Automated integrative high-throughput phenotyping of plant shoots: a case study of the cold-tolerance of pea (Pisum sativum L.)
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
25798184
PubMed Central
PMC4369061
DOI
10.1186/s13007-015-0063-9
PII: 63
Knihovny.cz E-zdroje
- Klíčová slova
- Biomass production, Chlorophyll fluorescence imaging, Cold adaptation, Pea (Pisum), Plant phenotyping, RGB digital imaging, Shoot growth,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Recently emerging approaches to high-throughput plant phenotyping have discovered their importance as tools in unravelling the complex questions of plant growth, development and response to the environment, both in basic and applied science. High-throughput methods have been also used to study plant responses to various types of biotic and abiotic stresses (drought, heat, salinity, nutrient-starving, UV light) but only rarely to cold tolerance. RESULTS: We present here an experimental procedure of integrative high-throughput in-house phenotyping of plant shoots employing automated simultaneous analyses of shoot biomass and photosystem II efficiency to study the cold tolerance of pea (Pisum sativum L.). For this purpose, we developed new software for automatic RGB image analysis, evaluated various parameters of chlorophyll fluorescence obtained from kinetic chlorophyll fluorescence imaging, and performed an experiment in which the growth and photosynthetic activity of two different pea cultivars were followed during cold acclimation. The data obtained from the automated RGB imaging were validated through correlation of pixel based shoot area with measurement of the shoot fresh weight. Further, data obtained from automated chlorophyll fluorescence imaging analysis were compared with chlorophyll fluorescence parameters measured by a non-imaging chlorophyll fluorometer. In both cases, high correlation was obtained, confirming the reliability of the procedure described. CONCLUSIONS: This study of the response of two pea cultivars to cold stress confirmed that our procedure may have important application, not only for selection of cold-sensitive/tolerant varieties of pea, but also for studies of plant cold-response strategies in general. The approach, provides a very broad tool for the morphological and physiological selection of parameters which correspond to shoot growth and the efficiency of photosystem II, and is thus applicable in studies of various plant species and crops.
Zobrazit více v PubMed
Xin Z, Browse J. Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ. 2000;23:893–902. doi: 10.1046/j.1365-3040.2000.00611.x. DOI
Stoddard FL, Balko C, Erskine W, Khan HR, Link W, Sarker A. Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica. 2006;147:167–186. doi: 10.1007/s10681-006-4723-8. DOI
Maqbool A, Shafiq S, Lake L. Radiant frost tolerance in pulse crops – a review. Euphytica. 2010;172:1–12. doi: 10.1007/s10681-009-0031-4. DOI
Verhoeven A. Sustained energy dissipation in winter evergreens. New Phytol. 2014;201:57–65. doi: 10.1111/nph.12466. DOI
Markarian D, Harwood RR, Rowe PR. The inheritance of winter hardiness of Pisum. II. Description and release of advance generation breeding lines. Euphytica. 1968;17:110–113.
Silim SN, Hebblethwaite PD, Heath MC. Comparison of the effects of autumn and spring sowing date on growth and yield of combining peas (Pisum sativum L.) J Agri Sci. 1985;104:35–46. doi: 10.1017/S0021859600042969. DOI
Yordanov I, Georgieva K, Tsonev T, Vilikova V. Effect of cold hardening on some photosynthetic characteristics of pea (Pisum sativum L., CV. RAN 1) plant. Bulg J Plant Physiol. 1996;22:13–21.
Georgieva K, Lichtenthaler HK. Photosynthetic activity and acclimation ability of pea plants to low and high temperature treatment as studied by means of chlorophyll fluorescence. J Plant Physiol. 1999;155:416–423. doi: 10.1016/S0176-1617(99)80125-4. DOI
Georgieva K, Lichtenthaler HK. Photosynthetic response of different pea cultivars to low and high temperature treatments. Photosynthetica. 2006;44:569–578. doi: 10.1007/s11099-006-0073-y. DOI
Berger B, de Regt B, Tester M. High-throughput phenotyping of plant shoots. In: Normanly J, editor. High-throughput phenotyping in plants. New York City: Humana Press; 2012. pp. 9–20. PubMed
Petrozza A, Santaniello A, Summerer S, Di Tommaso G, Di Tommaso D, Paparelli E, et al. Physiological responses to Megafol® treatments in tomato plants under drought stress: a phenomic and molecular approach. Sci Hortic (Amsterdam) 2014;174:185–192. doi: 10.1016/j.scienta.2014.05.023. DOI
Pereyra-Irujo GA, Gasco ED, Peirone LS, Aguirrezábal LA. GlyPh: a low-cost platform for phenotyping plant growth and water use. Funct Plant Biol. 2012;39:905–913. doi: 10.1071/FP12052. PubMed DOI
Chaerle L, Hagenbeek D, Vanrobaeys X, Van Der Straeten D. Early detection of nutrient and biotic stress in Phaseolus vulgaris. Int J Remont Sens. 2007;28:3479–3492. doi: 10.1080/01431160601024259. DOI
Jansen M, Gilmer F, Biskup B, Nagel KA, Rascher U, Fischbach A, et al. Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Funct Plant Biol. 2009;36:902–914. doi: 10.1071/FP09095. PubMed DOI
Hairmansis A, Berger B, Tester M, Roy SJ. Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice. Rice. 2014;7:16. doi: 10.1186/s12284-014-0016-3. PubMed DOI PMC
Hoffmann WA, Poorter H. Avoiding bias in calculations of relative growth rate. Ann Bot London. 2002;90:37–42. doi: 10.1093/aob/mcf140. PubMed DOI PMC
Bourion V, Lejeune-Hénaut I, Munier-Jolain N, Salon C. Cold acclimation of winter and spring peas: carbon partitioning as affected by light intensity. Eur J Agron. 2003;19:535–548. doi: 10.1016/S1161-0301(03)00003-0. DOI
Honsdorf N, March TJ, Berger B, Tester M, Pillen K. High-throughput phenotyping to detect drought tolerance qtl in wild barley introgression lines. PLoS One. 2014;9:e97047. doi: 10.1371/journal.pone.0097047. PubMed DOI PMC
Fehér-Juhász E, Majer P, Sass L, Lantos C, Csiszár J, Turóczy Z, et al. Phenotyping shows improved physiological traits and seed yield of transgenic wheat plants expressing the alfalfa aldose reductase under permanent drought stress. Acta Physiol Plant. 2014;36:663–673. doi: 10.1007/s11738-013-1445-0. DOI
Rajendran K, Tester M, Roy SJ. Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ. 2009;32:237–249. doi: 10.1111/j.1365-3040.2008.01916.x. PubMed DOI
Harris BN, Sadras VO, Tester M. A water-centred framework to assess the effects of salinity on the growth and yield of wheat and barley. Plant Soil. 2010;336:377–389. doi: 10.1007/s11104-010-0489-9. DOI
Golzarian MR, Frick RA, Rajendran K, Berger B, Roy S, Tester M, et al. Accurate inference of shoot biomass from high-throughput images of cereal plants. Plant Methods. 2011;7:1–11. doi: 10.1186/1746-4811-7-1. PubMed DOI PMC
Schilling RK, Marschner P, Shavrukov Y, Berger B, Tester M, Roy SJ, et al. Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. Plant Biotechnol J. 2014;12:378–386. doi: 10.1111/pbi.12145. PubMed DOI
Lazár D. Parameters of photosynthetic energy partitioning. J Plant Physiol. 2015;175:131–147. doi: 10.1016/j.jplph.2014.10.021. PubMed DOI
Lootens P, Devacht S, Baert J, Van Waes J, Van Bockstaele E, Roldán-Ruiz I. Evaluation of cold stress of young industrial chicory (Cichorium intybus L.) by chlorophyll a fluorescence imaging. II. Dark relaxation kinetics. Photosynthetica. 2011;49:185–194. doi: 10.1007/s11099-011-0025-z. DOI
Somersallo S, Krause GH. Reversible photoinhibition of unhardened and cold-acclimated spinach leaves at chilling temperatures. Planta. 1990;2:181–187. PubMed
Liu P, Meng QW, Zou Q, Zhao SJ, Liu QZ. Effects of cold hardening on chilling induced photoinhibition of photosynthesis and on xantophyll cycle pigments in sweet pepper. Photosynthetica. 2001;39:467–472. doi: 10.1023/A:1015155032135. DOI
Hogewoning SW, Harbinson J. Insights on the development, kinetics, and variation of photoinhibition using chlorophyll fluorescence imaging of a chilled, variegated leaf. J Exp Bot. 2007;58:453–463. doi: 10.1093/jxb/erl219. PubMed DOI
Devacht S, Lootens P, Baert J, Van Waes J, Van Bockstaele E, Roldán-Ruiz I. Evaluation of cold stress of young industrial chicory (Cichorium intybus L.) plants by chlorophyll a fluorescence imaging. I. Light induction curve. Photosynthetica. 2011;49:161–171. doi: 10.1007/s11099-011-0015-1. DOI
Mishra A, Mishra KB, Höermiller II, Heyer AG, Nedbal L. Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions. Plant Signal Behav. 2011;6:301. doi: 10.4161/psb.6.2.15278. PubMed DOI PMC
Mishra A, Heyer AG, Mishra KB. Chlorophyll fluorescence emission can screen cold tolerance of cold acclimated Arabidopsis thaliana accessions. Plant Methods. 2014;10:38. doi: 10.1186/1746-4811-10-38. PubMed DOI PMC
Otsu N. A threshold selection method from gray-level histograms. IEEE T Syst Man Cyb. 1979;9:62–66. doi: 10.1109/TSMC.1979.4310076. DOI
Canny JA. Computational approach to edge detection. IEEE T Pattern Anal. 1986;8:679–698. doi: 10.1109/TPAMI.1986.4767851. PubMed DOI
Lazár D, Nauš J. Statistical properties of chlorophyll fluorescence parameters. Photosynthetica. 1998;35:121–127. doi: 10.1023/A:1006886202444. DOI