Vacuum Rabi splitting of a dark plasmonic cavity mode revealed by fast electrons
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
31980624
PubMed Central
PMC6981195
DOI
10.1038/s41467-020-14364-3
PII: 10.1038/s41467-020-14364-3
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Recent years have seen a growing interest in strong coupling between plasmons and excitons, as a way to generate new quantum optical testbeds and influence chemical dynamics and reactivity. Strong coupling to bright plasmonic modes has been achieved even with single quantum emitters. Dark plasmonic modes fare better in some applications due to longer lifetimes, but are difficult to probe as they are subradiant. Here, we apply electron energy loss (EEL) spectroscopy to demonstrate that a dark mode of an individual plasmonic bowtie can interact with a small number of quantum emitters, as evidenced by Rabi-split spectra. Coupling strengths of up to 85 meV place the bowtie-emitter devices at the onset of the strong coupling regime. Remarkably, the coupling occurs at the periphery of the bowtie gaps, even while the electron beam probes their center. Our findings pave the way for using EEL spectroscopy to study exciton-plasmon interactions involving non-emissive photonic modes.
Zobrazit více v PubMed
Haroche, S. & Raimond, J. M. Exploring the Quantum: Atoms, Cavities and Photons. 1st edn (Oxford University Press, 2006).
Hennessy K, et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature. 2007;445:896–899. doi: 10.1038/nature05586. PubMed DOI
Monroe C. Quantum information processing with atoms and photons. Nature. 2002;416:238–246. doi: 10.1038/416238a. PubMed DOI
Lo HK, Chau HF. Unconditional security of quantum key distribution over arbitrarily long distances. Science. 1999;283:2050–2056. doi: 10.1126/science.283.5410.2050. PubMed DOI
Kimble HJ. The quantum internet. Nature. 2008;453:1023–1030. doi: 10.1038/nature07127. PubMed DOI
Zhong XL, et al. Energy transfer between spatially separated entangled molecules. Angew. Chem. Int. Ed. 2017;56:9034–9038. doi: 10.1002/anie.201703539. PubMed DOI PMC
Thomas A, et al. Tilting a ground-state reactivity landscape by vibrational strong coupling. Science. 2019;363:616−+. doi: 10.1126/science.aau7742. PubMed DOI
Halas NJ, Lal S, Chang WS, Link S, Nordlander P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 2011;111:3913–3961. doi: 10.1021/cr200061k. PubMed DOI
Haran G, Chuntonov L. Artificial plasmonic molecules and their interaction with real molecules. Chem. Rev. 2018;118:5539–5580. doi: 10.1021/acs.chemrev.7b00647. PubMed DOI
Hugall JT, Singh A, van Hulst NF. Plasmonic cavity coupling. ACS Photonics. 2018;5:43–53. doi: 10.1021/acsphotonics.7b01139. DOI
Santhosh K, Bitton O, Chuntonov L, Haran G. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun. 2016;7:ncomms11823. doi: 10.1038/ncomms11823. PubMed DOI PMC
Groß H, Hamm JM, Tufarelli T, Hess O, Hecht B. Near-field strong coupling of single quantum dots. Sci. Adv. 2018;4:eaar4906. doi: 10.1126/sciadv.aar4906. PubMed DOI PMC
Leng H, Szychowski B, Daniel MC, Pelton M. Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons. Nat. Commun. 2018;9:4012. doi: 10.1038/s41467-018-06450-4. PubMed DOI PMC
Herzog JB, et al. Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions. Nano Lett. 2013;13:1359–1364. doi: 10.1021/nl400363d. PubMed DOI
Gomez DE, et al. The dark side of plasmonics. Nano Lett. 2013;13:3722–3728. doi: 10.1021/nl401656e. PubMed DOI
Garcia de Abajo FJ. Optical excitations in electron microscopy. Rev. Mod. Phys. 2010;82:209–275. doi: 10.1103/RevModPhys.82.209. DOI
Koh AL, et al. Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes. ACS Nano. 2009;3:3015–3022. doi: 10.1021/nn900922z. PubMed DOI
Koh AL, Fernandez-Dominguez AI, McComb DW, Maier SA, Yang JKW. High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures. Nano Lett. 2011;11:1323–1330. doi: 10.1021/nl104410t. PubMed DOI
Cherqui C, Thakkar N, Li GL, Camden JP, Masiello DJ. Characterizing localized surface plasmons using electron energy-loss spectroscopy. Annu. Rev. Phys. Chem. 2016;67:331–357. doi: 10.1146/annurev-physchem-040214-121612. PubMed DOI
Colliex C, Kociak M, Stephan O. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale. Ultramicroscopy. 2016;162:A1–A24. doi: 10.1016/j.ultramic.2015.11.012. PubMed DOI
Losquin A, et al. Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements. Nano Lett. 2015;15:1229–1237. doi: 10.1021/nl5043775. PubMed DOI
Bernasconi GD, et al. Where does energy go in electron energy loss spectroscopy of nanostructures? ACS Photonics. 2017;4:156–164. doi: 10.1021/acsphotonics.6b00761. DOI
Liu, M. Z., Lee, T. W., Gray, S. K., Guyot-Sionnest, P. & Pelton, M. Excitation of dark plasmons in metal nanoparticles by a localized emitter. Phys. Rev. Lett. 102, 107401 (2009). PubMed
Efros AL, Rosen M. The electronic structure of semiconductor nanocrystals. Annu. Rev. Mater. Sci. 2000;30:475–521. doi: 10.1146/annurev.matsci.30.1.475. DOI
Wu X, Gray SK, Pelton M. Quantum-dot-induced transparency in a nanoscale plasmonic resonator. Opt. Express. 2010;18:23633–23645. doi: 10.1364/OE.18.023633. PubMed DOI
Hohenester U, Trugler A. MNPBEM—A Matlab toolbox for the simulation of plasmonic nanoparticles. Comput. Phys. Commun. 2012;183:370–381. doi: 10.1016/j.cpc.2011.09.009. DOI
Hohenester U. Simulating electron energy loss spectroscopy with the MNPBEM toolbox. Comput. Phys. Commun. 2014;185:1177–1187. doi: 10.1016/j.cpc.2013.12.010. DOI
Wei JK, Jiang N, Xu J, Bai XD, Liu JY. Strong coupling between ZnO excitons and localized surface plasmons of silver nanoparticles studied by STEM-EELS. Nano Lett. 2015;15:5926–5931. doi: 10.1021/acs.nanolett.5b02030. PubMed DOI
Yankovich AB, et al. Visualizing spatial variations of plasmon-exciton polaritons at the nanoscale using electron microscopy. Nano Lett. 2019;19:8171–8181. doi: 10.1021/acs.nanolett.9b03534. PubMed DOI
Li RQ, Garcia-Vidal FJ, Fernandez-Dominguez AI. Plasmon-exciton coupling in symmetry-broken nanocavities. ACS Photonics. 2018;5:177–185. doi: 10.1021/acsphotonics.7b00616. DOI
Demetriadou A, et al. Spatiotemporal dynamics and control of strong coupling in plasmonic nanocavities. ACS Photonics. 2017;4:2410–2418. doi: 10.1021/acsphotonics.7b00437. DOI
Ramezani M, et al. Plasmon-exciton-polariton lasing. Optica. 2017;4:31–37. doi: 10.1364/OPTICA.4.000031. DOI
Torma, P. & Barnes, W. L. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys.78, 013901 (2015). PubMed
Miri MA, Alu A. Exceptional points in optics and photonics. Science. 2019;363:42. doi: 10.1126/science.aar7709. PubMed DOI
Rodriguez Said Rahimzadeh-Kalaleh. Classical and quantum distinctions between weak and strong coupling. European Journal of Physics. 2016;37(2):025802. doi: 10.1088/0143-0807/37/2/025802. DOI
Schwartz I, et al. Deterministic generation of a cluster state of entangled photons. Science. 2016;354:434–437. doi: 10.1126/science.aah4758. PubMed DOI
Meuret S, et al. Complementary cathodoluminescence lifetime imaging configurations in a scanning electron microscope. Ultramicroscopy. 2019;197:28–38. doi: 10.1016/j.ultramic.2018.11.006. PubMed DOI
Johnson PB, Christy RW. Optical constants of the noble metals. Phys. Rev. B. 1972;6:4370–4379. doi: 10.1103/PhysRevB.6.4370. DOI
Plasmonic sensing using Babinet's principle