• This record comes from PubMed

Bismuth Plasmonic Antennas

. 2025 Sep 16 ; 19 (36) : 32299-32305. [epub] 20250901

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Bismuth is a particularly promising alternative plasmonic metal because of its theoretically predicted wide spectral bandwidth. In this study, we experimentally demonstrate the correlation between the shape and size of individual bismuth plasmonic antennas and their optical properties. To this end, we employ a combination of scanning transmission electron microscopy and electron energy loss spectroscopy. Bar-shaped and bowtie bismuth plasmonic antennas of various sizes were fabricated by focused ion beam lithography of a polycrystalline bismuth thin film. Our experimental findings demonstrate that these antennas support localized surface plasmon resonances and their dipole modes can be tuned through their size from the near-infrared to the entire visible spectral region. Furthermore, our findings demonstrate that bismuth exhibits a plasmon dispersion relation that is nearly identical to that of gold while maintaining its plasmonic performance even at higher plasmon energies, thus rendering it a promising low-cost alternative to gold.

See more in PubMed

Schuller J. A., Barnard E. S., Cai W., Jun Y. C., White J. S., Brongersma M. L.. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010;9:193–204. doi: 10.1038/nmat2630. PubMed DOI

Klinghammer S., Uhlig T., Patrovsky F., Böhm M., Schütt J., Pütz N., Baraban L., Eng L. M., Cuniberti G.. Plasmonic Biosensor Based on Vertical Arrays of Gold Nanoantennas. ACS Sens. 2018;3:1392–1400. doi: 10.1021/acssensors.8b00315. PubMed DOI

Riley J. A., Horák M., Křápek V., Healy N., Pacheco-Peña V.. Plasmonic sensing using Babinet’s principle. Nanophotonics. 2023;12:3895–3909. doi: 10.1515/nanoph-2023-0317. PubMed DOI PMC

Yang Y., Jia H., Hu N., Zhao M., Li J., Ni W., Zhang C.-y.. Construction of Gold/Rhodium Freestanding Superstructures as Antenna-Reactor Photocatalysts for Plasmon-Driven Nitrogen Fixation. J. Am. Chem. Soc. 2024;146:7734–7742. doi: 10.1021/jacs.3c14586. PubMed DOI

Ni X., Ishii S., Kildishev A. V., Shalaev V. M.. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light: Sci. Appl. 2013;2:e72. doi: 10.1038/lsa.2013.28. DOI

Rovenská K., Ligmajer F., Idesová B., Kepič P., Liška J., Chochol J., Šikola T.. Structural color filters with compensated angle-dependent shifts. Opt. Express. 2023;31:43048–43056. doi: 10.1364/OE.506069. PubMed DOI

Zorić I., Zäch M., Kasemo B., Langhammer C.. Gold, Platinum, and Aluminum Nanodisk Plasmons: Material Independence, Subradiance, and Damping Mechanisms. ACS Nano. 2011;5:2535–2546. doi: 10.1021/nn102166t. PubMed DOI

Horák M., Čalkovský V., Mach J., Křápek V., Šikola T.. Plasmonic Properties of Individual Gallium Nanoparticles. J. Phys. Chem. Lett. 2023;14:2012–2019. doi: 10.1021/acs.jpclett.3c00094. PubMed DOI PMC

Hopper E. R., Boukouvala C., Asselin J., Biggins J. S., Ringe E.. Opportunities and Challenges for Alternative Nanoplasmonic Metals: Magnesium and Beyond. J. Phys. Chem. C. 2022;126:10630–10643. doi: 10.1021/acs.jpcc.2c01944. PubMed DOI PMC

Gao Z., Wildenborg A., Kocoj C. A., Liu E., Sheofsky C., Rawashdeh A., Qu H., Guo P., Suh J. Y., Yang A.. Low-Loss Plasmonics with Nanostructured Potassium and Sodium–Potassium Liquid Alloys. Nano Lett. 2023;23:7150–7156. doi: 10.1021/acs.nanolett.3c02054. PubMed DOI

Knight M. W., King N. S., Liu L., Everitt H. O., Nordlander P., Halas N. J.. Aluminum for Plasmonics. ACS Nano. 2014;8:834–840. doi: 10.1021/nn405495q. PubMed DOI

Ligmajer F., Horák M., Šikola T., Fojta M., Daňhel A.. Silver Amalgam Nanoparticles and Microparticles: A Novel Plasmonic Platform for Spectroelectrochemistry. J. Phys. Chem. C. 2019;123:16957–16964. doi: 10.1021/acs.jpcc.9b04124. DOI

Liao Y., Fan Y., Lei D.. Thermally tunable binary-phase VO2 metasurfaces for switchable holography and digital encryption. Nanophotonics. 2024;13:1109–1117. doi: 10.1515/nanoph-2023-0824. PubMed DOI PMC

Kepič P., Horák M., Kabát J., Hájek M., Konečná A., Šikola T., Ligmajer F.. Coexisting Phases of Individual VO2 Nanoparticles for Multilevel Nanoscale Memory. ACS Nano. 2025;19:1167–1176. doi: 10.1021/acsnano.4c13188. PubMed DOI PMC

McMahon J. M., Schatz G. C., Gray S. K.. Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys. Chem. Chem. Phys. 2013;15:5415–5423. doi: 10.1039/C3CP43856B. PubMed DOI

Behnia K., Méasson M.-A., Kopelevich Y.. Nernst Effect in Semimetals: The Effective Mass and the Figure of Merit. Phys. Rev. Lett. 2007;98:076603. doi: 10.1103/PhysRevLett.98.076603. PubMed DOI

Tian Y., Toudert J.. Nanobismuth: Fabrication, Optical, and Plasmonic PropertiesEmerging Applications. J. Nanotechnol. 2018;2018:3250932. doi: 10.1155/2018/3250932. DOI

Wang Y. W., Kim J. S., Kim G. H., Kim K. S.. Quantum size effects in the volume plasmon excitation of bismuth nanoparticles investigated by electron energy loss spectroscopy. Appl. Phys. Lett. 2006;88:143106. doi: 10.1063/1.2192624. DOI

Lee S., Ham J., Jeon K., Noh J.-S., Lee W.. Direct observation of the semimetal-to-semiconductor transition of individual single-crystal bismuth nanowires grown by on-film formation of nanowires. Nanotechnology. 2010;21:405701. doi: 10.1088/0957-4484/21/40/405701. PubMed DOI

Son J. S., Park K., Han M., Kang C., Park S., Kim J., Kim W., Kim S., Hyeon T.. Large-Scale Synthesis and Characterization of the Size-Dependent Thermoelectric Properties of Uniformly Sized Bismuth Nanocrystals. Angew. Chem., Int. Ed. 2011;50:1363–1366. doi: 10.1002/anie.201005023. PubMed DOI

Leng D., Wang T., Li Y., Huang Z., Wang H., Wan Y., Pei X., Wang J.. Plasmonic Bismuth Nanoparticles: Thiolate Pyrolysis Synthesis, Size-Dependent LSPR Property, and Their Oxidation Behavior. Inorg. Chem. 2021;60:17258–17267. doi: 10.1021/acs.inorgchem.1c02621. PubMed DOI

Martínez-Lara D., González-Campuzano R., Mendoza D.. Bismuth plasmonics in the visible spectrum using texturized films. Photonics Nanostruct. - Fundam. Appl. 2022;52:101058. doi: 10.1016/j.photonics.2022.101058. DOI

Toudert J., Serna R., de Castro M. J.. Exploring the Optical Potential of Nano-Bismuth: Tunable Surface Plasmon Resonances in the Near Ultraviolet-to-Near Infrared Range. J. Phys. Chem. C. 2012;116:20530–20539. doi: 10.1021/jp3065882. DOI

Ozbay I., Ghobadi A., Butun B., Turhan-Sayan G.. Bismuth plasmonics for extraordinary light absorption in deep sub-wavelength geometries. Opt. Lett. 2020;45:686–689. doi: 10.1364/OL.45.000686. PubMed DOI

Chacon-Sanchez F., de Galarreta C. R., Nieto-Pinero E., Garcia-Pardo M., Garcia-Tabares E., Ramos N., Castillo M., Lopez-Garcia M., Siegel J., Toudert J., Wright C. D., Serna R.. Building Conventional Metasurfaces with Unconventional Interband Plasmonics: A Versatile Route for Sustainable Structural Color Generation Based on Bismuth. Adv. Opt. Mater. 2024;12:2302130. doi: 10.1002/adom.202302130. DOI

Tomaszewska E., Soliwoda K., Kadziola K., Tkacz-Szczesna B., Celichowski G., Cichomski M., Szmaja W., Grobelny J.. Detection Limits of DLS and UV-Vis Spectroscopy in Characterization of Polydisperse Nanoparticles Colloids. J. Nanomater. 2013;2013:313081. doi: 10.1155/2013/313081. DOI

Hendel T., Wuithschick M., Kettemann F., Birnbaum A., Rademann K., Polte J.. In Situ Determination of Colloidal Gold Concentrations with UV–Vis Spectroscopy: Limitations and Perspectives. Anal. Chem. 2014;86:11115–11124. doi: 10.1021/ac502053s. PubMed DOI

García de Abajo F. J.. Optical excitations in electron microscopy. Rev. Mod. Phys. 2010;82:209–275. doi: 10.1103/RevModPhys.82.209. DOI

Horák M., Bukvišová K., Švarc V., Jaskowiec J., Křápek V., Šikola T.. Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography. Sci. Rep. 2018;8:9640. doi: 10.1038/s41598-018-28037-1. PubMed DOI PMC

Horák M., Šikola T.. Influence of experimental conditions on localized surface plasmon resonances measurement by electron energy loss spectroscopy. Ultramicroscopy. 2020;216:113044. doi: 10.1016/j.ultramic.2020.113044. PubMed DOI

Křápek V., Konečná A., Horák M., Ligmajer F., Stöger-Pollach M., Hrtoň M., Babocký J., Šikola T.. Independent engineering of individual plasmon modes in plasmonic dimers with conductive and capacitive coupling. Nanophotonics. 2020;9:623–632. doi: 10.1515/nanoph-2019-0326. DOI

Sano Y., Satoh H., Chiba M., Shinohara A., Okamoto M., Serizawa K., Nakashima H., Omae K.. A 13-Week Toxicity Study of Bismuth in Rats by Intratracheal Intermittent Administration. J. Occup. Health. 2005;47:242–248. doi: 10.1539/joh.47.242. PubMed DOI

Griffith D. M., Li H., Werrett M. V., Andrews P. C., Sun H.. Medicinal chemistry and biomedical applications of bismuth-based compounds and nanoparticles. Chem. Soc. Rev. 2021;50:12037–12069. doi: 10.1039/D0CS00031K. PubMed DOI

Waxenegger J., Trügler A., Hohenester U.. Plasmonics simulations with the MNPBEM toolbox: Consideration of substrates and layer structures. Comput. Phys. Commun. 2015;193:138–150. doi: 10.1016/j.cpc.2015.03.023. DOI

Werner W. S. M., Glantschnig K., Ambrosch-Draxl C.. Optical Constants and Inelastic Electron-Scattering Data for 17 Elemental Metals. J. Phys. Chem. Ref. Data. 2009;38:1013–1092. doi: 10.1063/1.3243762. DOI

Foltýn, M. ; Šikola, T. ; Horák, M. . Bismuth Plasmonic Antennas. 2025, arXiv:2504.00671. arXiv.org e-Printarchive. https://arxiv.org/abs/2504.00671. (accessed: August 24, 2025). PubMed PMC

Newest 20 citations...

See more in
Medvik | PubMed

Plasmonic Properties of Individual Bismuth Nanoparticles

. 2025 Sep 25 ; 16 (38) : 9933-9938. [epub] 20250913

Bismuth Plasmonic Antennas

. 2025 Sep 16 ; 19 (36) : 32299-32305. [epub] 20250901

Plasmonic Response to Liquid-Solid Phase Transition in Individual Gallium Nanoparticles

. 2025 Sep 04 ; 16 (35) : 8891-8896. [epub] 20250821

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...