Influence of Deposition Parameters on the Plasmonic Properties of Gold Nanoantennas Fabricated by Focused Ion Beam Lithography
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39246469
PubMed Central
PMC11375715
DOI
10.1021/acsomega.4c06598
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The behavior of plasmonic antennas is influenced by a variety of factors, including their size, shape, and material. Even minor changes in the deposition parameters during the thin film preparation process may have a significant impact on the dielectric function of the film, and thus on the plasmonic properties of the resulting antenna. In this work, we deposited gold thin films with thicknesses of 20, 30, and 40 nm at various deposition rates using an ion-beam-assisted deposition. We evaluate their morphology and crystallography by atomic force microscopy, X-ray diffraction, and transmission electron microscopy. Next, we examined the ease of fabricating plasmonic antennas using focused-ion-beam lithography. Finally, we evaluate their plasmonic properties by electron energy loss spectroscopy measurements of individual antennas. Our results show that the optimal gold thin film for plasmonic antenna fabrication of a thickness of 20 and 30 nm should be deposited at the deposition rate of around 0.1 nm/s. The thicker 40 nm film should be deposited at a higher deposition rate like 0.3 nm/s.
Zobrazit více v PubMed
Gramotnev D. K.; Bozhevolnyi S. Plasmonics beyond the diffraction limit. Nat. Photonics 2010, 4, 83–91. 10.1038/nphoton.2009.282. DOI
Schuller J. A.; Barnard E. S.; Cai W.; Jun Y. C.; White J. S.; Brongersma M. L. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010, 9, 193–204. 10.1038/nmat2630. PubMed DOI
Stockman M. I.; Kneipp K.; Bozhevolnyi S. I.; Saha S.; Dutta A.; Ndukaife J.; Kinsey N.; Reddy H.; Guler U.; Shalaev V. M.; Boltasseva A.; Gholipour B.; Krishnamoorthy H. N. S.; MacDonald K. F.; Soci C.; Zheludev N. I.; Savinov V.; Singh R.; Groß P.; Lienau C.; Vadai M.; Solomon M. L.; Barton D. R.; Lawrence M.; Dionne J. A.; Boriskina S. V.; Esteban R.; Aizpurua J.; Zhang X.; Yang S.; Wang D.; Wang W.; Odom T. W.; Accanto N.; de Roque P. M.; Hancu I. M.; Piatkowski L.; van Hulst N. F.; Kling M. F. Roadmap on plasmonics. J. Opt. 2018, 20, 04300110.1088/2040-8986/aaa114. DOI
Anker J. N.; Hall W. P.; Lyandres O.; Shah N. C.; Zhao J.; Van Duyne R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453. 10.1038/nmat2162. PubMed DOI
Riley J. A.; Horák M.; Křápek V.; Healy N.; Pacheco-Peña V. Plasmonic sensing using Babinet’s principle. Nanophotonics 2023, 12, 3895–3909. 10.1515/nanoph-2023-0317. DOI
Aieta F.; Genevet P.; Kats M. A.; Yu N.; Blanchard R.; Gaburro Z.; Capasso F. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 2012, 12, 4932–4936. 10.1021/nl302516v. PubMed DOI
Faßbender A.; Babocký J.; Dvořák P.; Křápek V.; Linden S. Direct phase mapping of broadband Laguerre-Gaussian metasurfaces. APL Photonics 2018, 3, 11080310.1063/1.5049368. DOI
Shukla R.; Bansal V.; Chaudhary M.; Basu A.; Bhonde R. R.; Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 2005, 21, 10644–10654. 10.1021/la0513712. PubMed DOI
Amendola V.; Pilot R.; Frasconi M.; Maragò O. M.; Iatì M. A. Surface plasmon resonance in gold nanoparticles: a review. J. Phys.: Condens. Matter 2017, 29, 20300210.1088/1361-648X/aa60f3. PubMed DOI
Suchomel P.; Kvitek L.; Prucek R.; Panacek A.; Halder A.; Vajda S.; Zboril R. Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity. Sci. Rep. 2018, 8, 4589.10.1038/s41598-018-22976-5. PubMed DOI PMC
Rodríguez-Fernández J.; Funston A. M.; Pérez-Juste J.; Álvarez-Puebla R. A.; Liz-Marzána L. M.; Mulvaneyb P. The effect of surface roughness on the plasmonic response of individual sub-micron gold spheres. Phys. Chem. Chem. Phys. 2009, 11, 5909–5914. 10.1039/B905200N. PubMed DOI
Trügler A.; Tinguely J. C.; Krenn J. R.; Hohenau A.; Hohenester U. Influence of surface roughness on the optical properties of plasmonic nanoparticles. Phys. Rev. B 2011, 83, 08141210.1103/PhysRevB.83.081412. DOI
Wood A. J.; Chen B.; Pathan S.; Bok S.; Mathai C. J.; Gangopadhyay K.; Granta S. A.; Gangopadhyay S. Influence of silver grain size, roughness, and profile on the extraordinary fluorescence enhancement capabilities of grating coupled surface plasmon resonance. RSC Adv. 2015, 5, 78534–78544. 10.1039/C5RA17228D. DOI
Ciracì C.; Vidal-Codina W.; Yoo D.; Peraire J.; Oh S.-H.; Smith D. R. Impact of Surface Roughness in Nanogap Plasmonic Systems. ACS Photonics 2020, 7, 908–913. 10.1021/acsphotonics.0c00099. DOI
Kejík L.; Horák M.; Šikola T.; Křápek V. Structural and optical properties of monocrystalline and polycrystalline gold plasmonic nanorods. Opt. Express 2020, 28, 34960.10.1364/OE.409428. PubMed DOI
Horák M.; Bukvišová K.; Švarc V.; Jaskowiec J.; Křápek V.; Šikola T. Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography. Sci. Rep. 2018, 8, 964010.1038/s41598-018-28037-1. PubMed DOI PMC
Malinský P.; Slepička P.; Hnatowicz V.; Švorčík V. Early stages of growth of gold layers sputter deposited on glass and silicon substrates. Nanoscale Res. Lett. 2012, 7, 241.10.1186/1556-276X-7-241. PubMed DOI PMC
Schwartzkopf M.; Buffet A.; Körstgens V.; Metwalli E.; Schlage K.; Benecke G.; Perlich J.; Rawolle M.; Rothkirch A.; Heidmann B.; Herzog G.; Müller-Buschbaum P.; Röhlsberger R.; Gehrke R.; Stribeckb N.; Rotha S. V. From atoms to layers: in situ gold cluster growth kinetics during sputter deposition. Nanoscale 2013, 5, 5053–5062. 10.1039/C3NR34216F. PubMed DOI
Golan Y.; Margulis L.; Rubinstein I. Vacuum-deposited gold films: I. Factors affecting the film morphology. Surf. Sci. 1992, 264, 312–326. 10.1016/0039-6028(92)90188-C. DOI
Chaloupka A.; Šimek P.; Šutta P.; Švorčík V. Influence of substrate on properties of gold nanolayers. Mater. Lett. 2010, 64, 1316–1318. 10.1016/j.matlet.2010.03.019. DOI
Habteyes T. G.; Dhuey S.; Wood E.; Gargas D.; Cabrini S.; Schuck P. J.; Alivisatos A. P.; Leone S. R. Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative. ACS Nano 2012, 6, 5702–5709. 10.1021/nn301885u. PubMed DOI
Madsen S. J.; Esfandyarpour M.; Brongersma M. L.; Sinclair R. Observing plasmon damping due to adhesion layers in gold nanostructures using electron energy loss spectroscopy. ACS Photonics 2017, 4, 268–274. 10.1021/acsphotonics.6b00525. PubMed DOI PMC
Thornton J. A. High rate thick film growth. Annu. Rev. Mater. Sci. 1977, 7, 239–260. 10.1146/annurev.ms.07.080177.001323. DOI
Thornton J. A. The microstructure of sputter-deposited coatings. J. Vac. Sci. Technol. A 1986, 4, 3059–3065. 10.1116/1.573628. DOI
Chauvin A.; Horak L.; Duverger-Nédellec E.; Dopita M.; Tessier P.-Y.; El Mel A.-A. Effect of the substrate temperature during gold-copper alloys thin film deposition by magnetron co-sputtering on the dealloying process. Surf. Coat. Technol. 2020, 383, 12522010.1016/j.surfcoat.2019.125220. DOI
Hatakeyama Y.; Onishi K.; Nishikawa K. Effects of sputtering conditions on formation of gold nanoparticles in sputter deposition technique. RSC Adv. 2011, 1, 1815–1821. 10.1039/c1ra00688f. DOI
Hatakeyama Y.; Morita T.; Takahashi S.; Onishi K.; Nishikawa K. Synthesis of gold nanoparticles in liquid polyethylene glycol by sputter deposition and temperature effects on their size and shape. J. Phys. Chem. C 2011, 115, 3279–3285. 10.1021/jp110455k. DOI
Pedrosa P.; Ferreira A.; Cote J.-M.; Martin N.; Pour Yazdi M. A.; Billard A.; Lanceros-Mendez S.; Vaz F. Influence of the sputtering pressure on the morphological features and electrical resistivity anisotropy of nanostructured titanium films. Appl. Surf. Sci. 2017, 420, 681–690. 10.1016/j.apsusc.2017.05.175. DOI
Li W.; Minev R.; Dimov S.; Lalev G. Patterning of amorphous and polycrystalline Ni78B14Si8 with a focused-ion-beam. Appl. Surf. Sci. 2007, 253, 5404–5410. 10.1016/j.apsusc.2006.12.018. DOI
Michael J. R. Focused ion beam induced microstructural alterations: texture development, grain growth, and intermetallic formation. Microsc. Microanal. 2011, 17, 386–397. 10.1017/S1431927611000171. PubMed DOI
Kemmenoe B. H.; Bullock G. R. Structure analysis of sputter-coated and ion-beam sputter-coated films: a comparative study. J. Microsc. 1983, 132, 153–163. 10.1111/j.1365-2818.1983.tb04267.x. PubMed DOI
Schwartzkopf M.; Hinz A.; Polonskyi O.; Strunskus T.; Löhrer F. C.; Körstgens V.; Müller-Buschbaum P.; Faupel F.; Roth S. V. Role of sputter deposition rate in tailoring nanogranular gold structures on polymer surfaces. ACS Appl. Mater. Interfaces 2017, 9, 5629–5637. 10.1021/acsami.6b15172. PubMed DOI
Chen J.-Q.; Huang Q.-S.; Qi R.-Z.; Feng Y.-F.; Feng J.-T.; Zhang Z.; Li W.-B.; Wang Z.-S. Effects of sputtering power and annealing temperature on surface roughness of gold films for high-reflectivity synchrotron radiation mirrors. Nucl. Sci. Technol. 2019, 30, 107.10.1007/s41365-019-0635-x. DOI
Zhou C.; Yu J.; Qin Y.; Zheng J. Grain size effects in polycrystalline gold nanoparticles. Nanoscale 2012, 4, 4228–4233. 10.1039/c2nr30212h. PubMed DOI PMC
McPeak K. M.; Jayanti S. V.; Kress S. J. P.; Meyer S.; Iotti S.; Rossinelli A.; Norris D. J. Plasmonic films can easily be better: rules and recipes. ACS Photonics 2015, 2, 326–333. 10.1021/ph5004237. PubMed DOI PMC
Tinguely J. C.; Sow I.; Leiner C.; Grand J.; Hohenau A.; Felidj N.; Aubard J.; Krenn J. R. Gold nanoparticles for plasmonic biosensing: the role of metal crystallinity and nanoscale roughness. BioNanoScience 2011, 1, 128–135. 10.1007/s12668-011-0015-4. DOI
Jung Y. S.; Sun Z.; Kim H. K.; Blachere J. Blueshift of surface plasmon resonance spectra in anneal-treated silver nanoslit arrays. Appl. Phys. Lett. 2005, 87, 26311610.1063/1.2159095. DOI
Bosman M.; Zhang L.; Duan H.; Tan S. F.; Nijhuis C. A.; Qiu C.-W.; Yang J. K. W. Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures. Sci. Rep. 2014, 4, 553710.1038/srep05537. PubMed DOI PMC
Šikola T.; Spousta J.; Dittrichová L.; Nebojsa A.; Peřina V.; Češka R.; Dub P. Dual ion beam deposition of metallic thin films. Surf. Coat. Technol. 1996, 84, 485–490. 10.1016/S0257-8972(95)02823-4. DOI
Colliex C.; Kociak M.; Stéphan O. Electron energy loss spectrometry imaging of surface plasmons at the nanometer scale. Ultramicroscopy 2016, 162, A1–A24. 10.1016/j.ultramic.2015.11.012. PubMed DOI
Wu Y.; Li G.; Camden J. P. Probing nanoparticle plasmon with electron energy loss spectroscopy. Chem. Rev. 2018, 118, 2994–3031. 10.1021/acs.chemrev.7b00354. PubMed DOI
Horák M.; Čalkovský V.; Mach J.; Křápek V.; Šikola T. Plasmonic properties of individual gallium nanoparticles. J. Phys. Chem. Lett. 2023, 14, 2012–2019. 10.1021/acs.jpclett.3c00094. PubMed DOI PMC
Hrtoň M.; Konečná A.; Horák M.; Šikola T.; Křápek V. Plasmonic antennas with electric, magnetic, and electromagnetic hot spots based on Babinet’s principle. Phys. Rev. Appl. 2020, 13, 05404510.1103/PhysRevApplied.13.054045. DOI
Křápek V.; Konečná A.; Horák M.; Ligmajer F.; Stöger-Pollach M.; Hrtoň M.; Babocký J.; Šikola T. Independent engineering of individual plasmon modes in plasmonic dimers with conductive and capacitive coupling. Nanophotonics 2020, 9, 623–632. 10.1515/nanoph-2019-0326. DOI
Horák M.; Šikola T. Influence of experimental conditions on localized surface plasmon resonances measurement by electron energy loss spectroscopy. Ultramicroscopy 2020, 216, 11304410.1016/j.ultramic.2020.113044. PubMed DOI
Semaltianos N. G. Thermally evaporated aluminium thin films. Appl. Surf. Sci. 2001, 183, 223–229. 10.1016/S0169-4332(01)00565-7. DOI
Langford J. I.; Wilson A. J. C. Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 1978, 11, 102–113. 10.1107/S0021889878012844. DOI
Mattern N.; Riedel A.; Weise G. X-ray diffraction investigations of thin gold films. Mater. Sci. Forum 1994, 166–169, 287–292. 10.4028/www.scientific.net/MSF.166-169.287. DOI
Švorčík V.; Kvítek O.; Říha J.; Kolská Z.; Siegel J. Nano-structuring of sputtered gold layers on glass by annealing. Vacuum 2012, 86, 729–732. 10.1016/j.vacuum.2011.07.040. DOI