• This record comes from PubMed

Plasmonic Properties of Individual Gallium Nanoparticles

. 2023 Mar 02 ; 14 (8) : 2012-2019. [epub] 20230216

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Gallium is a plasmonic material offering ultraviolet to near-infrared tunability, facile and scalable preparation, and good stability of nanoparticles. In this work, we experimentally demonstrate the link between the shape and size of individual gallium nanoparticles and their optical properties. To this end, we utilize scanning transmission electron microscopy combined with electron energy loss spectroscopy. Lens-shaped gallium nanoparticles with a diameter between 10 and 200 nm were grown directly on a silicon nitride membrane using an effusion cell developed in house that was operated under ultra-high-vacuum conditions. We have experimentally proven that they support localized surface plasmon resonances and their dipole mode can be tuned through their size from the ultraviolet to near-infrared spectral region. The measurements are supported by numerical simulations using realistic particle shapes and sizes. Our results pave the way for future applications of gallium nanoparticles such as hyperspectral absorption of sunlight in energy harvesting or plasmon-enhanced luminescence of ultraviolet emitters.

See more in PubMed

Schuller J. A.; Barnard E. S.; Cai W.; Jun Y. C.; White J. S.; Brongersma M. L. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010, 9, 193–204. 10.1038/nmat2630. PubMed DOI

Stockman M. I.; Kneipp K.; Bozhevolnyi S. I.; Saha S.; Dutta A.; Ndukaife J.; Kinsey N.; Reddy H.; Guler U.; Shalaev V. M.; Boltasseva A.; Gholipour B.; Krishnamoorthy H. N. S.; MacDonald K. F.; Soci C.; Zheludev N. I.; Savinov V.; Singh R.; Groß P.; Lienau C.; Vadai M.; Solomon M. L.; Barton D. R.; Lawrence M.; Dionne J. A.; Boriskina S. V.; Esteban R.; Aizpurua J.; Zhang X.; Yang S.; Wang D.; Wang W.; Odom T. W.; Accanto N.; de Roque P. M.; Hancu I. M.; Piatkowski L.; van Hulst N. F.; Kling M. F. Roadmap on plasmonics. J. Opt. 2018, 20, 043001.10.1088/2040-8986/aaa114. DOI

Knight M. W.; King N. S.; Liu L.; Everitt H. O.; Nordlander P.; Halas N. J. Aluminum for plasmonics. ACS Nano 2014, 8, 834–840. 10.1021/nn405495q. PubMed DOI

Biggins J. S.; Yazdi S.; Ringe E. Magnesium nanoparticle plasmonics. Nano Lett 2018, 18, 3752–3758. 10.1021/acs.nanolett.8b00955. PubMed DOI

Gutiérrez Y.; Losurdo M.; García-Fernández P.; Sainz de la Maza M.; González F.; Brown A. S.; Everitt H. O.; Junquera J.; Moreno F. Gallium polymorphs: phase-dependent plasmonics. Adv. Opt. Mater. 2019, 7, 1900307.10.1002/adom.201900307. DOI

Knight M. W.; Coenen T.; Yang Y.; Brenny B. J. M.; Losurdo M.; Brown A. S.; Everitt H. O.; Polman A. Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles. ACS Nano 2015, 9, 2049–2060. 10.1021/nn5072254. PubMed DOI

Catalán-Gómez S.; Bran C.; Vázquez M.; Vázquez L.; Pau J. L.; Redondo-Cubero A. Plasmonic coupling in closed-packed ordered gallium nanoparticles. Sci. Rep. 2020, 10, 4187.10.1038/s41598-020-61090-3. PubMed DOI PMC

Sanz M. J.; Ortiz D.; Alcaraz de la Osa R.; Saiz J. M.; González F.; Brown A. S.; Losurdo M.; Everitt H. O.; Moreno F. UV plasmonic behavior of various metal nanoparticles in the near and far-field regimes: geometry and substrate effects. J. Phys. Chem. C 2013, 117, 19606–19615. 10.1021/jp405773p. DOI

McMahon J. M.; Schatz G. C.; Gray S. K. Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys. Chem. Chem. Phys. 2013, 15, 5415–5423. 10.1039/C3CP43856B. PubMed DOI

McMahon J. M.; Schatz G. C.; Gray S. K. Correction: Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys. Chem. Chem. Phys. 2015, 17, 19670–19671. 10.1039/C5CP90112J. PubMed DOI

Ligmajer F.; Horák M.; Šikola T.; Fojta M.; Daňhel A. Silver amalgam nanoparticles and microparticles: a novel plasmonic platform for spectroelectrochemistry. J. Phys. Chem. C 2019, 123, 16957–16964. 10.1021/acs.jpcc.9b04124. DOI

Ligmajer F.; Kejík L.; Tiwari U.; Qiu M.; Nag J.; Konečný M.; Šikola T.; Jin W.; Haglund R. F. Jr.; Appavoo K.; Lei D. Y. Epitaxial VO2 nanostructures: a route to large-scale, switchable dielectric metasurfaces. ACS Photonics 2018, 5, 2561–2567. 10.1021/acsphotonics.7b01384. DOI

Kepič P.; Ligmajer F.; Hrtoň M.; Ren H.; Menezes L. S.; Maier S. A.; Šikola T. Optically tunable Mie resonance VO2 nanoantennas for metasurfaces in the visible. ACS Photonics 2021, 8, 1048–1057. 10.1021/acsphotonics.1c00222. DOI

Gutiérrez Y.; García-Fernández P.; Junquera J.; Brown A. S.; Moreno F.; Losurdo M. Polymorphic gallium for active resonance tuning in photonic nanostructures: from bulk galium to two-dimensional (2D) gallene. Nanophotonics 2020, 9, 4233–4252. 10.1515/nanoph-2020-0314. DOI

Roy P.; Bolshakov A. D. Temperature-controlled switching of plasmonic response in gallium core-shell nanoparticles. J. Phys. D: Appl. Phys. 2020, 53, 465303.10.1088/1361-6463/abaae2. DOI

Li R.; Wang L.; Li L.; Yu T.; Zhao H.; Chapman K. W.; Wang Y.; Rivers M. L.; Chupas P. J.; Mao H.; Liu H. Local structure of liquid gallium under pressure. Sci. Rep. 2017, 7, 5666.10.1038/s41598-017-05985-8. PubMed DOI PMC

Gutiérrez Y.; Losurdo M.; García-Fernández P.; Sainz de la Maza M.; González F.; Brown A. S.; Everitt H. O.; Junquera J.; Moreno F. Dielectric function and plasmonic behavior of Ga(II) and Ga(III). Opt. Mater. Express 2019, 9, 4050–4060. 10.1364/OME.9.004050. DOI

Egerton R. F.Electron energy-loss spectroscopy in the electron microscope; Springer US: New York, 2011.10.1007/978-1-4419-9583-4 DOI

Hunderi O.; Ryberg R. Band structure and optical properties of galium. J. Phys. F: Met. Phys. 1974, 4, 2084.10.1088/0305-4608/4/11/032. DOI

Chitambar C. R. Medical applications and toxicities of gallium compounds. Int. J. Environ. Res. Public Health 2010, 7, 2337–2361. 10.3390/ijerph7052337. PubMed DOI PMC

Yu H. S.; Liao W. T.. Gallium: Environmental pollution and health effects. In Encyclopedia of Environmental Health; Nriagu J. O., Ed.; Elsevier, 2011; pp 829–833.10.1016/B978-0-444-52272-6.00474-8 DOI

Yarema M.; Wörle M.; Rossell M. D.; Erni R.; Caputo R.; Protesescu L.; Kravchyk K. V.; Dirin D. N.; Lienau K.; von Rohr F.; Schilling A.; Nachtegaal M.; Kovalenko M. V. Monodisperse colloidal gallium nanoparticles: synthesis, low temperature crystallization, surface plasmon resonance and Li-ion storage. J. Am. Chem. Soc. 2014, 136, 12422–12430. 10.1021/ja506712d. PubMed DOI PMC

MacDonald K. F.; Fedotov V. A.; Pochon S.; Ross K. J.; Stevens G. C.; Zheludev N. I.; Brocklesby W. S.; Emel’yanov V. I. Optical control of gallium nanoparticle growth. Appl. Phys. Lett. 2002, 80, 1643.10.1063/1.1456260. DOI

Wu P. C; Kim T.-H.; Brown A. S.; Losurdo M.; Bruno G.; Everitt H. O. Real-time plasmon resonance tuning of liquid Ga nanoparticles by in situ spectroscopic ellipsometry. Appl. Phys. Lett. 2007, 90, 103119.10.1063/1.2712508. DOI

de la Mata M.; Catalán-Gómez S.; Nucciarelli F.; Pau J. L.; Molina S. I. High spatial resolution mapping of localized surface plasmon resonances in single gallium nanoparticles. Small 2019, 15, 1902920.10.1002/smll.201902920. PubMed DOI

Catalán-Gómez S.; Redondo-Cubero A.; Palomares F. J.; Nucciarelli F.; Pau J. L. Tunable plasmonic resonance of gallium nanoparticles by thermal oxidation at low temperatures. Nanotechnology 2017, 28, 405705.10.1088/1361-6528/aa8505. PubMed DOI

Catalán-Gómez S.; Redondo-Cubero A.; Palomares F. J.; Vázquez L.; Nogales E.; Nucciarelli F.; Méndez B.; Gordillo N.; Pau J. L. Size-selective breaking of the core-shell structure of gallium nanoparticles. Nanotechnology 2018, 29, 355707.10.1088/1361-6528/aacb91. PubMed DOI

Reineck P.; Lin Y.; Gibson B. C.; Dickey M. D.; Greentree A. D.; Maksymov I. S. UV plasmonic properties of colloidal liquid-metal eutectic gallium-indium alloy nanoparticles. Sci. Rep. 2019, 9, 5345.10.1038/s41598-019-41789-8. PubMed DOI PMC

Lereu A. L.; Lemarchand F.; Zerrad M.; Yazdanpanah M.; Passian A. Optical properties and plasmonic response of silver-gallium nanostructures. J. Appl. Phys. 2015, 117, 063110.10.1063/1.4906950. DOI

García Marín A.; García-Mendiola T.; Bernabeu C. N.; Hernández M. J.; Piqueras J.; Pau J. L.; Pariente F.; Lorenzo E. Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing. Nanoscale 2016, 8, 9842–9851. 10.1039/C6NR00926C. PubMed DOI

Catalán-Gómez S.; Garg S.; Redondo-Cubero A.; Gordillo N.; de Andrés A.; Nucciarelli F.; Kim S.; Kung P.; Pau J. L. Photoluminescence enhancement of monolayer MoS2 using plasmonic gallium nanoparticles. Nanoscale Adv 2019, 1, 884–893. 10.1039/C8NA00094H. PubMed DOI PMC

Yang Y.; Callahan J. M.; Kim T.-H.; Brown A. S.; Everitt H. O. Ultraviolet nanoplasmonics: A demonstration of surface-enhanced Raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles. Nano Lett 2013, 13, 2837–2841. 10.1021/nl401145j. PubMed DOI

Wu P. C.; Khoury C. G.; Kim T.-H.; Yang Y.; Losurdo M.; Bianco G. V.; Vo-Dinh T.; Brown A. S.; Everitt H. O. Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles. J. Am. Chem. Soc. 2009, 131, 12032–12033. 10.1021/ja903321z. PubMed DOI PMC

Dumiszewska E.; Caban P.; Jozwik I.; Ciepielewski P.; Baranowski J. M. MOCVD growth of gallium and indium microparticles for SERS applications. J. Mater. Sci.: Mater. Electron. 2021, 32, 8958–8964. 10.1007/s10854-021-05566-6. DOI

Fischer D.; Andriyevsky B.; Schön J. C. Systematics of the allotrope formation in elemental gallium films. Mater. Res. Express 2019, 6, 116401.10.1088/2053-1591/ab42f6. DOI

Di Cicco A. Phase transitions in confined gallium droplets. Phys. Rev. Lett. 1998, 81, 2942–2945. 10.1103/PhysRevLett.81.2942. DOI

Di Cicco A.; Fusari S.; Stizza S. Phase transitions and undercooling in confined gallium. Philos. Mag. B 1999, 79, 2113–2120. 10.1080/13642819908223100. DOI

Kejík L.; Horák M.; Šikola T.; Křápek V. Structural and optical properties of monocrystalline and polycrystalline gold plasmonic nanorods. Opt. Express 2020, 28, 34960.10.1364/OE.409428. PubMed DOI

Kolíbal M.; Čechal T.; Brandejsová E.; Čechal J.; Šikola T. Self-limiting cyclic growth of gallium droplets on Si(111). Nanotechnology 2008, 19, 475606.10.1088/0957-4484/19/47/475606. PubMed DOI

Horák M.; Šikola T. Influence of experimental conditions on localized surface plasmon resonance measurement by electron energy loss spectroscopy. Ultramicroscopy 2020, 216, 113044.10.1016/j.ultramic.2020.113044. PubMed DOI

Mitchell D. R. G. Determination of mean free path for energy loss and surface oxide film thickness using convergent beam electron diffraction and thickness mapping: a case study using Si and P91 steel. J. Microscopy 2006, 224, 187–196. 10.1111/j.1365-2818.2006.01690.x. PubMed DOI

Iakoubovskii K.; Mitsuishi K.; Nakayama Y.; Furuya K. Thickness measurements with electron energy loss spectroscopy. Microsc. Res. Tech. 2008, 71, 626–631. 10.1002/jemt.20597. PubMed DOI

Waxenegger J.; Trügler A.; Hohenester U. Plasmonics simulations with the MNPBEM toolbox: consideration of substrates and layer structures. Comput. Phys. Commun. 2015, 193, 138–150. 10.1016/j.cpc.2015.03.023. DOI

Schmidt F. P.; Losquin A.; Horák M.; Hohenester U.; Stöger-Pollach M.; Krenn J. R. Fundamental limit of plasmonic cathodoluminescence. Nano Lett 2021, 21, 590–596. 10.1021/acs.nanolett.0c04084. PubMed DOI PMC

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...