Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2015041, LQ1601
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
PubMed
29941880
PubMed Central
PMC6018609
DOI
10.1038/s41598-018-28037-1
PII: 10.1038/s41598-018-28037-1
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We present a comparative study of plasmonic antennas fabricated by electron beam lithography and direct focused ion beam milling. We have investigated optical and structural properties and chemical composition of gold disc-shaped plasmonic antennas on a silicon nitride membrane fabricated by both methods to identify their advantages and disadvantages. Plasmonic antennas were characterized using transmission electron microscopy including electron energy loss spectroscopy and energy dispersive X-ray spectroscopy, and atomic force microscopy. We have found stronger plasmonic response with better field confinement in the antennas fabricated by electron beam lithography, which is attributed to their better structural quality, homogeneous thickness, and only moderate contamination mostly of organic nature. Plasmonic antennas fabricated by focused ion beam lithography feature weaker plasmonic response, lower structural quality with pronounced thickness fluctuations, and strong contamination, both organic and inorganic, including implanted ions from the focused beam. While both techniques are suitable for the fabrication of plasmonic antennas, electron beam lithography shall be prioritized over focused ion beam lithography due to better quality and performance of its products.
Zobrazit více v PubMed
Schuller JA, et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010;9:193–204. doi: 10.1038/nmat2630. PubMed DOI
Stockman MI. Nanoplasmonics: The physics behind the applications. Phys. Today. 2011;64:39–44. doi: 10.1063/1.3554315. DOI
Amendola V, Pilot R, Frasconi M, Maragò OM, Iatì MA. Surface plasmon resonance in gold nanoparticles: a review. J. Phys.: Condens. Matter. 2017;29:203002. PubMed
Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B. 2003;107:668–677. doi: 10.1021/jp026731y. DOI
García de Abajo FJ. Optical excitations in electron microscopy. Rev. Mod. Phys. 2010;82:209–275. doi: 10.1103/RevModPhys.82.209. DOI
Colliex C, Kociak M, Stéphan O. Electron energy loss spectrometry imaging of surface plasmons at the nanometer scale. Ultramicroscopy. 2016;162:A1–A24. doi: 10.1016/j.ultramic.2015.11.012. PubMed DOI
Wu Y, Li G, Camden JP. Probing nanoparticle plasmon with electron energy loss spectroscopy. Chem. Rev. 2018;118:2994–3031. doi: 10.1021/acs.chemrev.7b00354. PubMed DOI
Hörl A, Trügler A, Hohenester U. Tomography of particle plasmon fields from electron energy loss spectroscopy. Phys. Rev. Lett. 2013;111:086801. doi: 10.1103/PhysRevLett.111.076801. PubMed DOI
Hörl A, et al. Tomographic imaging of the photonic environment of plasmonic nanoparticles. Nat. Commun. 2017;8:37. doi: 10.1038/s41467-017-00051-3. PubMed DOI PMC
Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope. Springer US, 10.1007/978-1-4419-9583-4 (2011).
Iakoubovskii K, Mitsuishi K, Nakayama Y, Furuya K. Thickness measurements with electron energy loss spectroscopy. Microsc. Res. Tech. 2008;71:626–631. doi: 10.1002/jemt.20597. PubMed DOI
Vieu C, et al. Electron beam lithography: resolution limits and applications. Appl. Surf. Sci. 2000;164:111–117. doi: 10.1016/S0169-4332(00)00352-4. DOI
Joshi-Imre A, Bauerdick S. Direct-write ion beam lithography. J. Nanotechnol. 2014;2014:170415. doi: 10.1155/2014/170415. DOI
Duan H, et al. Metrology for electron-beam lithography and resist contrast at the sub-10 nm scale. J. Vac. Sci. Technol. B. 2010;28:C6H11. doi: 10.1116/1.3501359. DOI
Kollmann H, et al. Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas. Nano Lett. 2014;14:4778–4784. doi: 10.1021/nl5019589. PubMed DOI
Huang JS, et al. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nat. Commun. 2010;1:150. doi: 10.1038/ncomms1143. PubMed DOI
Wang X, et al. Vapor-phase preparation of single-crystalline thin gold microplates using HAuCl4 as the precursor for plasmonic applications. RSC Adv. 2016;6:74937–74943. doi: 10.1039/C6RA15909E. DOI
Tinguely JC, et al. Gold nanoparticles for plasmonic biosensing: the role of metal crystallinity and nanoscale roughness. NioNanoSci. 2011;1:128–135.
Bosman M, et al. Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures. Sci. Rep. 2014;4:5537. doi: 10.1038/srep05537. PubMed DOI PMC
Crick CR, et al. Low-noise plasmonic nanopore biosensors for single molecule detection at elevated temperatures. ACS Photonics. 2017;4:2835–2842. doi: 10.1021/acsphotonics.7b00825. DOI
Babocký J, et al. Quantitative 3D phase imaging of plasmonic metasurfaces. ACS Photonics. 2017;4:1389–1397. doi: 10.1021/acsphotonics.7b00022. DOI
Waxenegger J, Trügler A, Hohenester U. Plasmonics simulations with the MNPBEM toolbox: consideration of substrates and layer structures. Comput. Phys. Commun. 2015;193:138–150. doi: 10.1016/j.cpc.2015.03.023. DOI
García de Abajo FJ, Howie A. Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics. Phys. Rev. Lett. 1998;80:5180–5183. doi: 10.1103/PhysRevLett.80.5180. DOI
García de Abajo FJ, Howie A. Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys. Rev. B. 2002;65:115418. doi: 10.1103/PhysRevB.65.115418. DOI
Postek MT. An approach to the reduction of hydrocarbon contamination in the scanning electron microscope. Scanning. 1996;18:269–274. doi: 10.1002/sca.1996.4950180402. DOI
Egerton RF, Li P, Malac M. Radiation damage in the TEM and SEM. Micron. 2004;35:399–409. doi: 10.1016/j.micron.2004.02.003. PubMed DOI
Mitchell DRG. Determination of mean free path for energy loss and surface oxide film thickness using convergent beam electron diffraction and thickness mapping: a case study using Si and P91 steel. J. Microscopy. 2006;224:187–196. doi: 10.1111/j.1365-2818.2006.01690.x. PubMed DOI
Michael JR. Focused ion beam induced microstructural alterations: texture development, grain growth, and intermetallic formation. Microsc. Microanal. 2011;17:386–397. doi: 10.1017/S1431927611000171. PubMed DOI
Schmidt FP, et al. Dark plasmonic breathing modes in silver nanodisks. Nano Lett. 2012;12:5780–5783. doi: 10.1021/nl3030938. PubMed DOI PMC
Rodríguez-Fernández J, et al. The effect of surface roughness on the plasmonic response of individual sub-micron gold spheres. Phys. Chem. Chem. Phys. 2009;11:5909–5914. doi: 10.1039/b905200n. PubMed DOI
Trügler A, Tinguely JC, Krenn JR, Hohenau A, Hohenester U. Influence of surface roughness on the optical properties of plasmonic nanoparticles. Phys. Rev. B. 2011;83:081412. doi: 10.1103/PhysRevB.83.081412. DOI
Koh AL, et al. Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes. ACS Nano. 2009;3:3015–3022. doi: 10.1021/nn900922z. PubMed DOI
Madsen SJ, Esfandyarpour M, Brongersma ML, Sinclair R. Observing plasmon damping due to adhesion layers in gold nanostructures using electron energy loss spectroscopy. ACS Photonics. 2017;4:268–274. doi: 10.1021/acsphotonics.6b00525. PubMed DOI PMC
Habteyes TG, et al. Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative. ACS Nano. 2012;6:5702–5709. doi: 10.1021/nn301885u. PubMed DOI
Pyykkö P, Atsumi M. Molecular single-bond covalent radii for elements 1–118. Chem. Eur. J. 2009;15:186–197. doi: 10.1002/chem.200800987. PubMed DOI
Křápek V, et al. Spatially resolved electron energy loss spectroscopy of crescent-shaped plasmonic antennas. Opt. Express. 2015;23:11855. doi: 10.1364/OE.23.011855. PubMed DOI
Walczyk W, Schön PM, Schönherr H. The effect of PeakForce tapping mode AFM imaging on the apparent shape of surface nanobubbles. J. Phys. Condens. Matter. 2013;25:1–11. doi: 10.1088/0953-8984/25/18/184005. PubMed DOI
Olmon RL, et al. Optical dielectric function of gold. Phys. Rev. B. 2012;86:235147. doi: 10.1103/PhysRevB.86.235147. DOI
Schmidt FP, Ditlbacher H, Hofer F, Krenn JR, Hohenester U. Morphing a plasmonic nanodisk into a nanotriangle. Nano Lett. 2014;14:4810–4815. doi: 10.1021/nl502027r. PubMed DOI PMC
Plasmonic sensing using Babinet's principle
Limits of Babinet's principle for solid and hollow plasmonic antennas