Bismuth Plasmonic Antennas
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40888192
PubMed Central
PMC12444988
DOI
10.1021/acsnano.5c07482
Knihovny.cz E-resources
- Keywords
- bismuth, electron energy loss spectroscopy, localized surface plasmons, nanophotonics, plasmonic antennas,
- Publication type
- Journal Article MeSH
Bismuth is a particularly promising alternative plasmonic metal because of its theoretically predicted wide spectral bandwidth. In this study, we experimentally demonstrate the correlation between the shape and size of individual bismuth plasmonic antennas and their optical properties. To this end, we employ a combination of scanning transmission electron microscopy and electron energy loss spectroscopy. Bar-shaped and bowtie bismuth plasmonic antennas of various sizes were fabricated by focused ion beam lithography of a polycrystalline bismuth thin film. Our experimental findings demonstrate that these antennas support localized surface plasmon resonances and their dipole modes can be tuned through their size from the near-infrared to the entire visible spectral region. Furthermore, our findings demonstrate that bismuth exhibits a plasmon dispersion relation that is nearly identical to that of gold while maintaining its plasmonic performance even at higher plasmon energies, thus rendering it a promising low-cost alternative to gold.
See more in PubMed
Schuller J. A., Barnard E. S., Cai W., Jun Y. C., White J. S., Brongersma M. L.. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010;9:193–204. doi: 10.1038/nmat2630. PubMed DOI
Klinghammer S., Uhlig T., Patrovsky F., Böhm M., Schütt J., Pütz N., Baraban L., Eng L. M., Cuniberti G.. Plasmonic Biosensor Based on Vertical Arrays of Gold Nanoantennas. ACS Sens. 2018;3:1392–1400. doi: 10.1021/acssensors.8b00315. PubMed DOI
Riley J. A., Horák M., Křápek V., Healy N., Pacheco-Peña V.. Plasmonic sensing using Babinet’s principle. Nanophotonics. 2023;12:3895–3909. doi: 10.1515/nanoph-2023-0317. PubMed DOI PMC
Yang Y., Jia H., Hu N., Zhao M., Li J., Ni W., Zhang C.-y.. Construction of Gold/Rhodium Freestanding Superstructures as Antenna-Reactor Photocatalysts for Plasmon-Driven Nitrogen Fixation. J. Am. Chem. Soc. 2024;146:7734–7742. doi: 10.1021/jacs.3c14586. PubMed DOI
Ni X., Ishii S., Kildishev A. V., Shalaev V. M.. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light: Sci. Appl. 2013;2:e72. doi: 10.1038/lsa.2013.28. DOI
Rovenská K., Ligmajer F., Idesová B., Kepič P., Liška J., Chochol J., Šikola T.. Structural color filters with compensated angle-dependent shifts. Opt. Express. 2023;31:43048–43056. doi: 10.1364/OE.506069. PubMed DOI
Zorić I., Zäch M., Kasemo B., Langhammer C.. Gold, Platinum, and Aluminum Nanodisk Plasmons: Material Independence, Subradiance, and Damping Mechanisms. ACS Nano. 2011;5:2535–2546. doi: 10.1021/nn102166t. PubMed DOI
Horák M., Čalkovský V., Mach J., Křápek V., Šikola T.. Plasmonic Properties of Individual Gallium Nanoparticles. J. Phys. Chem. Lett. 2023;14:2012–2019. doi: 10.1021/acs.jpclett.3c00094. PubMed DOI PMC
Hopper E. R., Boukouvala C., Asselin J., Biggins J. S., Ringe E.. Opportunities and Challenges for Alternative Nanoplasmonic Metals: Magnesium and Beyond. J. Phys. Chem. C. 2022;126:10630–10643. doi: 10.1021/acs.jpcc.2c01944. PubMed DOI PMC
Gao Z., Wildenborg A., Kocoj C. A., Liu E., Sheofsky C., Rawashdeh A., Qu H., Guo P., Suh J. Y., Yang A.. Low-Loss Plasmonics with Nanostructured Potassium and Sodium–Potassium Liquid Alloys. Nano Lett. 2023;23:7150–7156. doi: 10.1021/acs.nanolett.3c02054. PubMed DOI
Knight M. W., King N. S., Liu L., Everitt H. O., Nordlander P., Halas N. J.. Aluminum for Plasmonics. ACS Nano. 2014;8:834–840. doi: 10.1021/nn405495q. PubMed DOI
Ligmajer F., Horák M., Šikola T., Fojta M., Daňhel A.. Silver Amalgam Nanoparticles and Microparticles: A Novel Plasmonic Platform for Spectroelectrochemistry. J. Phys. Chem. C. 2019;123:16957–16964. doi: 10.1021/acs.jpcc.9b04124. DOI
Liao Y., Fan Y., Lei D.. Thermally tunable binary-phase VO2 metasurfaces for switchable holography and digital encryption. Nanophotonics. 2024;13:1109–1117. doi: 10.1515/nanoph-2023-0824. PubMed DOI PMC
Kepič P., Horák M., Kabát J., Hájek M., Konečná A., Šikola T., Ligmajer F.. Coexisting Phases of Individual VO2 Nanoparticles for Multilevel Nanoscale Memory. ACS Nano. 2025;19:1167–1176. doi: 10.1021/acsnano.4c13188. PubMed DOI PMC
McMahon J. M., Schatz G. C., Gray S. K.. Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys. Chem. Chem. Phys. 2013;15:5415–5423. doi: 10.1039/C3CP43856B. PubMed DOI
Behnia K., Méasson M.-A., Kopelevich Y.. Nernst Effect in Semimetals: The Effective Mass and the Figure of Merit. Phys. Rev. Lett. 2007;98:076603. doi: 10.1103/PhysRevLett.98.076603. PubMed DOI
Tian Y., Toudert J.. Nanobismuth: Fabrication, Optical, and Plasmonic PropertiesEmerging Applications. J. Nanotechnol. 2018;2018:3250932. doi: 10.1155/2018/3250932. DOI
Wang Y. W., Kim J. S., Kim G. H., Kim K. S.. Quantum size effects in the volume plasmon excitation of bismuth nanoparticles investigated by electron energy loss spectroscopy. Appl. Phys. Lett. 2006;88:143106. doi: 10.1063/1.2192624. DOI
Lee S., Ham J., Jeon K., Noh J.-S., Lee W.. Direct observation of the semimetal-to-semiconductor transition of individual single-crystal bismuth nanowires grown by on-film formation of nanowires. Nanotechnology. 2010;21:405701. doi: 10.1088/0957-4484/21/40/405701. PubMed DOI
Son J. S., Park K., Han M., Kang C., Park S., Kim J., Kim W., Kim S., Hyeon T.. Large-Scale Synthesis and Characterization of the Size-Dependent Thermoelectric Properties of Uniformly Sized Bismuth Nanocrystals. Angew. Chem., Int. Ed. 2011;50:1363–1366. doi: 10.1002/anie.201005023. PubMed DOI
Leng D., Wang T., Li Y., Huang Z., Wang H., Wan Y., Pei X., Wang J.. Plasmonic Bismuth Nanoparticles: Thiolate Pyrolysis Synthesis, Size-Dependent LSPR Property, and Their Oxidation Behavior. Inorg. Chem. 2021;60:17258–17267. doi: 10.1021/acs.inorgchem.1c02621. PubMed DOI
Martínez-Lara D., González-Campuzano R., Mendoza D.. Bismuth plasmonics in the visible spectrum using texturized films. Photonics Nanostruct. - Fundam. Appl. 2022;52:101058. doi: 10.1016/j.photonics.2022.101058. DOI
Toudert J., Serna R., de Castro M. J.. Exploring the Optical Potential of Nano-Bismuth: Tunable Surface Plasmon Resonances in the Near Ultraviolet-to-Near Infrared Range. J. Phys. Chem. C. 2012;116:20530–20539. doi: 10.1021/jp3065882. DOI
Ozbay I., Ghobadi A., Butun B., Turhan-Sayan G.. Bismuth plasmonics for extraordinary light absorption in deep sub-wavelength geometries. Opt. Lett. 2020;45:686–689. doi: 10.1364/OL.45.000686. PubMed DOI
Chacon-Sanchez F., de Galarreta C. R., Nieto-Pinero E., Garcia-Pardo M., Garcia-Tabares E., Ramos N., Castillo M., Lopez-Garcia M., Siegel J., Toudert J., Wright C. D., Serna R.. Building Conventional Metasurfaces with Unconventional Interband Plasmonics: A Versatile Route for Sustainable Structural Color Generation Based on Bismuth. Adv. Opt. Mater. 2024;12:2302130. doi: 10.1002/adom.202302130. DOI
Tomaszewska E., Soliwoda K., Kadziola K., Tkacz-Szczesna B., Celichowski G., Cichomski M., Szmaja W., Grobelny J.. Detection Limits of DLS and UV-Vis Spectroscopy in Characterization of Polydisperse Nanoparticles Colloids. J. Nanomater. 2013;2013:313081. doi: 10.1155/2013/313081. DOI
Hendel T., Wuithschick M., Kettemann F., Birnbaum A., Rademann K., Polte J.. In Situ Determination of Colloidal Gold Concentrations with UV–Vis Spectroscopy: Limitations and Perspectives. Anal. Chem. 2014;86:11115–11124. doi: 10.1021/ac502053s. PubMed DOI
García de Abajo F. J.. Optical excitations in electron microscopy. Rev. Mod. Phys. 2010;82:209–275. doi: 10.1103/RevModPhys.82.209. DOI
Horák M., Bukvišová K., Švarc V., Jaskowiec J., Křápek V., Šikola T.. Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography. Sci. Rep. 2018;8:9640. doi: 10.1038/s41598-018-28037-1. PubMed DOI PMC
Horák M., Šikola T.. Influence of experimental conditions on localized surface plasmon resonances measurement by electron energy loss spectroscopy. Ultramicroscopy. 2020;216:113044. doi: 10.1016/j.ultramic.2020.113044. PubMed DOI
Křápek V., Konečná A., Horák M., Ligmajer F., Stöger-Pollach M., Hrtoň M., Babocký J., Šikola T.. Independent engineering of individual plasmon modes in plasmonic dimers with conductive and capacitive coupling. Nanophotonics. 2020;9:623–632. doi: 10.1515/nanoph-2019-0326. DOI
Sano Y., Satoh H., Chiba M., Shinohara A., Okamoto M., Serizawa K., Nakashima H., Omae K.. A 13-Week Toxicity Study of Bismuth in Rats by Intratracheal Intermittent Administration. J. Occup. Health. 2005;47:242–248. doi: 10.1539/joh.47.242. PubMed DOI
Griffith D. M., Li H., Werrett M. V., Andrews P. C., Sun H.. Medicinal chemistry and biomedical applications of bismuth-based compounds and nanoparticles. Chem. Soc. Rev. 2021;50:12037–12069. doi: 10.1039/D0CS00031K. PubMed DOI
Waxenegger J., Trügler A., Hohenester U.. Plasmonics simulations with the MNPBEM toolbox: Consideration of substrates and layer structures. Comput. Phys. Commun. 2015;193:138–150. doi: 10.1016/j.cpc.2015.03.023. DOI
Werner W. S. M., Glantschnig K., Ambrosch-Draxl C.. Optical Constants and Inelastic Electron-Scattering Data for 17 Elemental Metals. J. Phys. Chem. Ref. Data. 2009;38:1013–1092. doi: 10.1063/1.3243762. DOI
Foltýn, M. ; Šikola, T. ; Horák, M. . Bismuth Plasmonic Antennas. 2025, arXiv:2504.00671. arXiv.org e-Printarchive. https://arxiv.org/abs/2504.00671. (accessed: August 24, 2025). PubMed PMC
Plasmonic Properties of Individual Bismuth Nanoparticles
Plasmonic Response to Liquid-Solid Phase Transition in Individual Gallium Nanoparticles