Plasmonic sensing using Babinet's principle
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39635192
PubMed Central
PMC11501113
DOI
10.1515/nanoph-2023-0317
PII: nanoph-2023-0317
Knihovny.cz E-zdroje
- Klíčová slova
- Babinet, dielectric sensing, nanoantennas, nanoparticles, plasmonic dimers, plasmonics,
- Publikační typ
- časopisecké články MeSH
Developing methods to sense local variations in properties of nearby materials, such as their refractive index and thickness, are important in numerous fields including chemistry and biomedical applications. Localized surface plasmons (LSPs) excited in plasmonic nanostructures have been demonstrated to be useful in this context due to the spectral location of their associated resonances being sensitive to changes in the environment near the plasmonic structures. This manuscript explores Babinet's principle by exploiting LSP resonances excited in complementary metal-dielectric cylindrical plasmonic structures (plasmonic particle-dimers and aperture-dimers in our case). Both plasmonic structures are evaluated numerically and experimentally using electron energy loss spectroscopy (EELS), providing a full physical understanding of the complementary nature of the excited LSP resonances. These plasmonic structures are then exploited for dielectric sensing under two configurations: when a thin dielectric film is positioned atop the plasmonic structures and when the analyte surrounds/fills the plasmonic particles/apertures. The complementary sensing performance of both proposed structures is also evaluated, showing the approximate validity of the Babinet principle with sensitivity values of up to ∼650 nm/RIU for thin dielectric sensing.
School of Engineering Newcastle University Newcastle Upon Tyne NE1 7RU UK
School of Mathematics Statistics and Physics Newcastle University Newcastle Upon Tyne NE1 7RU UK
Zobrazit více v PubMed
Maier S. A. Plasmonics: Fundamentals and Applications . New York, NY, US: Springer; 2007.
Barbillon G. Plasmonics and its applications. Materials . 2019;12(9):1502. doi: 10.3390/ma12091502. PubMed DOI PMC
Novotny L., Hecht B. Principles of Nano-Optics . Cambridge: Cambridge University Press; 2020. Surface plasmons; pp. 369–413.
Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science . 2006;311(5758):189–193. doi: 10.1126/science.1114849. PubMed DOI
Gramotnev D. K., Bozhevolnyi S. I. Plasmonics beyond the diffraction limit. Nat. Photonics . 2010;4(2):83–91. doi: 10.1038/nphoton.2009.282. DOI
Giannini V., Fernández-Domínguez A. I., Heck S. C., Maier S. A. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. . 2011;111(6):3888–3912. doi: 10.1021/cr1002672. PubMed DOI
Patel S. K., Argyropoulos C. Plasmonic nanoantennas: enhancing light-matter interactions at the nanoscale. EPJ Appl. Metamater. . 2015;2(4)(1):20230317. :20230317. doi: 10.1051/epjam/2015006. DOI
Youn S. J., Rho T. H., Min B. I., Kim K. S. Extended Drude model analysis of noble metals. Phys. Status Solidi B . 2007;244(4):1354–1362. doi: 10.1002/pssb.200642097. DOI
Yelon A., Piyakis K. N., Sacher E. Surface plasmons in Drude metals. Surf. Sci. . 2004;569(1–3):47–55. doi: 10.1016/j.susc.2004.07.028. DOI
Baltar H. T. M. C. M., Drozdowicz-Tomsia K., Goldys E. M. Propagating surface plasmons and dispersion relations for nanoscale multilayer metallic-dielectric films. in “Plasmonics - Principles and applications” . 2012:135–156. doi: 10.5772/51218. Rijeka, IntechOpen. DOI
Riley J. A., Healy N., Pacheco-Peña V. Plasmonic meniscus lenses. Sci. Rep. . 2022;12(894)(1):20230317. :20230317. doi: 10.1038/s41598-022-04954-0. PubMed DOI PMC
Pacheco-Peña V., Beruete M. Controlling the direction of propagation of surface plasmons via graded index effective dielectric media. 13th Int. Congr. Artif. Mater. Nov. Wave Phenomena, Metamaterials. 2019;2019vol.:X281–X283.
Liu Z., Steele J. M., Srituravanich W., Pikus Y., Sun C., Zhang X. Focusing surface plasmons with a plasmonic lens. Nano Lett. 2005;5(9):1726–1729. doi: 10.1021/nl051013j. PubMed DOI
Pacheco-Peña V., Minin I. V., Minin O. V., Beruete M. Comprehensive analysis of photonic nanojets in 3D dielectric cuboids excited by surface plasmons. Ann. Phys. . 2016;528(9–10):684–692. doi: 10.1002/andp.201600098. DOI
Zhang J., Zhang L., Xu W. Surface plasmon polaritons: physics and applications. J. Phys. D Appl. Phys. . 2012;45(11):1–19. doi: 10.1088/0022-3727/45/11/113001. DOI
Volkov V. S., Gosciniak J., Bozhevolnyi S. I., et al. Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons. New J. Phys. . 2009;11(11):113043. doi: 10.1088/1367-2630/11/11/113043. DOI
Pacheco-Peña V., Hallam T., Healy N. MXene supported surface plasmons on telecommunications optical fibers. Light: Sci. Appl. . 2022;11(1):1–9. doi: 10.1038/s41377-022-00710-1. PubMed DOI PMC
Tsai C. Y., Lin J. W., Wu C. Y., Lin P. T., Lu T. W., Lee P. T. Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode. Nano Lett. 2012;12(3):1648–1654. doi: 10.1021/nl300012m. PubMed DOI
Duan H., Fernández-Domínguez A. I., Bosman M., Maier S. A., Yang J. K. W. Nanoplasmonics: classical down to the nanometer scale. Nano Lett. 2012;12(3):1683–1689. doi: 10.1021/nl3001309. PubMed DOI
Bitton O., Gupta S. N., Houben L., et al. Vacuum Rabi splitting of a dark plasmonic cavity mode revealed by fast electrons. Nat. Commun. . 2020;11(487)(1):20230317. :20230317. doi: 10.1038/s41467-020-14364-3. PubMed DOI PMC
Břínek L., Kvapil M., Šamořil T., et al. Plasmon resonances of mid-IR antennas on absorbing substrate: optimization of localized plasmon-enhanced absorption upon strong coupling effect. ACS Photonics . 2018;5(11):4378–4385. doi: 10.1021/acsphotonics.8b00806. DOI
Chu M. W., Myroshnychenko V., Chen C. H., Deng J. P., Niou C. Y., De Abajo F. J. G. Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam. Nano Lett. 2009;9(1):399–404. doi: 10.1021/nl803270x. PubMed DOI
Pacheco-Peña V., Alves R., Navarro-Cía M. Hidden symmetries in bowtie nanocavities and diabolo nanoantennas. ACS Photonics . 2019;6(8):2014–2024. doi: 10.1021/acsphotonics.9b00428. DOI
Pacheco-Peña V., Beruete M., Fernández-Domínguez A. I., Luo Y., Navarro-Cía M. Description of bow-tie nanoantennas excited by localized emitters using conformal transformation. ACS Photonics . 2016;3(7):1223–1232. doi: 10.1021/acsphotonics.6b00232. DOI
Pacheco-Peña V., Fernández-Domínguez A. I., Luo Y., Beruete M., Navarro-Cía M. Aluminum nanotripods for light-matter coupling robust to nanoemitter orientation. Laser Photonics Rev. . 2017;11:1700051, 1–6. doi: 10.1002/lpor.201700051. DOI
Fernández-Domínguez A. I., Luo Y., Wiener A., Pendry J. B., Maier S. A. Theory of three-dimensional nanocrescent light harvesters. Nano Lett. 2012;12(11):5946–5953. doi: 10.1021/nl303377g. PubMed DOI
Demetriadou A., Kornyshev A. A. Principles of nanoparticle imaging using surface plasmons. New J. Phys. . 2015;17(013041):1–13. doi: 10.1088/1367-2630/17/1/013041. DOI
Cortés E., Besteiro L. V., Alabastri A., et al. Challenges in plasmonic catalysis. ACS Nano . 2020;14(12):16202–16219. doi: 10.1021/acsnano.0c08773. PubMed DOI
Chikkaraddy R., Turek V. A., Kongsuwan N., et al. Mapping nanoscale hotspots with single-molecule emitters assembled into plasmonic nanocavities using DNA origami. Nano Lett. 2018;18(1):405–411. doi: 10.1021/acs.nanolett.7b04283. PubMed DOI PMC
Křápek V., Konečná A., Horák M., et al. Independent engineering of individual plasmon modes in plasmonic dimers with conductive and capacitive coupling. Nanophotonics . 2020;9(3):623–632. doi: 10.1515/nanoph-2019-0326. DOI
Hrtoň M., Konečná A., Horák M., Šikola T., Křápek V. Plasmonic antennas with electric, magnetic, and electromagnetic hot spots based on Babinet’s principle. Phys. Rev. Appl. . 2020;13:054045, 1–14. doi: 10.1103/PhysRevApplied.13.054045. DOI
Roxworthy B. J., Ko K. D., Kumar A., et al. Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting. Nano Lett. 2012;12(2):796–801. doi: 10.1021/nl203811q. PubMed DOI
Tian L., Wang C., Zhao H., et al. Rational approach to plasmonic dimers with controlled gap distance, symmetry, and capability of precisely hosting guest molecules in hotspot regions. J. Am. Chem. Soc. . 2021;143(23):8631–8638. doi: 10.1021/jacs.0c13377. PubMed DOI
Tittl A., Giessen H., Liu N. Plasmonic gas and chemical sensing. Nanophotonics . 2014;3(3):157–180. doi: 10.1515/nanoph-2014-0002. DOI
Gerislioglu B., Dong L., Ahmadivand A., Hu H., Nordlander P., Halas N. J. Monolithic metal dimer-on-film structure: new plasmonic properties introduced by the underlying metal. Nano Lett. 2020;20(3):2087–2093. doi: 10.1021/acs.nanolett.0c00075. PubMed DOI
Downing C. A., Weick G. Plasmonic modes in cylindrical nanoparticles and dimers: plasmons in cylindrical nanoparticles. Proc. R. Soc. A . 2020;476(2244):1–21. doi: 10.1098/rspa.2020.0530. PubMed DOI PMC
Fan X., Zheng W., Singh D. J. Light scattering and surface plasmons on small spherical particles. Light: Sci. Appl. . 2014;3(e179):1–14. doi: 10.1038/lsa.2014.60. DOI
Greybush N. J., Pacheco-Penã V., Engheta N., Murray C. B., Kagan C. R. Plasmonic optical and chiroptical response of self-assembled Au nanorod equilateral trimers. ACS Nano . 2019;13(2):1617–1624. doi: 10.1021/acsnano.8b07619. PubMed DOI
Zhang R. X., Sun L., Du C., et al. Plasmonic properties of individual heterogeneous dimers of Au and in nanospheres. Phys. Lett. A . 2021;391:127131. doi: 10.1016/j.physleta.2020.127131. DOI
Ryu K. R., Ha J. W. Influence of shell thickness on the refractive index sensitivity of localized surface plasmon resonance inflection points in silver-coated gold nanorods. RSC Adv. 2020;10(29):16827–16831. doi: 10.1039/d0ra02691c. PubMed DOI PMC
Amendola V., Pilot R., Frasconi M., Maragò O. M., Iatì M. A. Surface plasmon resonance in gold nanoparticles: a review. J. Phys Condens Matter. . 2017;29(203002):1–48. doi: 10.20944/preprints201811.0364.v1. PubMed DOI
Liu Z., Liu G., Huang S., et al. Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals. Sens. Actuators, B . 2015;215:480–488. doi: 10.1016/j.snb.2015.04.009. DOI
Gill R., Tian L., Somerville W. R. C., Le Ru E. C., Van Amerongen H., Subramaniam V. Silver nanoparticle aggregates as highly efficient plasmonic antennas for fluorescence enhancement. J. Phys. Chem. C . 2012;116(31):16687–16693. doi: 10.1021/jp305720q. DOI
Yousif B. B., Samra A. S. Optical responses of plasmonic gold nanoantennas through numerical simulation. J. Nanopart. Res. . 2013;15(1)(1):20230317. :20230317. doi: 10.1007/s11051-012-1341-3. DOI
Horák M., Čalkovský V., Mach J., Křápek V., Šikola T. Plasmonic properties of individual gallium nanoparticles. J. Phys. Chem. Lett. . 2023;14(8):2012–2019. doi: 10.1021/acs.jpclett.3c00094. PubMed DOI PMC
Lin Q. Y., Li Z., Brown K. A., et al. Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays. Nano Lett. 2015;15(7):4699–4703. doi: 10.1021/acs.nanolett.5b01548. PubMed DOI
Liu F., Zhang X., Mu Y., Lin J., Wang M., Ma H. Complementary dark and bright plasmonic nanocavities with controllable energy exchange for SERS sensing. Adv. Opt. Mater. . 2020;8(16):1–11. doi: 10.1002/adom.202000544. DOI
Verellen N., Van Dorpe P., Vercruysse D., Vandenbosch G. A. E., Moshchalkov V. V. Dark and bright localized surface plasmons in nanocrosses. Opt. Express . 2011;19(12):11034. doi: 10.1364/oe.19.011034. PubMed DOI
Aluf O. Microwave RF Antennas and Circuits - Nonlinearity Applications in Engineering . Switzerland: Springer, Cham; 2017.
Leonhardt U. Optical conformal mapping. Science . 2006;312(5781):1777–1780. doi: 10.1126/science.1126493. PubMed DOI
Alves R. A., Pacheco-Peña V., Navarro-Cía M. Madelung formalism for electron spill-out in nonlocal nanoplasmonics. J. Phys. Chem. C . 2022;126(34):14758–14765. doi: 10.1021/acs.jpcc.2c04828. PubMed DOI PMC
Born M., Wolf E. Principles of Optics . 7th. New York: Cambridge University Press; 1999.
Falcone F., Lopetegi T., Laso M. A. G., et al. Babinet principle applied to the design of metasurfaces and metamaterials. Phys. Rev. Lett. . 2004;93(19):197401. doi: 10.1103/PhysRevLett.93.197401. PubMed DOI
Zentgraf T., Meyrath T. P., Seidel A., et al. Babinet’s principle for optical frequency metamaterials and nanoantennas. Phys. Rev. B: Condens. Matter Mater. Phys. . 2007;76(3):4–7. doi: 10.1103/PhysRevB.76.033407. DOI
Horák M., Křápek V., Hrtoň M., et al. Limits of Babinet’s principle for solid and hollow plasmonic antennas. Sci. Rep. . 2019;9(1):1–11. doi: 10.1038/s41598-019-40500-1. PubMed DOI PMC
Hentschel M., Weiss T., Bagheri S., Giessen H. Babinet to the half: coupling of solid and inverse plasmonic structures. Nano Lett. 2013;13(9):4428–4433. doi: 10.1021/nl402269h. PubMed DOI
Ortiz J. D., del Risco J. P., Baena J. D., Marqués R. Extension of Babinet’s principle for plasmonic metasurfaces. Appl. Phys. Lett. . 2021;119(16):161103. doi: 10.1063/5.0065724. DOI
Janaswamy R. Engineering Electrodynamics - A collection of theorems, principles and field representations . 1st ed. Bristol, UK: IOP Publishing; 2020. Duality principle and Babinet’s principle.
Celiksoy S., Ye W., Wandner K., Kaefer K., Sönnichsen C. Intensity-based single particle plasmon sensing. Nano Lett. 2021;21(5):2053–2058. doi: 10.1021/acs.nanolett.0c04702. PubMed DOI
Alekseeva S., Nedrygailov I. I., Langhammer C. Single particle plasmonics for materials science and single particle catalysis. ACS Photonics . 2019;6(6):1319–1330. doi: 10.1021/acsphotonics.9b00339. DOI
Hoener B. S., Kirchner S. R., Heiderscheit T. S., et al. Plasmonic sensing and control of single-nanoparticle electrochemistry. Chem . 2018;4(7):1560–1585. doi: 10.1016/j.chempr.2018.04.009. DOI
Stiles P. L., Dieringer J. A., Shah N. C., Van Duyne R. P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. . 2008;1(1):601–626. doi: 10.1146/annurev.anchem.1.031207.112814. PubMed DOI
Schlücker S. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew. Chem., Int. Ed. . 2014;53(19):4756–4795. doi: 10.1002/anie.201205748. PubMed DOI
Zhou J., Liu X., Fu G., et al. High-performance plasmonic oblique sensors for the detection of ions. Nanotechnology . 2020;31(28):285501. doi: 10.1088/1361-6528/ab8329. PubMed DOI
Wadell C., Syrenova S., Langhammer C. Plasmonic hydrogen sensing with nanostructured metal hydrides. ACS Nano . 2014;8(12):11925–11940. doi: 10.1021/nn505804f. PubMed DOI
Hoa X. D., Kirk A. G., Tabrizian M. Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens. Bioelectron. . 2007;23(2):151–160. doi: 10.1016/j.bios.2007.07.001. PubMed DOI
Kim D. M., Park J. S., Jung S.-W., Yeom J., Yoo S. M. Biosensing applications using nanostructure-based localized surface plasmon resonance sensors. Sensors . 2021;21(9):3191. doi: 10.3390/s21093191. PubMed DOI PMC
Das G., Coluccio M. L., Alrasheed S., et al. Plasmonic nanostructures for the ultrasensitive detection of biomolecules. Riv. Nuovo Cimento . 2016;39(11):547–586. doi: 10.1393/ncr/i2016-10129-y. DOI
Jung W. K., Byun K. M. Fabrication of nanoscale plasmonic structures and their applications to photonic devices and biosensors. Biomed. Eng. Lett. . 2011;1(3):153–162. doi: 10.1007/s13534-011-0026-7. DOI
Wang H. Plasmonic refractive index sensing using strongly coupled metal nanoantennas: nonlocal limitations. Sci. Rep. . 2018;8(1):1–8. doi: 10.1038/s41598-018-28011-x. PubMed DOI PMC
Willets K. A., Van Duyne R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. . 2007;58:267–297. doi: 10.1146/annurev.physchem.58.032806.104607. PubMed DOI
Murakami D., Jinnai H., Takahara A. Wetting transition from the cassie-baxter state to the wenzel state on textured polymer surfaces. Langmuir . 2014;30(8):2061–2067. doi: 10.1021/la4049067. PubMed DOI
Johnson P. B., Christy R. W. Optical constant of the nobel metals. Phys. Rev. B: Solid State . 1972;6(12):4370–4379. doi: 10.1103/physrevb.6.4370. DOI
Philipp H. R. Optical properties of silicon nitride. J. Electrochem. Soc. . 1973;120(2):295. doi: 10.1149/1.2403440. DOI
Liu D., Fang L., Zhou F., et al. Ultrasensitive and stable Au dimer-based colorimetric sensors using the dynamically tunable gap-dependent plasmonic coupling optical properties. Adv. Funct. Mater. . 2018;28(18):1707392. doi: 10.1002/adfm.201707392. DOI
Lilley G., Messner M., Unterrainer K. Improving the quality factor of the localized surface plasmon resonance. Opt. Mater. Express . 2015;5(10):2112. doi: 10.1364/ome.5.002112. DOI
Saadeldin A. S., Hameed M. F. O., Elkaramany E. M. A., Obayya S. S. A. Highly sensitive terahertz metamaterial sensor. IEEE Sens. J. . 2019;19(18):7993–7999. doi: 10.1109/JSEN.2019.2918214. DOI
Nordlander P., Oubre C., Prodan E., Li K., Stockman M. I. Plasmon hybridization in nanoparticle dimers. Nano Lett. 2004;4(5):899–903. doi: 10.1021/nl049681c. DOI
Navarro-Cia M., Beruete M., Soroll M. Behaviour of Electromagnetic Waves in Different Media and Structures . London, UK: InTech; 2011. Electromagnetic response of extraordinary transmission plates inspired on Babinet’s principle.
Hohenester U., Ditlbacher H., Krenn J. R. Electron-energy-loss spectra of plasmonic nanoparticles. Phys. Rev. Lett. . 2009;103(10):20230317. doi: 10.1103/PhysRevLett.103.106801. PubMed DOI
Losquin A., Lummen T. T. A. Electron microscopy methods for space-energy-and time-resolved plasmonics. Front. Phys. . 2017;12(1):1–27. doi: 10.1007/s11467-016-0605-2. DOI
Horák M., Konečná A., Šikola T., Křápek V. Spatio-spectral metrics in electron energy loss spectroscopy as a tool to resolve nearly degenerate plasmon modes in dimer plasmonic antennas. Nanophotonics . 2023;12(15):3089–3098. doi: 10.1515/nanoph-2023-0153. DOI
Prodan E., Radloff C., Halas N. J., Nordlander P. A hybridization model for the plasmon response of complex nanostructures. Science . 2003;302(5644):419–422. doi: 10.1126/science.1089171. PubMed DOI
Liu Z., Tan W., Fu G., et al. Multipolar silicon-based resonant meta-surface for electro-optical modulation and sensing. Opt. Lett. . 2023;48(11):2969. doi: 10.1364/ol.489627. PubMed DOI
Guo R., Rusak E., Staude I., et al. Multipolar coupling in hybrid metal-dielectric metasurfaces. ACS Photonics . 2016;3(3):349–353. doi: 10.1515/nanoph-2023-0153. DOI
Zuloaga J., Nordlander P. On the energy shift between near-field and far-field peak intensities in localized plasmon systems. Nano Lett. 2011;11(3):1280–1283. doi: 10.1021/nl1043242. PubMed DOI
Duan Q., Liu Y., Chang S., Chen H., Chen J. H. Surface plasmonic sensors: sensing mechanism and recent applications. Sensors . 2021;21(16):1–30. doi: 10.3390/s21165262. PubMed DOI PMC
Pacheco-Peña V., Beruete M., Rodríguez-Ulibarri P., Engheta N. On the performance of an ENZ-based sensor using transmission line theory and effective medium approach. New J. Phys. . 2019;21(4):043056. doi: 10.1088/1367-2630/ab116f. DOI
Beruete M., Engheta N., Pacheco-Peña V. Experimental demonstration of deeply subwavelength dielectric sensing with epsilon-near-zero (ENZ) waveguides. Appl. Phys. Lett. . 2022;120(8):20230317. doi: 10.1063/5.0079665. DOI
Stewart M. E., Anderton C. R., Thompson L. B., et al. Nanostructured plasmonic sensors. Chem. Rev. . 2008;108(2):494–521. doi: 10.1021/cr068126n. PubMed DOI
Martinsson E., Sepulveda B., Chen P., Elfwing A., Liedberg B., Aili D. Optimizing the refractive index sensitivity of plasmonically coupled gold nanoparticles. Plasmonics . 2014;9(4):773–780. doi: 10.1007/s11468-013-9659-y. DOI
Horák M., Bukvišová K., Švarc V., Jaskowiec J., Křápek V., Šikola T. Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography. Sci. Rep. . 2018;8(1):1–8. doi: 10.1038/s41598-018-28037-1. PubMed DOI PMC
Kejík L., Horák M., Šikola T., Křápek V. Structural and optical properties of monocrystalline and polycrystalline gold plasmonic nanorods. Opt. Express . 2020;28(23):34960. doi: 10.1364/oe.409428. PubMed DOI