Plasmonic Response to Liquid-Solid Phase Transition in Individual Gallium Nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40839687
PubMed Central
PMC12415875
DOI
10.1021/acs.jpclett.5c02035
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Gallium is a phase-changing plasmonic material offering ultraviolet-to-near-infrared tunability, facile and scalable preparation, and good stability of nanoparticles. In this work, we explore the impact of the liquid-to-solid phase transition on their plasmonic properties at the single-particle level by analytical transmission electron microscopy. We observed a phase transition from liquid to β-gallium with a freezing temperature around -135 °C and a melting temperature around -20 °C. We have shown that the dipole mode of localized surface plasmon resonances can be tuned through their size from the ultraviolet to visible spectral region, while the differences in localized surface plasmon energies between liquid gallium at 25 °C and β-gallium nanoparticles at -177 °C are minor. Our results show that the performance of gallium nanoparticles is, in the case of temperature-dependent experiments, unaffected by the liquid-to-solid phase change of gallium and paves the way for suppressing the nonradiative recombination in surface-enhanced Raman spectroscopy at cryogenic temperature.
Zobrazit více v PubMed
Novotny L., van Hulst N.. Antennas for light. Nat. Photonics. 2011;5:83–90. doi: 10.1038/nphoton.2010.237. DOI
Schuller J. A., Barnard E. S., Cai W., Jun Y. C., White J. S., Brongersma M. L.. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010;9:193–204. doi: 10.1038/nmat2630. PubMed DOI
Kelly K. L., Coronado E., Zhao L. L., Schatz G. C.. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B. 2003;107:668–677. doi: 10.1021/jp026731y. DOI
Stockman M. I., Kneipp K., Bozhevolnyi S. I., Saha S., Dutta A., Ndukaife J., Kinsey N., Reddy H., Guler U., Shalaev V. M.. et al. Roadmap on plasmonics. J. Opt. 2018;20:043001. doi: 10.1088/2040-8986/aaa114. DOI
Knight M. W., King N. S., Liu L., Everitt H. O., Nordlander P., Halas N. J.. Aluminum for Plasmonics. ACS Nano. 2014;8:834–840. doi: 10.1021/nn405495q. PubMed DOI
Biggins J. S., Yazdi S., Ringe E.. Magnesium Nanoparticle Plasmonics. Nano Lett. 2018;18:3752–3758. doi: 10.1021/acs.nanolett.8b00955. PubMed DOI
Foltýn, M. ; Šikola, T. ; Horák, M. . Bismuth plasmonic antennas. ArXiv Preprints 2025; https://arxiv.org/abs/2504.00671 (accessed: Aug. 01, 2025). PubMed
Ligmajer F., Horák M., Šikola T., Fojta M., Daňhel A.. Silver Amalgam Nanoparticles and Microparticles: A Novel Plasmonic Platform for Spectroelectrochemistry. J. Phys. Chem. C. 2019;123:16957–16964. doi: 10.1021/acs.jpcc.9b04124. DOI
Knight M. W., Coenen T., Yang Y., Brenny B. J. M., Losurdo M., Brown A. S., Everitt H. O., Polman A.. Gallium Plasmonics: Deep Subwavelength Spectroscopic Imaging of Single and Interacting Gallium Nanoparticles. ACS Nano. 2015;9:2049–2060. doi: 10.1021/nn5072254. PubMed DOI
Horák M., Čalkovský V., Mach J., Křápek V., Šikola T.. Plasmonic Properties of Individual Gallium Nanoparticles. J. Phys. Chem. Lett. 2023;14:2012–2019. doi: 10.1021/acs.jpclett.3c00094. PubMed DOI PMC
Kepič P., Horák M., Kabát J., Hájek M., Konečná A., Šikola T., Ligmajer F.. Coexisting Phases of Individual VO2 Nanoparticles for Multilevel Nanoscale Memory. ACS Nano. 2025;19:1167–1176. doi: 10.1021/acsnano.4c13188. PubMed DOI PMC
Gutiérrez Y., Losurdo M., García-Fernández P., Sainz de la Maza M., González F., Brown A. S., Everitt H. O., Junquera J., Moreno F.. Gallium Polymorphs: Phase-Dependent Plasmonics. Adv. Opt. Mater. 2019;7:1900307. doi: 10.1002/adom.201900307. DOI
Gutiérrez Y., García-Fernández P., Junquera J., Brown A. S., Moreno F., Losurdo M.. Polymorphic gallium for active resonance tuning in photonic nanostructures: from bulk gallium to two-dimensional (2D) gallenene. Nanophotonics. 2020;9:4233–4252. doi: 10.1515/nanoph-2020-0314. DOI
Roy P., Bolshakov A. D.. Temperature-controlled switching of plasmonic response in gallium core–shell nanoparticles. J. Phys. D: Appl. Phys. 2020;53:465303. doi: 10.1088/1361-6463/abaae2. DOI
Chitambar C. R.. Medical Applications and Toxicities of Gallium Compounds. Intl. J. Environ. Re. Public Health. 2010;7:2337–2361. doi: 10.3390/ijerph7052337. PubMed DOI PMC
Yu, H.-S. ; Liao, W.-T. . Encyclopedia of Environmental Health; Elsevier, 2011; pp 829–833.
Li R., Wang L., Li L., Yu T., Zhao H., Chapman K. W., Wang Y., Rivers M. L., Chupas P. J., Mao H.-k., Liu H.. et al. Local structure of liquid gallium under pressure. Sci. Rep. 2017;7:5666. doi: 10.1038/s41598-017-05985-8. PubMed DOI PMC
Gutiérrez Y., Losurdo M., García-Fernández P., Sainz de la Maza M., González F., Brown A. S., Everitt H. O., Junquera J., Moreno F.. Dielectric function and plasmonic behavior of Ga(II) and Ga(III) Opt. Mater. Express. 2019;9:4050. doi: 10.1364/OME.9.004050. DOI
Yarema M., Wörle M., Rossell M. D., Erni R., Caputo R., Protesescu L., Kravchyk K. V., Dirin D. N., Lienau K., von Rohr F.. et al. Monodisperse Colloidal Gallium Nanoparticles: Synthesis, Low Temperature Crystallization, Surface Plasmon Resonance and Li-Ion Storage. J. Am. Chem. Soc. 2014;136:12422–12430. doi: 10.1021/ja506712d. PubMed DOI PMC
MacDonald K. F., Fedotov V. A., Pochon S., Ross K. J., Stevens G. C., Zheludev N. I., Brocklesby W. S., Emel’yanov V. I.. Optical control of gallium nanoparticle growth. Appl. Phys. Lett. 2002;80:1643–1645. doi: 10.1063/1.1456260. DOI
Wu P. C., Kim T.-H., Brown A. S., Losurdo M., Bruno G., Everitt H. O.. Real-time plasmon resonance tuning of liquid Ga nanoparticles by in situ spectroscopic ellipsometry. Appl. Phys. Lett. 2007;90:103119. doi: 10.1063/1.2712508. DOI
Catalán-Gómez S., Bran C., Vázquez M., Vázquez L., Pau J. L., Redondo-Cubero A.. Plasmonic coupling in closed-packed ordered gallium nanoparticles. Sci. Rep. 2020;10:4187. doi: 10.1038/s41598-020-61090-3. PubMed DOI PMC
Kolíbal M., Čechal T., Brandejsová E., Čechal J., Šikola T.. Self-limiting cyclic growth of gallium droplets on Si(111) Nanotechnology. 2008;19:475606. doi: 10.1088/0957-4484/19/47/475606. PubMed DOI
de la Mata M., Catalán-Gómez S., Nucciarelli F., Pau J. L., Molina S. I.. High Spatial Resolution Mapping of Localized Surface Plasmon Resonances in Single Gallium Nanoparticles. Small. 2019;15:1902920. doi: 10.1002/smll.201902920. PubMed DOI
Catalán-Gómez S., Redondo-Cubero A., Palomares F. J., Nucciarelli F., Pau J. L.. Tunable plasmonic resonance of gallium nanoparticles by thermal oxidation at low temperatures. Nanotechnology. 2017;28:405705. doi: 10.1088/1361-6528/aa8505. PubMed DOI
Catalán-Gómez S., Redondo-Cubero A., Palomares F. J., Vázquez L., Nogales E., Nucciarelli F., Méndez B., Gordillo N., Pau J. L.. Size-selective breaking of the core–shell structure of gallium nanoparticles. Nanotechnology. 2018;29:355707. doi: 10.1088/1361-6528/aacb91. PubMed DOI
Reineck P., Lin Y., Gibson B. C., Dickey M. D., Greentree A. D., Maksymov I. S.. UV plasmonic properties of colloidal liquid-metal eutectic gallium-indium alloy nanoparticles. Sci. Rep. 2019;9:5345. doi: 10.1038/s41598-019-41789-8. PubMed DOI PMC
Lereu A. L., Lemarchand F., Zerrad M., Yazdanpanah M., Passian A.. Optical properties and plasmonic response of silver-gallium nanostructures. J. Appl. Phys. 2015;117:063110. doi: 10.1063/1.4906950. DOI
Marín A. G., García-Mendiola T., Bernabeu C. N., Hernández M. J., Piqueras J., Pau J. L., Pariente F., Lorenzo E.. Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing. Nanoscale. 2016;8:9842–9851. doi: 10.1039/C6NR00926C. PubMed DOI
Wu P. C., Khoury C. G., Kim T.-H., Yang Y., Losurdo M., Bianco G. V., Vo-Dinh T., Brown A. S., Everitt H. O.. Demonstration of Surface-Enhanced Raman Scattering by Tunable, Plasmonic Gallium Nanoparticles. J. Am. Chem. Soc. 2009;131:12032–12033. doi: 10.1021/ja903321z. PubMed DOI PMC
Yang Y., Callahan J. M., Kim T.-H., Brown A. S., Everitt H. O.. Ultraviolet Nanoplasmonics: A Demonstration of Surface-Enhanced Raman Spectroscopy, Fluorescence, and Photodegradation Using Gallium Nanoparticles. Nano Lett. 2013;13:2837–2841. doi: 10.1021/nl401145j. PubMed DOI
Dumiszewska E., Caban P., Jóźwik I., Ciepielewski P., Baranowski J. M.. MOCVD growth of gallium and indium microparticles for SERS applications. J. Mater. Sci.: Mater. Electron. 2021;32:8958–8964. doi: 10.1007/s10854-021-05566-6. DOI
Piastek J., Mach J., Bardy S., Édes Z., Bartošík M., Maniš J., Čalkovský V., Konečný M., Spousta J., Šikola T.. Correlative Raman Imaging and Scanning Electron Microscopy: The Role of Single Ga Islands in Surface-Enhanced Raman Spectroscopy of Graphene. J. Phys. Chem. C. 2022;126:4508–4514. doi: 10.1021/acs.jpcc.1c10426. DOI
Zhang B., Ren L., Wang Y., Xu X., Du Y., Dou S.. Gallium-based liquid metals for lithium-ion batteries. Interdiscipl. Mater. 2022;1:354–372. doi: 10.1002/idm2.12042. DOI
Di Cicco A.. Phase Transitions in Confined Gallium Droplets. Phys. Rev. Lett. 1998;81:2942–2945. doi: 10.1103/PhysRevLett.81.2942. DOI
Wyckoff, R. W. G. Crystal Structures, 2nd Edition; Interscience Publishers: New York, 1963; Vol. 1; pp 7–83.
Bosio L., Defrain A., Curien H., Rimsky A.. Structure cristalline du gallium β. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1969;25:995–995. doi: 10.1107/S0567740869003360. DOI
Bosio L., Curien H., Dupont M., Rimsky A.. Structure cristalline de Ga γ. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1972;28:1974–1975. doi: 10.1107/S0567740872005357. DOI
Bosio L., Curien H., Dupont M., Rimsky A.. Structure cristalline de Ga δ. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1973;29:367–368. doi: 10.1107/S0567740873002530. DOI
Weir C. E., Piermarini G. J., Block S.. On the Crystal Structures of Cs II and Ga II. J. Chem. Phys. 1971;54:2768–2770. doi: 10.1063/1.1675251. DOI
Bosio L.. Crystal structures of Ga(II) and Ga(III) J. Chem. Phys. 1978;68:1221–1223. doi: 10.1063/1.435841. DOI
Klinger M.. More features, more tools, more CrysTBox . J. Appl. Crystallogr. 2017;50:1226–1234. doi: 10.1107/S1600576717006793. DOI
Chmielewski A., Ricolleau C., Alloyeau D., Wang G., Nelayah J.. Nanoscale temperature measurement during temperature controlled in situ TEM using Al plasmon nanothermometry. Ultramicroscopy. 2020;209:112881. doi: 10.1016/j.ultramic.2019.112881. PubMed DOI
Ma H., Tian Y., Jiao A., Wang C., Zhang M., Zheng L., Li G., Li S., Chen M.. Extraordinary approach to further boost plasmonic NIR-SERS by cryogenic temperature-suppressed non-radiative recombination. Opt. Lett. 2022;47:670. doi: 10.1364/OL.447995. PubMed DOI
Xu L., Chen M., Cui Q., Wang C., Zhang M., Zheng L., Li S., Zhang H., Liang G.. Ultra-clean ternary Au/Ag/AgCl nanoclusters favoring cryogenic temperature-boosted broadband SERS ultrasensitive detection. Opt. Express. 2023;31:26474. doi: 10.1364/OE.495426. PubMed DOI
Horák M., Šikola T.. Influence of experimental conditions on localized surface plasmon resonances measurement by electron energy loss spectroscopy. Ultramicroscopy. 2020;216:113044. doi: 10.1016/j.ultramic.2020.113044. PubMed DOI
Plasmonic Properties of Individual Bismuth Nanoparticles