Plasmonic Properties of Individual Gallium Nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36794890
PubMed Central
PMC10017019
DOI
10.1021/acs.jpclett.3c00094
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Gallium is a plasmonic material offering ultraviolet to near-infrared tunability, facile and scalable preparation, and good stability of nanoparticles. In this work, we experimentally demonstrate the link between the shape and size of individual gallium nanoparticles and their optical properties. To this end, we utilize scanning transmission electron microscopy combined with electron energy loss spectroscopy. Lens-shaped gallium nanoparticles with a diameter between 10 and 200 nm were grown directly on a silicon nitride membrane using an effusion cell developed in house that was operated under ultra-high-vacuum conditions. We have experimentally proven that they support localized surface plasmon resonances and their dipole mode can be tuned through their size from the ultraviolet to near-infrared spectral region. The measurements are supported by numerical simulations using realistic particle shapes and sizes. Our results pave the way for future applications of gallium nanoparticles such as hyperspectral absorption of sunlight in energy harvesting or plasmon-enhanced luminescence of ultraviolet emitters.
Zobrazit více v PubMed
Schuller J. A.; Barnard E. S.; Cai W.; Jun Y. C.; White J. S.; Brongersma M. L. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010, 9, 193–204. 10.1038/nmat2630. PubMed DOI
Stockman M. I.; Kneipp K.; Bozhevolnyi S. I.; Saha S.; Dutta A.; Ndukaife J.; Kinsey N.; Reddy H.; Guler U.; Shalaev V. M.; Boltasseva A.; Gholipour B.; Krishnamoorthy H. N. S.; MacDonald K. F.; Soci C.; Zheludev N. I.; Savinov V.; Singh R.; Groß P.; Lienau C.; Vadai M.; Solomon M. L.; Barton D. R.; Lawrence M.; Dionne J. A.; Boriskina S. V.; Esteban R.; Aizpurua J.; Zhang X.; Yang S.; Wang D.; Wang W.; Odom T. W.; Accanto N.; de Roque P. M.; Hancu I. M.; Piatkowski L.; van Hulst N. F.; Kling M. F. Roadmap on plasmonics. J. Opt. 2018, 20, 043001.10.1088/2040-8986/aaa114. DOI
Knight M. W.; King N. S.; Liu L.; Everitt H. O.; Nordlander P.; Halas N. J. Aluminum for plasmonics. ACS Nano 2014, 8, 834–840. 10.1021/nn405495q. PubMed DOI
Biggins J. S.; Yazdi S.; Ringe E. Magnesium nanoparticle plasmonics. Nano Lett 2018, 18, 3752–3758. 10.1021/acs.nanolett.8b00955. PubMed DOI
Gutiérrez Y.; Losurdo M.; García-Fernández P.; Sainz de la Maza M.; González F.; Brown A. S.; Everitt H. O.; Junquera J.; Moreno F. Gallium polymorphs: phase-dependent plasmonics. Adv. Opt. Mater. 2019, 7, 1900307.10.1002/adom.201900307. DOI
Knight M. W.; Coenen T.; Yang Y.; Brenny B. J. M.; Losurdo M.; Brown A. S.; Everitt H. O.; Polman A. Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles. ACS Nano 2015, 9, 2049–2060. 10.1021/nn5072254. PubMed DOI
Catalán-Gómez S.; Bran C.; Vázquez M.; Vázquez L.; Pau J. L.; Redondo-Cubero A. Plasmonic coupling in closed-packed ordered gallium nanoparticles. Sci. Rep. 2020, 10, 4187.10.1038/s41598-020-61090-3. PubMed DOI PMC
Sanz M. J.; Ortiz D.; Alcaraz de la Osa R.; Saiz J. M.; González F.; Brown A. S.; Losurdo M.; Everitt H. O.; Moreno F. UV plasmonic behavior of various metal nanoparticles in the near and far-field regimes: geometry and substrate effects. J. Phys. Chem. C 2013, 117, 19606–19615. 10.1021/jp405773p. DOI
McMahon J. M.; Schatz G. C.; Gray S. K. Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys. Chem. Chem. Phys. 2013, 15, 5415–5423. 10.1039/C3CP43856B. PubMed DOI
McMahon J. M.; Schatz G. C.; Gray S. K. Correction: Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys. Chem. Chem. Phys. 2015, 17, 19670–19671. 10.1039/C5CP90112J. PubMed DOI
Ligmajer F.; Horák M.; Šikola T.; Fojta M.; Daňhel A. Silver amalgam nanoparticles and microparticles: a novel plasmonic platform for spectroelectrochemistry. J. Phys. Chem. C 2019, 123, 16957–16964. 10.1021/acs.jpcc.9b04124. DOI
Ligmajer F.; Kejík L.; Tiwari U.; Qiu M.; Nag J.; Konečný M.; Šikola T.; Jin W.; Haglund R. F. Jr.; Appavoo K.; Lei D. Y. Epitaxial VO2 nanostructures: a route to large-scale, switchable dielectric metasurfaces. ACS Photonics 2018, 5, 2561–2567. 10.1021/acsphotonics.7b01384. DOI
Kepič P.; Ligmajer F.; Hrtoň M.; Ren H.; Menezes L. S.; Maier S. A.; Šikola T. Optically tunable Mie resonance VO2 nanoantennas for metasurfaces in the visible. ACS Photonics 2021, 8, 1048–1057. 10.1021/acsphotonics.1c00222. DOI
Gutiérrez Y.; García-Fernández P.; Junquera J.; Brown A. S.; Moreno F.; Losurdo M. Polymorphic gallium for active resonance tuning in photonic nanostructures: from bulk galium to two-dimensional (2D) gallene. Nanophotonics 2020, 9, 4233–4252. 10.1515/nanoph-2020-0314. DOI
Roy P.; Bolshakov A. D. Temperature-controlled switching of plasmonic response in gallium core-shell nanoparticles. J. Phys. D: Appl. Phys. 2020, 53, 465303.10.1088/1361-6463/abaae2. DOI
Li R.; Wang L.; Li L.; Yu T.; Zhao H.; Chapman K. W.; Wang Y.; Rivers M. L.; Chupas P. J.; Mao H.; Liu H. Local structure of liquid gallium under pressure. Sci. Rep. 2017, 7, 5666.10.1038/s41598-017-05985-8. PubMed DOI PMC
Gutiérrez Y.; Losurdo M.; García-Fernández P.; Sainz de la Maza M.; González F.; Brown A. S.; Everitt H. O.; Junquera J.; Moreno F. Dielectric function and plasmonic behavior of Ga(II) and Ga(III). Opt. Mater. Express 2019, 9, 4050–4060. 10.1364/OME.9.004050. DOI
Egerton R. F.Electron energy-loss spectroscopy in the electron microscope; Springer US: New York, 2011.10.1007/978-1-4419-9583-4 DOI
Hunderi O.; Ryberg R. Band structure and optical properties of galium. J. Phys. F: Met. Phys. 1974, 4, 2084.10.1088/0305-4608/4/11/032. DOI
Chitambar C. R. Medical applications and toxicities of gallium compounds. Int. J. Environ. Res. Public Health 2010, 7, 2337–2361. 10.3390/ijerph7052337. PubMed DOI PMC
Yu H. S.; Liao W. T.. Gallium: Environmental pollution and health effects. In Encyclopedia of Environmental Health; Nriagu J. O., Ed.; Elsevier, 2011; pp 829–833.10.1016/B978-0-444-52272-6.00474-8 DOI
Yarema M.; Wörle M.; Rossell M. D.; Erni R.; Caputo R.; Protesescu L.; Kravchyk K. V.; Dirin D. N.; Lienau K.; von Rohr F.; Schilling A.; Nachtegaal M.; Kovalenko M. V. Monodisperse colloidal gallium nanoparticles: synthesis, low temperature crystallization, surface plasmon resonance and Li-ion storage. J. Am. Chem. Soc. 2014, 136, 12422–12430. 10.1021/ja506712d. PubMed DOI PMC
MacDonald K. F.; Fedotov V. A.; Pochon S.; Ross K. J.; Stevens G. C.; Zheludev N. I.; Brocklesby W. S.; Emel’yanov V. I. Optical control of gallium nanoparticle growth. Appl. Phys. Lett. 2002, 80, 1643.10.1063/1.1456260. DOI
Wu P. C; Kim T.-H.; Brown A. S.; Losurdo M.; Bruno G.; Everitt H. O. Real-time plasmon resonance tuning of liquid Ga nanoparticles by in situ spectroscopic ellipsometry. Appl. Phys. Lett. 2007, 90, 103119.10.1063/1.2712508. DOI
de la Mata M.; Catalán-Gómez S.; Nucciarelli F.; Pau J. L.; Molina S. I. High spatial resolution mapping of localized surface plasmon resonances in single gallium nanoparticles. Small 2019, 15, 1902920.10.1002/smll.201902920. PubMed DOI
Catalán-Gómez S.; Redondo-Cubero A.; Palomares F. J.; Nucciarelli F.; Pau J. L. Tunable plasmonic resonance of gallium nanoparticles by thermal oxidation at low temperatures. Nanotechnology 2017, 28, 405705.10.1088/1361-6528/aa8505. PubMed DOI
Catalán-Gómez S.; Redondo-Cubero A.; Palomares F. J.; Vázquez L.; Nogales E.; Nucciarelli F.; Méndez B.; Gordillo N.; Pau J. L. Size-selective breaking of the core-shell structure of gallium nanoparticles. Nanotechnology 2018, 29, 355707.10.1088/1361-6528/aacb91. PubMed DOI
Reineck P.; Lin Y.; Gibson B. C.; Dickey M. D.; Greentree A. D.; Maksymov I. S. UV plasmonic properties of colloidal liquid-metal eutectic gallium-indium alloy nanoparticles. Sci. Rep. 2019, 9, 5345.10.1038/s41598-019-41789-8. PubMed DOI PMC
Lereu A. L.; Lemarchand F.; Zerrad M.; Yazdanpanah M.; Passian A. Optical properties and plasmonic response of silver-gallium nanostructures. J. Appl. Phys. 2015, 117, 063110.10.1063/1.4906950. DOI
García Marín A.; García-Mendiola T.; Bernabeu C. N.; Hernández M. J.; Piqueras J.; Pau J. L.; Pariente F.; Lorenzo E. Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing. Nanoscale 2016, 8, 9842–9851. 10.1039/C6NR00926C. PubMed DOI
Catalán-Gómez S.; Garg S.; Redondo-Cubero A.; Gordillo N.; de Andrés A.; Nucciarelli F.; Kim S.; Kung P.; Pau J. L. Photoluminescence enhancement of monolayer MoS2 using plasmonic gallium nanoparticles. Nanoscale Adv 2019, 1, 884–893. 10.1039/C8NA00094H. PubMed DOI PMC
Yang Y.; Callahan J. M.; Kim T.-H.; Brown A. S.; Everitt H. O. Ultraviolet nanoplasmonics: A demonstration of surface-enhanced Raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles. Nano Lett 2013, 13, 2837–2841. 10.1021/nl401145j. PubMed DOI
Wu P. C.; Khoury C. G.; Kim T.-H.; Yang Y.; Losurdo M.; Bianco G. V.; Vo-Dinh T.; Brown A. S.; Everitt H. O. Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles. J. Am. Chem. Soc. 2009, 131, 12032–12033. 10.1021/ja903321z. PubMed DOI PMC
Dumiszewska E.; Caban P.; Jozwik I.; Ciepielewski P.; Baranowski J. M. MOCVD growth of gallium and indium microparticles for SERS applications. J. Mater. Sci.: Mater. Electron. 2021, 32, 8958–8964. 10.1007/s10854-021-05566-6. DOI
Fischer D.; Andriyevsky B.; Schön J. C. Systematics of the allotrope formation in elemental gallium films. Mater. Res. Express 2019, 6, 116401.10.1088/2053-1591/ab42f6. DOI
Di Cicco A. Phase transitions in confined gallium droplets. Phys. Rev. Lett. 1998, 81, 2942–2945. 10.1103/PhysRevLett.81.2942. DOI
Di Cicco A.; Fusari S.; Stizza S. Phase transitions and undercooling in confined gallium. Philos. Mag. B 1999, 79, 2113–2120. 10.1080/13642819908223100. DOI
Kejík L.; Horák M.; Šikola T.; Křápek V. Structural and optical properties of monocrystalline and polycrystalline gold plasmonic nanorods. Opt. Express 2020, 28, 34960.10.1364/OE.409428. PubMed DOI
Kolíbal M.; Čechal T.; Brandejsová E.; Čechal J.; Šikola T. Self-limiting cyclic growth of gallium droplets on Si(111). Nanotechnology 2008, 19, 475606.10.1088/0957-4484/19/47/475606. PubMed DOI
Horák M.; Šikola T. Influence of experimental conditions on localized surface plasmon resonance measurement by electron energy loss spectroscopy. Ultramicroscopy 2020, 216, 113044.10.1016/j.ultramic.2020.113044. PubMed DOI
Mitchell D. R. G. Determination of mean free path for energy loss and surface oxide film thickness using convergent beam electron diffraction and thickness mapping: a case study using Si and P91 steel. J. Microscopy 2006, 224, 187–196. 10.1111/j.1365-2818.2006.01690.x. PubMed DOI
Iakoubovskii K.; Mitsuishi K.; Nakayama Y.; Furuya K. Thickness measurements with electron energy loss spectroscopy. Microsc. Res. Tech. 2008, 71, 626–631. 10.1002/jemt.20597. PubMed DOI
Waxenegger J.; Trügler A.; Hohenester U. Plasmonics simulations with the MNPBEM toolbox: consideration of substrates and layer structures. Comput. Phys. Commun. 2015, 193, 138–150. 10.1016/j.cpc.2015.03.023. DOI
Schmidt F. P.; Losquin A.; Horák M.; Hohenester U.; Stöger-Pollach M.; Krenn J. R. Fundamental limit of plasmonic cathodoluminescence. Nano Lett 2021, 21, 590–596. 10.1021/acs.nanolett.0c04084. PubMed DOI PMC
Plasmonic Properties of Individual Bismuth Nanoparticles
Plasmonic Response to Liquid-Solid Phase Transition in Individual Gallium Nanoparticles
Plasmonic sensing using Babinet's principle