Plasmonic Response to Liquid-Solid Phase Transition in Individual Gallium Nanoparticles

. 2025 Sep 04 ; 16 (35) : 8891-8896. [epub] 20250821

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40839687

Gallium is a phase-changing plasmonic material offering ultraviolet-to-near-infrared tunability, facile and scalable preparation, and good stability of nanoparticles. In this work, we explore the impact of the liquid-to-solid phase transition on their plasmonic properties at the single-particle level by analytical transmission electron microscopy. We observed a phase transition from liquid to β-gallium with a freezing temperature around -135 °C and a melting temperature around -20 °C. We have shown that the dipole mode of localized surface plasmon resonances can be tuned through their size from the ultraviolet to visible spectral region, while the differences in localized surface plasmon energies between liquid gallium at 25 °C and β-gallium nanoparticles at -177 °C are minor. Our results show that the performance of gallium nanoparticles is, in the case of temperature-dependent experiments, unaffected by the liquid-to-solid phase change of gallium and paves the way for suppressing the nonradiative recombination in surface-enhanced Raman spectroscopy at cryogenic temperature.

Zobrazit více v PubMed

Novotny L., van Hulst N.. Antennas for light. Nat. Photonics. 2011;5:83–90. doi: 10.1038/nphoton.2010.237. DOI

Schuller J. A., Barnard E. S., Cai W., Jun Y. C., White J. S., Brongersma M. L.. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010;9:193–204. doi: 10.1038/nmat2630. PubMed DOI

Kelly K. L., Coronado E., Zhao L. L., Schatz G. C.. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B. 2003;107:668–677. doi: 10.1021/jp026731y. DOI

Stockman M. I., Kneipp K., Bozhevolnyi S. I., Saha S., Dutta A., Ndukaife J., Kinsey N., Reddy H., Guler U., Shalaev V. M.. et al. Roadmap on plasmonics. J. Opt. 2018;20:043001. doi: 10.1088/2040-8986/aaa114. DOI

Knight M. W., King N. S., Liu L., Everitt H. O., Nordlander P., Halas N. J.. Aluminum for Plasmonics. ACS Nano. 2014;8:834–840. doi: 10.1021/nn405495q. PubMed DOI

Biggins J. S., Yazdi S., Ringe E.. Magnesium Nanoparticle Plasmonics. Nano Lett. 2018;18:3752–3758. doi: 10.1021/acs.nanolett.8b00955. PubMed DOI

Foltýn, M. ; Šikola, T. ; Horák, M. . Bismuth plasmonic antennas. ArXiv Preprints 2025; https://arxiv.org/abs/2504.00671 (accessed: Aug. 01, 2025). PubMed

Ligmajer F., Horák M., Šikola T., Fojta M., Daňhel A.. Silver Amalgam Nanoparticles and Microparticles: A Novel Plasmonic Platform for Spectroelectrochemistry. J. Phys. Chem. C. 2019;123:16957–16964. doi: 10.1021/acs.jpcc.9b04124. DOI

Knight M. W., Coenen T., Yang Y., Brenny B. J. M., Losurdo M., Brown A. S., Everitt H. O., Polman A.. Gallium Plasmonics: Deep Subwavelength Spectroscopic Imaging of Single and Interacting Gallium Nanoparticles. ACS Nano. 2015;9:2049–2060. doi: 10.1021/nn5072254. PubMed DOI

Horák M., Čalkovský V., Mach J., Křápek V., Šikola T.. Plasmonic Properties of Individual Gallium Nanoparticles. J. Phys. Chem. Lett. 2023;14:2012–2019. doi: 10.1021/acs.jpclett.3c00094. PubMed DOI PMC

Kepič P., Horák M., Kabát J., Hájek M., Konečná A., Šikola T., Ligmajer F.. Coexisting Phases of Individual VO2 Nanoparticles for Multilevel Nanoscale Memory. ACS Nano. 2025;19:1167–1176. doi: 10.1021/acsnano.4c13188. PubMed DOI PMC

Gutiérrez Y., Losurdo M., García-Fernández P., Sainz de la Maza M., González F., Brown A. S., Everitt H. O., Junquera J., Moreno F.. Gallium Polymorphs: Phase-Dependent Plasmonics. Adv. Opt. Mater. 2019;7:1900307. doi: 10.1002/adom.201900307. DOI

Gutiérrez Y., García-Fernández P., Junquera J., Brown A. S., Moreno F., Losurdo M.. Polymorphic gallium for active resonance tuning in photonic nanostructures: from bulk gallium to two-dimensional (2D) gallenene. Nanophotonics. 2020;9:4233–4252. doi: 10.1515/nanoph-2020-0314. DOI

Roy P., Bolshakov A. D.. Temperature-controlled switching of plasmonic response in gallium core–shell nanoparticles. J. Phys. D: Appl. Phys. 2020;53:465303. doi: 10.1088/1361-6463/abaae2. DOI

Chitambar C. R.. Medical Applications and Toxicities of Gallium Compounds. Intl. J. Environ. Re. Public Health. 2010;7:2337–2361. doi: 10.3390/ijerph7052337. PubMed DOI PMC

Yu, H.-S. ; Liao, W.-T. . Encyclopedia of Environmental Health; Elsevier, 2011; pp 829–833.

Li R., Wang L., Li L., Yu T., Zhao H., Chapman K. W., Wang Y., Rivers M. L., Chupas P. J., Mao H.-k., Liu H.. et al. Local structure of liquid gallium under pressure. Sci. Rep. 2017;7:5666. doi: 10.1038/s41598-017-05985-8. PubMed DOI PMC

Gutiérrez Y., Losurdo M., García-Fernández P., Sainz de la Maza M., González F., Brown A. S., Everitt H. O., Junquera J., Moreno F.. Dielectric function and plasmonic behavior of Ga­(II) and Ga­(III) Opt. Mater. Express. 2019;9:4050. doi: 10.1364/OME.9.004050. DOI

Yarema M., Wörle M., Rossell M. D., Erni R., Caputo R., Protesescu L., Kravchyk K. V., Dirin D. N., Lienau K., von Rohr F.. et al. Monodisperse Colloidal Gallium Nanoparticles: Synthesis, Low Temperature Crystallization, Surface Plasmon Resonance and Li-Ion Storage. J. Am. Chem. Soc. 2014;136:12422–12430. doi: 10.1021/ja506712d. PubMed DOI PMC

MacDonald K. F., Fedotov V. A., Pochon S., Ross K. J., Stevens G. C., Zheludev N. I., Brocklesby W. S., Emel’yanov V. I.. Optical control of gallium nanoparticle growth. Appl. Phys. Lett. 2002;80:1643–1645. doi: 10.1063/1.1456260. DOI

Wu P. C., Kim T.-H., Brown A. S., Losurdo M., Bruno G., Everitt H. O.. Real-time plasmon resonance tuning of liquid Ga nanoparticles by in situ spectroscopic ellipsometry. Appl. Phys. Lett. 2007;90:103119. doi: 10.1063/1.2712508. DOI

Catalán-Gómez S., Bran C., Vázquez M., Vázquez L., Pau J. L., Redondo-Cubero A.. Plasmonic coupling in closed-packed ordered gallium nanoparticles. Sci. Rep. 2020;10:4187. doi: 10.1038/s41598-020-61090-3. PubMed DOI PMC

Kolíbal M., Čechal T., Brandejsová E., Čechal J., Šikola T.. Self-limiting cyclic growth of gallium droplets on Si(111) Nanotechnology. 2008;19:475606. doi: 10.1088/0957-4484/19/47/475606. PubMed DOI

de la Mata M., Catalán-Gómez S., Nucciarelli F., Pau J. L., Molina S. I.. High Spatial Resolution Mapping of Localized Surface Plasmon Resonances in Single Gallium Nanoparticles. Small. 2019;15:1902920. doi: 10.1002/smll.201902920. PubMed DOI

Catalán-Gómez S., Redondo-Cubero A., Palomares F. J., Nucciarelli F., Pau J. L.. Tunable plasmonic resonance of gallium nanoparticles by thermal oxidation at low temperatures. Nanotechnology. 2017;28:405705. doi: 10.1088/1361-6528/aa8505. PubMed DOI

Catalán-Gómez S., Redondo-Cubero A., Palomares F. J., Vázquez L., Nogales E., Nucciarelli F., Méndez B., Gordillo N., Pau J. L.. Size-selective breaking of the core–shell structure of gallium nanoparticles. Nanotechnology. 2018;29:355707. doi: 10.1088/1361-6528/aacb91. PubMed DOI

Reineck P., Lin Y., Gibson B. C., Dickey M. D., Greentree A. D., Maksymov I. S.. UV plasmonic properties of colloidal liquid-metal eutectic gallium-indium alloy nanoparticles. Sci. Rep. 2019;9:5345. doi: 10.1038/s41598-019-41789-8. PubMed DOI PMC

Lereu A. L., Lemarchand F., Zerrad M., Yazdanpanah M., Passian A.. Optical properties and plasmonic response of silver-gallium nanostructures. J. Appl. Phys. 2015;117:063110. doi: 10.1063/1.4906950. DOI

Marín A. G., García-Mendiola T., Bernabeu C. N., Hernández M. J., Piqueras J., Pau J. L., Pariente F., Lorenzo E.. Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing. Nanoscale. 2016;8:9842–9851. doi: 10.1039/C6NR00926C. PubMed DOI

Wu P. C., Khoury C. G., Kim T.-H., Yang Y., Losurdo M., Bianco G. V., Vo-Dinh T., Brown A. S., Everitt H. O.. Demonstration of Surface-Enhanced Raman Scattering by Tunable, Plasmonic Gallium Nanoparticles. J. Am. Chem. Soc. 2009;131:12032–12033. doi: 10.1021/ja903321z. PubMed DOI PMC

Yang Y., Callahan J. M., Kim T.-H., Brown A. S., Everitt H. O.. Ultraviolet Nanoplasmonics: A Demonstration of Surface-Enhanced Raman Spectroscopy, Fluorescence, and Photodegradation Using Gallium Nanoparticles. Nano Lett. 2013;13:2837–2841. doi: 10.1021/nl401145j. PubMed DOI

Dumiszewska E., Caban P., Jóźwik I., Ciepielewski P., Baranowski J. M.. MOCVD growth of gallium and indium microparticles for SERS applications. J. Mater. Sci.: Mater. Electron. 2021;32:8958–8964. doi: 10.1007/s10854-021-05566-6. DOI

Piastek J., Mach J., Bardy S., Édes Z., Bartošík M., Maniš J., Čalkovský V., Konečný M., Spousta J., Šikola T.. Correlative Raman Imaging and Scanning Electron Microscopy: The Role of Single Ga Islands in Surface-Enhanced Raman Spectroscopy of Graphene. J. Phys. Chem. C. 2022;126:4508–4514. doi: 10.1021/acs.jpcc.1c10426. DOI

Zhang B., Ren L., Wang Y., Xu X., Du Y., Dou S.. Gallium-based liquid metals for lithium-ion batteries. Interdiscipl. Mater. 2022;1:354–372. doi: 10.1002/idm2.12042. DOI

Di Cicco A.. Phase Transitions in Confined Gallium Droplets. Phys. Rev. Lett. 1998;81:2942–2945. doi: 10.1103/PhysRevLett.81.2942. DOI

Wyckoff, R. W. G. Crystal Structures, 2nd Edition; Interscience Publishers: New York, 1963; Vol. 1; pp 7–83.

Bosio L., Defrain A., Curien H., Rimsky A.. Structure cristalline du gallium β. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1969;25:995–995. doi: 10.1107/S0567740869003360. DOI

Bosio L., Curien H., Dupont M., Rimsky A.. Structure cristalline de Ga γ. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1972;28:1974–1975. doi: 10.1107/S0567740872005357. DOI

Bosio L., Curien H., Dupont M., Rimsky A.. Structure cristalline de Ga δ. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1973;29:367–368. doi: 10.1107/S0567740873002530. DOI

Weir C. E., Piermarini G. J., Block S.. On the Crystal Structures of Cs II and Ga II. J. Chem. Phys. 1971;54:2768–2770. doi: 10.1063/1.1675251. DOI

Bosio L.. Crystal structures of Ga­(II) and Ga­(III) J. Chem. Phys. 1978;68:1221–1223. doi: 10.1063/1.435841. DOI

Klinger M.. More features, more tools, more CrysTBox . J. Appl. Crystallogr. 2017;50:1226–1234. doi: 10.1107/S1600576717006793. DOI

Chmielewski A., Ricolleau C., Alloyeau D., Wang G., Nelayah J.. Nanoscale temperature measurement during temperature controlled in situ TEM using Al plasmon nanothermometry. Ultramicroscopy. 2020;209:112881. doi: 10.1016/j.ultramic.2019.112881. PubMed DOI

Ma H., Tian Y., Jiao A., Wang C., Zhang M., Zheng L., Li G., Li S., Chen M.. Extraordinary approach to further boost plasmonic NIR-SERS by cryogenic temperature-suppressed non-radiative recombination. Opt. Lett. 2022;47:670. doi: 10.1364/OL.447995. PubMed DOI

Xu L., Chen M., Cui Q., Wang C., Zhang M., Zheng L., Li S., Zhang H., Liang G.. Ultra-clean ternary Au/Ag/AgCl nanoclusters favoring cryogenic temperature-boosted broadband SERS ultrasensitive detection. Opt. Express. 2023;31:26474. doi: 10.1364/OE.495426. PubMed DOI

Horák M., Šikola T.. Influence of experimental conditions on localized surface plasmon resonances measurement by electron energy loss spectroscopy. Ultramicroscopy. 2020;216:113044. doi: 10.1016/j.ultramic.2020.113044. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Plasmonic Properties of Individual Bismuth Nanoparticles

. 2025 Sep 25 ; 16 (38) : 9933-9938. [epub] 20250913

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...