Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography

. 2018 Jun 25 ; 8 (1) : 9640. [epub] 20180625

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29941880

Grantová podpora
LM2015041, LQ1601 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)

Odkazy

PubMed 29941880
PubMed Central PMC6018609
DOI 10.1038/s41598-018-28037-1
PII: 10.1038/s41598-018-28037-1
Knihovny.cz E-zdroje

We present a comparative study of plasmonic antennas fabricated by electron beam lithography and direct focused ion beam milling. We have investigated optical and structural properties and chemical composition of gold disc-shaped plasmonic antennas on a silicon nitride membrane fabricated by both methods to identify their advantages and disadvantages. Plasmonic antennas were characterized using transmission electron microscopy including electron energy loss spectroscopy and energy dispersive X-ray spectroscopy, and atomic force microscopy. We have found stronger plasmonic response with better field confinement in the antennas fabricated by electron beam lithography, which is attributed to their better structural quality, homogeneous thickness, and only moderate contamination mostly of organic nature. Plasmonic antennas fabricated by focused ion beam lithography feature weaker plasmonic response, lower structural quality with pronounced thickness fluctuations, and strong contamination, both organic and inorganic, including implanted ions from the focused beam. While both techniques are suitable for the fabrication of plasmonic antennas, electron beam lithography shall be prioritized over focused ion beam lithography due to better quality and performance of its products.

Zobrazit více v PubMed

Schuller JA, et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010;9:193–204. doi: 10.1038/nmat2630. PubMed DOI

Stockman MI. Nanoplasmonics: The physics behind the applications. Phys. Today. 2011;64:39–44. doi: 10.1063/1.3554315. DOI

Amendola V, Pilot R, Frasconi M, Maragò OM, Iatì MA. Surface plasmon resonance in gold nanoparticles: a review. J. Phys.: Condens. Matter. 2017;29:203002. PubMed

Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles:  the influence of size, shape, and dielectric environment. J. Phys. Chem. B. 2003;107:668–677. doi: 10.1021/jp026731y. DOI

García de Abajo FJ. Optical excitations in electron microscopy. Rev. Mod. Phys. 2010;82:209–275. doi: 10.1103/RevModPhys.82.209. DOI

Colliex C, Kociak M, Stéphan O. Electron energy loss spectrometry imaging of surface plasmons at the nanometer scale. Ultramicroscopy. 2016;162:A1–A24. doi: 10.1016/j.ultramic.2015.11.012. PubMed DOI

Wu Y, Li G, Camden JP. Probing nanoparticle plasmon with electron energy loss spectroscopy. Chem. Rev. 2018;118:2994–3031. doi: 10.1021/acs.chemrev.7b00354. PubMed DOI

Hörl A, Trügler A, Hohenester U. Tomography of particle plasmon fields from electron energy loss spectroscopy. Phys. Rev. Lett. 2013;111:086801. doi: 10.1103/PhysRevLett.111.076801. PubMed DOI

Hörl A, et al. Tomographic imaging of the photonic environment of plasmonic nanoparticles. Nat. Commun. 2017;8:37. doi: 10.1038/s41467-017-00051-3. PubMed DOI PMC

Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope. Springer US, 10.1007/978-1-4419-9583-4 (2011).

Iakoubovskii K, Mitsuishi K, Nakayama Y, Furuya K. Thickness measurements with electron energy loss spectroscopy. Microsc. Res. Tech. 2008;71:626–631. doi: 10.1002/jemt.20597. PubMed DOI

Vieu C, et al. Electron beam lithography: resolution limits and applications. Appl. Surf. Sci. 2000;164:111–117. doi: 10.1016/S0169-4332(00)00352-4. DOI

Joshi-Imre A, Bauerdick S. Direct-write ion beam lithography. J. Nanotechnol. 2014;2014:170415. doi: 10.1155/2014/170415. DOI

Duan H, et al. Metrology for electron-beam lithography and resist contrast at the sub-10 nm scale. J. Vac. Sci. Technol. B. 2010;28:C6H11. doi: 10.1116/1.3501359. DOI

Kollmann H, et al. Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas. Nano Lett. 2014;14:4778–4784. doi: 10.1021/nl5019589. PubMed DOI

Huang JS, et al. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nat. Commun. 2010;1:150. doi: 10.1038/ncomms1143. PubMed DOI

Wang X, et al. Vapor-phase preparation of single-crystalline thin gold microplates using HAuCl4 as the precursor for plasmonic applications. RSC Adv. 2016;6:74937–74943. doi: 10.1039/C6RA15909E. DOI

Tinguely JC, et al. Gold nanoparticles for plasmonic biosensing: the role of metal crystallinity and nanoscale roughness. NioNanoSci. 2011;1:128–135.

Bosman M, et al. Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures. Sci. Rep. 2014;4:5537. doi: 10.1038/srep05537. PubMed DOI PMC

Crick CR, et al. Low-noise plasmonic nanopore biosensors for single molecule detection at elevated temperatures. ACS Photonics. 2017;4:2835–2842. doi: 10.1021/acsphotonics.7b00825. DOI

Babocký J, et al. Quantitative 3D phase imaging of plasmonic metasurfaces. ACS Photonics. 2017;4:1389–1397. doi: 10.1021/acsphotonics.7b00022. DOI

Waxenegger J, Trügler A, Hohenester U. Plasmonics simulations with the MNPBEM toolbox: consideration of substrates and layer structures. Comput. Phys. Commun. 2015;193:138–150. doi: 10.1016/j.cpc.2015.03.023. DOI

García de Abajo FJ, Howie A. Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics. Phys. Rev. Lett. 1998;80:5180–5183. doi: 10.1103/PhysRevLett.80.5180. DOI

García de Abajo FJ, Howie A. Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys. Rev. B. 2002;65:115418. doi: 10.1103/PhysRevB.65.115418. DOI

Postek MT. An approach to the reduction of hydrocarbon contamination in the scanning electron microscope. Scanning. 1996;18:269–274. doi: 10.1002/sca.1996.4950180402. DOI

Egerton RF, Li P, Malac M. Radiation damage in the TEM and SEM. Micron. 2004;35:399–409. doi: 10.1016/j.micron.2004.02.003. PubMed DOI

Mitchell DRG. Determination of mean free path for energy loss and surface oxide film thickness using convergent beam electron diffraction and thickness mapping: a case study using Si and P91 steel. J. Microscopy. 2006;224:187–196. doi: 10.1111/j.1365-2818.2006.01690.x. PubMed DOI

Michael JR. Focused ion beam induced microstructural alterations: texture development, grain growth, and intermetallic formation. Microsc. Microanal. 2011;17:386–397. doi: 10.1017/S1431927611000171. PubMed DOI

Schmidt FP, et al. Dark plasmonic breathing modes in silver nanodisks. Nano Lett. 2012;12:5780–5783. doi: 10.1021/nl3030938. PubMed DOI PMC

Rodríguez-Fernández J, et al. The effect of surface roughness on the plasmonic response of individual sub-micron gold spheres. Phys. Chem. Chem. Phys. 2009;11:5909–5914. doi: 10.1039/b905200n. PubMed DOI

Trügler A, Tinguely JC, Krenn JR, Hohenau A, Hohenester U. Influence of surface roughness on the optical properties of plasmonic nanoparticles. Phys. Rev. B. 2011;83:081412. doi: 10.1103/PhysRevB.83.081412. DOI

Koh AL, et al. Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes. ACS Nano. 2009;3:3015–3022. doi: 10.1021/nn900922z. PubMed DOI

Madsen SJ, Esfandyarpour M, Brongersma ML, Sinclair R. Observing plasmon damping due to adhesion layers in gold nanostructures using electron energy loss spectroscopy. ACS Photonics. 2017;4:268–274. doi: 10.1021/acsphotonics.6b00525. PubMed DOI PMC

Habteyes TG, et al. Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative. ACS Nano. 2012;6:5702–5709. doi: 10.1021/nn301885u. PubMed DOI

Pyykkö P, Atsumi M. Molecular single-bond covalent radii for elements 1–118. Chem. Eur. J. 2009;15:186–197. doi: 10.1002/chem.200800987. PubMed DOI

Křápek V, et al. Spatially resolved electron energy loss spectroscopy of crescent-shaped plasmonic antennas. Opt. Express. 2015;23:11855. doi: 10.1364/OE.23.011855. PubMed DOI

Walczyk W, Schön PM, Schönherr H. The effect of PeakForce tapping mode AFM imaging on the apparent shape of surface nanobubbles. J. Phys. Condens. Matter. 2013;25:1–11. doi: 10.1088/0953-8984/25/18/184005. PubMed DOI

Olmon RL, et al. Optical dielectric function of gold. Phys. Rev. B. 2012;86:235147. doi: 10.1103/PhysRevB.86.235147. DOI

Schmidt FP, Ditlbacher H, Hofer F, Krenn JR, Hohenester U. Morphing a plasmonic nanodisk into a nanotriangle. Nano Lett. 2014;14:4810–4815. doi: 10.1021/nl502027r. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...