat. Methods. 2015;12:1091–1097. doi: 10.1038/nmeth.3584. (In English) PubMed DOI

Vaculík O., Bernatová S., Rebrošová K., Samek O., Šilhan L., Růžička F., Šerý M., Šiler M., Ježek J., Zemánek P. Rapid identification of pathogens in blood serum via Raman tweezers in combination with advanced processing methods. Biomed. Opt. Express. 2023;14:6410–6421. doi: 10.1364/BOE.503628. (In English) PubMed DOI PMC

Liu W., Wei L., Wang D., Zhu C., Huang Y., Gong Z., Tang C., Fan M. Phenotyping Bacteria through a Black-Box Approach: Amplifying Surface-Enhanced Raman Spectroscopy Spectral Differences among Bacteria by Inputting Appropriate Environmental Stress. Anal. Chem. 2022;94:6791–6798. doi: 10.1021/acs.analchem.2c00502. (In English) PubMed DOI

Dina N.E., Tahir M.A., Bajwa S.Z., Amin I., Valev V.K., Zhang L. SERS-based antibiotic susceptibility testing: Towards point-of-care clinical diagnosis. Biosens. Bioelectron. 2023;219:114843. doi: 10.1016/j.bios.2022.114843. PubMed DOI

Raman Base: Open Online Database of Raman Spectra Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic. [(accessed on 20 July 2025)]. Available online: https://ramanbase.org.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...