Fundamental Limit of Plasmonic Cathodoluminescence
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
33336569
PubMed Central
PMC7809694
DOI
10.1021/acs.nanolett.0c04084
Knihovny.cz E-resources
- Keywords
- Cathodoluminescence, nanoparticles., plasmonics, radial breathing mode, transmission electron microscopy,
- Publication type
- Journal Article MeSH
We use cathodoluminescence (CL) spectroscopy in a transmission electron microscope to probe the radial breathing mode of plasmonic silver nanodisks. A two-mirror detection system sandwiching the sample collects the CL emission in both directions, that is, backward and forward with respect to the electron beam trajectory. We unambiguously identify a spectral shift of about 8 nm in the CL spectra acquired from both sides and show that this asymmetry is induced by the electron beam itself. By numerical simulations, we confirm the observations and identify the underlying physical effect due to the interference of the CL emission patterns of an electron-beam-induced dipole and the breathing mode. This effect can ultimately limit the achievable fidelity in CL measurements on any system involving multiple excitations and should therefore be considered with care in high-precision experiments.
Institute of Physics University of Graz Universitätsplatz 5 Graz 8010 Austria
Thales Research and Technology 1 avenue Augustin Fresnel Palaiseau 91767 France
See more in PubMed
Yamamoto N.; Araya K.; García de Abajo F. J. Photon emission from silver particles induced by a high-energy electron beam. Phys. Rev. B 2001, 64, 1069.
García de Abajo F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 2010, 82, 209–275. 10.1103/RevModPhys.82.209. DOI
Kociak M.; Gloter A.; Stéphan O. A spectromicroscope for nanophysics. Ultramicroscopy 2017, 180, 81–92. 10.1016/j.ultramic.2017.02.008. PubMed DOI
Losquin A.; Lummen T. T. A. Electron microscopy methods for space-, energy-, and time-resolved plasmonics. Front. Phys. 2017, 12, 127301.10.1007/s11467-016-0605-2. DOI
Kociak M.; Stéphan O. Mapping plasmons at the nanometer scale in an electron microscope. Chem. Soc. Rev. 2014, 43, 3865–3883. 10.1039/c3cs60478k. PubMed DOI
Losquin A.; Kociak M. Link between Cathodoluminescence and Electron Energy Loss Spectroscopy and the Radiative and Full Electromagnetic Local Density of States. ACS Photonics 2015, 2, 1619–1627. 10.1021/acsphotonics.5b00416. DOI
Losquin A.; Zagonel L. F.; Myroshnychenko V.; Rodríguez-González B.; Tencé M.; Scarabelli L.; Förstner J.; Liz-Marzán L. M.; García de Abajo F. J.; Stéphan O.; Kociak M. Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements. Nano Lett. 2015, 15, 1229–1237. 10.1021/nl5043775. PubMed DOI
Kawasaki N.; Meuret S.; Weil R.; Lourenço-Martins H.; Stéphan O.; Kociak M. Extinction and Scattering Properties of High-Order Surface Plasmon Modes in Silver Nanoparticles Probed by Combined Spatially Resolved Electron Energy Loss Spectroscopy and Cathodoluminescence. ACS Photonics 2016, 3, 1654–1661. 10.1021/acsphotonics.6b00257. DOI
Schmidt F.-P.; Losquin A.; Hofer F.; Hohenau A.; Krenn J. R.; Kociak M. How Dark Are Radial Breathing Modes in Plasmonic Nanodisks?. ACS Photonics 2018, 5, 861–866. 10.1021/acsphotonics.7b01060. PubMed DOI PMC
Gómez-Medina R.; Yamamoto N.; Nakano M.; García de Abajo F. J. Mapping plasmons in nanoantennas via cathodoluminescence. New J. Phys. 2008, 10, 105009.10.1088/1367-2630/10/10/105009. DOI
Chaturvedi P.; Hsu K. H.; Kumar A.; Fung K. H.; Mabon J. C.; Fang N. X. Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy. ACS Nano 2009, 3, 2965–2974. 10.1021/nn900571z. PubMed DOI
Kumar A.; Fung K. H.; Fang N. X. Mapping of surface plasmon polaritons on nanostructured thin film disks using cathodoluminescence imaging. Photonic and Phononic Properties of Engineered Nanostructures 2011, 79461U.
Atre A. C.; Brenny B. J. M.; Coenen T.; García-Etxarri A.; Polman A.; Dionne J. A. Nanoscale optical tomography with cathodoluminescence spectroscopy. Nat. Nanotechnol. 2015, 10, 429–436. 10.1038/nnano.2015.39. PubMed DOI
Coenen T.; Haegel N. M. Cathodoluminescence for the 21st century: Learning more from light. Appl. Phys. Rev. 2017, 4, 03110310.1063/1.4985767. DOI
Kociak M.; Zagonel L. F. Cathodoluminescence in the scanning transmission electron microscope. Ultramicroscopy 2017, 176, 112–131. 10.1016/j.ultramic.2017.03.014. PubMed DOI
Hancu I. M.; Curto A. G.; Castro-Lopez M.; Kuttge M.; van Hulst N. F. Multipolar Interference for Directed Light Emission. Nano Lett. 2014, 14, 166–171. 10.1021/nl403681g. PubMed DOI
Coenen T.; Bernal Arango F.; Femius Koenderink A.; Polman A. Directional emission from a single plasmonic scatterer. Nat. Commun. 2014, 5, 3250.10.1038/ncomms4250. PubMed DOI
Coenen T.; Polman A. Optical Properties of Single Plasmonic Holes Probed with Local Electron Beam Excitation. ACS Nano 2014, 8, 7350–7358. 10.1021/nn502469r. PubMed DOI
Yamamoto N. Development of high-resolution cathodoluminescence system for STEM and application to plasmonic nanostructures. Microscopy (Oxford, U. K.) 2016, 65, 282–295. 10.1093/jmicro/dfw025. PubMed DOI
Thollar Z.; Wadell C.; Matsukata T.; Yamamoto N.; Sannomiya T. Three-Dimensional Multipole Rotation in Spherical Silver Nanoparticles Observed by Cathodoluminescence. ACS Photonics 2018, 5, 2555–2560. 10.1021/acsphotonics.7b01293. DOI
Matsukata T.; Wadell C.; Matthaiakakis N.; Yamamoto N.; Sannomiya T. Selected Mode Mixing and Interference Visualized within a Single Optical Nanoantenna. ACS Photonics 2018, 5, 4986–4992. 10.1021/acsphotonics.8b01231. DOI
Fiedler S.; Raza S.; Ai R.; Wang J.; Busch K.; Stenger N.; Mortensen N. A.; Wolff C. Importance of substrates for the visibility of “dark” plasmonic modes. Opt. Express 2020, 28, 13938–13948. 10.1364/OE.393056. PubMed DOI
Stöger-Pollach M.; Bukvišová K.; Schwarz S.; Kvapil M.; Šamořil T.; Horák M. Fundamentals of cathodoluminescence in a STEM: The impact of sample geometry and electron beam energy on light emission of semiconductors. Ultramicroscopy 2019, 200, 111–124. 10.1016/j.ultramic.2019.03.001. PubMed DOI
Hohenester U.; Trügler A. MNPBEM – A Matlab toolbox for the simulation of plasmonic nanoparticles. Comput. Phys. Commun. 2012, 183, 370–381. 10.1016/j.cpc.2011.09.009. DOI
Palik E. D.Handbook of optical constants of solids; Academic Press handbook series; Academic Press: Orlando, 1985.
Johnson P. B.; Christy R. W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379. 10.1103/PhysRevB.6.4370. DOI
Schmidt F.-P.; Ditlbacher H.; Hohenester U.; Hohenau A.; Hofer F.; Krenn J. R. Dark plasmonic breathing modes in silver nanodisks. Nano Lett. 2012, 12, 5780–5783. 10.1021/nl3030938. PubMed DOI PMC
Schaffernak G.; Krug M. K.; Belitsch M.; Gasparic M.; Ditlbacher H.; Hohenester U.; Krenn J. R.; Hohenau A. Plasmonic Dispersion Relations and Intensity Enhancement of Metal-Insulator-Metal Nanodisks. ACS Photonics 2018, 5, 4823–4827. 10.1021/acsphotonics.8b00938. PubMed DOI PMC
Hörl A.; Haberfehlner G.; Trügler A.; Schmidt F.-P.; Hohenester U.; Kothleitner G. Tomographic imaging of the photonic environment of plasmonic nanoparticles. Nat. Commun. 2017, 8, 37.10.1038/s41467-017-00051-3. PubMed DOI PMC
Jackson J. D.Classical electrodynamics; 3rd ed.; Wiley: New York, 1999.
Stöger-Pollach M.; Kachtík L.; Miesenberger B.; Retzl P. Transition radiation in EELS and cathodoluminescence. Ultramicroscopy 2017, 173, 31–35. 10.1016/j.ultramic.2016.11.020. PubMed DOI
Hohenester U. Simulating electron energy loss spectroscopy with the MNPBEM toolbox. Comput. Phys. Commun. 2014, 185, 1177–1187. 10.1016/j.cpc.2013.12.010. DOI
Martin J.; Kociak M.; Mahfoud Z.; Proust J.; Gérard D.; Plain J. High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas. Nano Lett. 2014, 14, 5517–5523. 10.1021/nl501850m. PubMed DOI
Plasmonic Properties of Individual Gallium Nanoparticles